首页 > 学术发表知识库 > 稀土元素配合物论文答辩

稀土元素配合物论文答辩

发布时间:

稀土元素配合物论文答辩

稀土元素论文开头怎么写摘要:稀土元素是自然界中存在的一种重要的稀有金属元素,被誉为“绿色黄金”。稀土元素与人体健康有着密切联系,近年来已成为人们研究的热点。论文研究表明,在正常情况下,稀土元素与人体血清中所含某种酶的活性存在着很强的亲和力,其生物活性远远高于其他金属元素;而且含有某种单一或多种金属离子的化合物很容易被人类利用,因而具有独特、广泛而巨大发展前景。论文综述部分从稀土元素与人体健康的关系、它和人体免疫力之间的相互作用两个方面对现有成果进行了介绍。关键词:酶;作用;代谢摘要:本文针对中国东北地区特有的沙棘汁资源,对沙棘中一种叫做“肉苁蓉”提取技术进行了研究并获得阶段性成果。

从需求出发,比如国家某高端零件的制备对材料有什么要求,要满足材料的性能要求,需要添加稀土元素,进而引出稀土元素的作用,进而引出研究的内容。

稀土元素是指原子序数从57到71的15个镧系元素,在元素周期表中属ⅢB族,同族中39号元素钇一般也看作稀土元素,同族中21号元素钪早期也有人把划入稀土元素,但多数研究者将它排除在外,因为它们在自然界中与稀土元素共生关系不密切,化学性质差别也比较大。稀土元素根据它们在物理化学性质上的某些差别可以将它们分成两组:从La到Eu称为轻稀土(LREE),或铈组稀土;从Gd到Lu,包括Y称为重稀土(HREE),或钇组稀土。稀土元素的离子半径近似,电价以三价为主,故它们的地球化学行为近似。当然也存在一定的差别,其原因在于:①离子半径有微小差别;②碱性不同决定了它们的沉淀顺序和迁移能力有所不同;③形成络合物的能力各不相同,因而在自然界中的迁移能力也不相同;④它们被吸附的能力随原子序数的增加、半径的减小而减小。这样就造成了它们在自然界中发生一定程度的分离(即出现“亏损”和“富集”)而显示不同的分配特点。

(1)样品采集及分析

本次研究分别在川东南的南川、万盛、道真、武隆、石柱、黔江、酉阳、秀山、沿河,以及湘西的花垣、永顺、龙山、咸丰、宣恩等地共采集了210件志留系小河坝组砂岩样品(图3.5)。

从各个剖面选取了37件新鲜样品进行了稀土元素及微量元素地球化学分析(每个剖面的样品自底部向顶部依次编号见表3.6),主要岩性为砂岩、细砂岩,样品稀土元素分析在中国科学院青岛海洋研究所分析与检测中心完成。样品破碎后研磨至200目,然后装袋备用。分析步骤为:称取40mg样品于Teflon溶样罐中,加入0.6mLHNO3+2mLHF封盖后,静置2h后,于150℃电热板上溶样24h;加0.25mLHClO4于150℃电热板上敞开蒸酸至近干;加1mLHNO3+1mLH2O密闭于120℃电热板回溶12h;用高纯H2O定容至40g;然后在仪器ICP-MS上进行测试,各标准样品(GSR-1,GSR-3,BHVO-2,BCR-2)及空白样品所测稀土元素的线性较好,分析误差基本都小于5%,很少大于10%,相同样品测试结果一致,测试结果准确可信。各测试样品最终结果取三次测定的平均值。

表3.6 川东南-湘西志留系小河坝组砂岩稀土元素地球化学分析数据(μg/g)

注:数据测试在中国科学院青岛海洋研究所分析与检测中心进行。

(2)稀土元素含量及其特征值

各沉积岩中稀土元素含量及化学参数见表3.6和表3.7。

表3.7 川东南-湘西志留系小河坝组砂岩稀土元素(μg/g)及地球化学参数

续表

注:陨石数据根据Leed球粒陨石(田彰正,1973);稀土元素总量∑REE=La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;轻稀土元素含量LREE=La+Ce+Pr+Nd+Sm+Eu;重稀土元素含量HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;L/H:轻稀土含量与重稀土含量之比;(LaN/YbN):LaN和YbN经球粒陨石标准化的比值;Eu/Eu*=Eu/(SmN×GdN)1/2;Ce/Ce*=Ce/(LaN×PrN)1/2;(Lan/Ybn):Lan和Ybn经北美页岩标准化的比值。

川东南、湘西地区志留系小河坝组砂岩样品的稀土元素分析结果(表3.6)表明,在湘西的宣恩板寮、龙山水田坝、咸丰、永顺、花垣等地稀土总量(不包括Y)介于118.05~234.68μg/g之间,平均值为163.02μg/g。在川东南的南川、武隆、道真、秀山、酉阳、沿河、石柱漆辽、黔江石会等地稀土总量介于113.35~280.63μg/g之间,平均值为202.3μg/g。总体上,研究区志留系碎屑岩的稀土元素含量都明显高于大陆上地壳的平均稀土元素总量值(146.4μg/g),而比较接近北美页岩的平均值(173.2μg/g)。

其中,LREE/HREE为轻、重稀土元素比值,能够反映样品轻、重稀土的分异状况,在同一类岩石中,若该值较大,说明轻、重稀土分异明显,轻稀土元素相对富集,重稀土元素则相对亏损。川东南地区样品的LREE/HREE为4.41~10.81,平均值为9.05,在湘西样品的LREE/HREE为6.74~11.44,平均值为8.77,研究区都略高于北美页岩的比值(7.44),表明研究区相对富集轻稀土元素,重稀土相对亏损。

LaN/YbN是稀土元素球粒陨石标准化图解中分布曲线的斜率,反映曲线的倾斜程度。LaN/SmN、GdN/YbN分别反映了轻、重稀土元素之间的分馏程度,LaN/SmN值越大,表明轻稀土越富集;GdN/YbN值越小,表明重稀土越富集。川东南样品的LaN/YbN为2.23~12.57,平均值为10.52,湘西样品的LaN/YbN为8.69~13.61,平均值为10.05,表明研究区样品的轻、重稀土元素分异较大。LaN/SmN、GdN/YbN分别反映轻稀土元素之间、重稀土元素之间的分馏程度。川东南样品的LaN/SmN介于1.51~4.81之间,平均值为3.69,湘西地区样品的LaN/SmN介于之间2.62~4.01,平均值为3.51,表明研究区轻稀土元素之间分异明显;川东南地区样品的GdN/YbN介于1.52~2.86,平均值为1.95,湘西地区样品的GdN/YbN介于1.63~2.48,平均值为1.97,表明研究区重稀土元素之间分异不明显。

Eu具有明显的负异常,川东南地区样品的δEu为0.55~0.68,平均值为0.61,湘西地区的样品的δEu为0.55~0.70,平均值为0.63,研究区的δEu与北美页岩标准值(δEu=0.65)较为接近;川东南地区样品的δCe在0.66~0.96之间,平均值为0.94,湘西地区的样品的δCe在0.94~0.97之间,平均值为0.96,两区的δCe值基本正常。

(3)稀土元素的球粒陨石标准化配分模式

采用Leed球粒陨石(田彰正,1973)标准值对研究区志留系小河坝组砂岩样品进行标准化,其稀土元素配分模式基本类似,均为轻稀土元素富集、重稀土元素亏损型,分布曲线在轻稀土处具有较大的斜率,而在重稀土处较为平坦,Eu处出现一个明显“V”形,存在负Eu异常,表明沉积物的物源较为一致,物源相对稳定;从研究区稀土元素配分模式图3.6和图3.7可以看出La-Eu段轻稀土配分曲线较陡、斜率较大,表现为明显的“右倾”,说明轻稀土元素之间的分馏程度较高;Gd-Lu段重稀土配分曲线较为平坦、斜率较小,重稀土元素之间的分馏程度较低。

图3.6 湘西志留系小河坝组砂岩稀土元素配分模式

图3.7 川东南志留系小河坝组砂岩稀土元素配分模式

(4)稀土元素的物源分析

A.沉积速率

前人研究表明,稀土元素中各元素在电价、被吸附能力等性质上仍有一定的差异,随着环境的改变会发生分异,在海洋环境中尤为明显。主要表现为轻稀土元素与重稀土、铈(Ce)和铕(Eu)与其他元素间的分离。REE大部分被结合于碎屑矿物或以悬浮物入海,碎屑或悬浮颗粒在海水中停留时间的差异是造成REE分异程度不同的重要原因之一。当悬浮物在海水中停留时间较短时,REE随其快速沉积下来,与海水发生交换的机会少,分异弱,这种沉积物的页岩标准化的REE配分模式比较平缓,Ce呈正常型或弱负异常,曲线斜率Lan/Ybn值为1左右。当悬浮颗粒在海水中停留时间较长,即其沉降缓慢,促进了更细颗粒中的REE分解作用,使带入海水中的REE有足够的时间被粘土吸附、与有机质络合和进行相关的化学反应,导致REE的强烈分异,沉积物中页岩标准化稀土配分模式发生显著变化,含量上轻、重稀土元素出现亏损或富集,Lan/Ybn值明显大于1或小于1,Ce也发生选择性分异,氧化环境中易呈Ce4+沉淀,具显著负异常,而缺氧条件下负异常消失,甚至出现正异常。因此,可以认为REE的分异程度是沉积颗粒沉降速率快慢的响应。基于海水中粘土等细碎屑悬浮物是有机质和REE共同的“宿主”,有机质又是REE最强的吸附剂之一,二者具有共同的沉降速率。

本书将REE的分异程度作为一种指示剂来表征沉积物沉积速率。川东南地区志留系小河坝组砂岩Lan/Ybn值在0.62~1.85之间,均值为1.55(表3.7),湘西地区志留系小河坝组砂岩Lan/Ybn值在1.28~2.0之间,均值为1.48,从川东南到湘西地区Lan/Ybn的值逐步降低,表明沉积物的沉积速率有增加的趋势,反映了距物源近的特点。海水中有机质主要以颗粒状或细颗粒等形式沉淀,沉积颗粒的沉降速率对有机质的聚集和保存影响显著。研究区志留系小河坝期沉积速率普遍较高,使得龙马溪期沉积的有机质聚集和保存,这一点在前人对本区的有机碳含量研究上也有体现。总体上看,川东南地区沉积物的沉积速率较湘西低,表明湘西更接近物源区,其海水深度也较浅。

B.稀土元素对物源的指示意义

稀土元素在水体中停留的时间非常短,能够快速进入到细粒沉积物中且不发生分异,能更好地保留源区的地球化学信息(杨守业,1999;Cullers,1988),因此对沉积物具有示踪意义。杨守业等综合前人研究,认为控制沉积物中稀土元素组成最主要的因素是物源。在稀土元素示踪物源研究中,应注重稀土元素配分模式曲线的几何形态,而不是稀土元素的绝对丰度(赵振华,1997)。在实际应用中,研究者往往从配分模式曲线的特征来判断物质来源。相同来源的物质往往具有非常相似的稀土配分模式曲线,所以,在物源示踪研究中,稀土元素得到了广泛的应用。在反映盆地物源区性质的指标中,稀土元素分布模式是最可靠的指标之一。源自上地壳的稀元素具有轻稀土富集、重稀土含量稳定和明显负Eu异常等特征(McLennan,1995;Bhatia,1986)。本书做了川东南-湘西地区志留系小河坝组砂岩稀土元素样品Leed球粒陨石标准化的配分模式曲线(图3.6,3.7),稀土元素总体具有轻稀土富集、重稀土含量稳定、明显的负铕异常等特征,样品的球粒陨石标准化配分模式相似,均属轻稀土富集型,Ce基本正常。从研究区的稀土元素配分模式可以判断川东南-湘西地区志留系小河坝组的物源一致。总体显示出研究区志留系小河坝组砂岩与上地壳基本一致的分布模式,说明研究区志留系小河坝期沉积岩的原始物质应源自上地壳。

李双建和张廷山等对黔中隆起北侧的贵州习水喉滩、綦江观音桥志留系石牛栏组灰岩和靠近雪峰山隆起西北侧的湖南石门磺厂志留系罗惹坪组泥岩的稀土元素地球化学进行了研究(张廷山,1998;李双建,2008)。比较显示研究区地区的REE配分模式与石门磺石的罗惹坪组泥岩的REE配分模式(笔者采用Leed球粒陨石对参考文献中的数据进行统一标准化)十分接近(图3.8为本书数据,图3.9中的方形样品为贵州习水;三角形为湘西样品;菱形样品为湖北石门样品),都显示出轻稀土富集、重稀土相对亏损的右倾型,存在明显负Eu异常,Ce基本正常。且稀土元素各种特征参数比值都很接近,说明研究区与石门磺石具有相似的物质来源。而川东南地区的稀土元素配分模式图与靠近黔中隆起的贵州习水喉滩、綦江观音桥石牛栏组灰岩的稀土元素配分模式存在明显的不同。表明研究区与石门的罗惹坪组应为同源,而与贵州习水喉滩、綦江观音桥石牛栏组应不同源。

图3.8 湘西小河坝组砂岩稀土元素配分模式

图3.9 湘西地区侵入岩稀土元素配分模式(据刘钟伟,1994)

前人大量的研究结果表明,震旦纪-早志留世沉积时期,黔中隆起接受的是以碳酸盐岩为主的沉积,并且在其北侧未见有侵入岩体的报道,小河坝期若是黔中隆起向川东南地区提供的物源,那么在川东南地区的小河坝组砂岩应该体现碳酸盐岩作为物源的沉积记录,本次对研究区稀土测试研究结果显示,小河坝组砂岩物源区应为沉积岩与碱性玄武岩的混合区,所以物源只能是来自雪峰山隆起。同时与刘钟伟对湘西地区古丈、芷江、沅陵、怀化及通道一带侵入在新元古界板溪群(局部为下震旦统)中之北东向岩体的稀土元素配分模式相近(图3.9)。说明川东南志留系小河坝组砂岩的物源来自雪峰山隆起的新元古界板溪群及其侵入岩体。

据前人研究成果,川东南-湘西地区志留系小河坝组砂岩的物源来自雪峰山隆起南西段的古丈、芷江、沅陵、怀化及通道一带的新元古界板板溪群及其侵入板溪群中的基性-超基性岩体及中-基性喷出岩。小河坝组砂岩重砂矿物研究结果也证明了这一结论。

Bhatia et al.(1983,1986)在对澳大利亚东部不同大地构造背景的沉积盆地中砂岩和泥岩的稀土元素特征总结如表3.8。该表系统地揭示了稀土元素分布特征所反映的沉积盆地的大地构造背景和物源区类型。本书数据与表中数据对比显示,本区小河坝组砂岩的物源区与活动大陆边缘抬升基地类型相近。

表3.8 不同大地构造背景沉积盆地杂砂岩的稀土元素特征

川东南-湘西地区志留系小河坝组砂岩多表现明显负异常,应用上述稀土元素的特征进一步判断物源区的性质:根据轻重稀土比值与稀土总量图解(La/Yb-∑REE图解,底图据Alleyre,1978)。其投点主要分布在沉积岩和碱性玄武岩的交汇区,仅少数几个样品落在了沉积岩区(图3.10)。说明研究区志留系小河坝组砂岩的源区主要为沉积岩和碱性玄武岩混合区。

C. GdN/YbN比值与源区特征

在地球演化初期,Gd含量较高,随着元素分馏作用,Gd含量越来越小。Gd/Yb的比值也就随着地层时代的变新而逐渐变小(Taylor,1985;Mclennan,1993)。以Gd/Yb等于2.0为界,太古宇的Gd/Yb比值常大于2.0;而后太古宙的年轻地层则小于2.0。由于Gd和Yb在沉积过程中受地质作用的干扰较小,一旦封闭到沉积地层中,它们的含量就很难改变,因而可用它们判别母岩的特性。同样Gd/Yb的比值也是一个常用的判断沉积地层相对时间的方法,它具有随着地层时代的变新而逐渐变小的特点(邵磊等,2001)。

图3.10 川东南-湘西志留系小河坝砂岩La/Yb-∑REE图解(底图据Alleyre,1978)

川东南-湘西地区小河坝组砂岩37件Gd/Yb比值分析表明(图3.11),总体以2.0为界,样品数值全部在1.5~2.86,比较集中。可能反映其源岩类型比较单一。约76%的样品小于2.0。表明研究区志留系小河坝组砂岩的源岩地层时代主要以后太古宙地层为主;同时含有少量的太古宙地层的源岩。

图3.11 川东南-湘西地区小河坝组GdN-GdN/YbN关系图

稀土配合物的研究进展论文

研究稀土配合物的生物活性,对探索新的高效低毒、副作用小的稀土抑菌药物具有十分重要的意义。稀土配合物被认为是光转换分子器件,包括俘获光的配体和发射光的稀土离子两个部分,这样的分子器件克服了稀土离子本身光吸收能力弱的缺点。稀土配合物的结构复杂、性能独特,不同种类的稀土配合物需要用不同的方法来研究。稀土元素因其电子结构的特殊性,在光学、电学、磁学、催化和分析等领域作用而受到人们的广泛关注,并进行了大量的研究被誉为新材料的宝库。稀土离子本身发光效率低,稀土有机配合物具有量子效率高、亮度好、色纯度高以及荧光寿命长等优点。

稀土发光材料稀土发光材料:Rare Earth Luminescent Materials 稀土发光是由稀土4f电子在不同能级间跃出而产生的,因激发方式不同,发光可区分为光致发光(photoluminescence)、阴极射线发光(cathodluminescence)、电致发光(electroluminescence)、放射性发光(radiation luminescence)、X射线发光(X-ray luminescence)、摩擦发光(triboluminescence)、化学发光(chemiluminescence)和生物发光(bioluminescence)等。稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外光的光谱,特别在可见光区有很强的发射能力等优点。稀土发光材料已广泛应用在显示显像、新光源、X射线增光屏等各个方面。 稀土发光材料制造方法:(1)气相法:气体冷凝法;真空蒸发法;溅射法;化学气相沉积法(CVD);等离子体法;化学气相输运法等。(2)固相法:高温固相合成法;自蔓延燃烧合成法(SHS);室温和低热固相反应法;低温燃烧合成法;冲击波化学合成法;机械合金化法等。(3)液相法:沉淀法;均相沉淀法;共沉淀法;化合物沉淀法;熔盐法;水热氧化法;水热沉淀法;水热晶化法;水热合成法;水热脱水法;水热阳极氧化法;胶溶法;相转变法;气溶胶法;喷雾热解法;包裹沉淀法;溶胶-凝胶法;微乳液法;微波合成法等。稀土发光材料的主要应用:(1)光源:日光灯 Ca5(PO4)3(Cl,F):[Sb3+,Mn2+]; BaMg2Al16O27:Eu2+; MgAl11O16:[Ce3+, Tb3+]; Y2O3:Eu3+高压汞灯 Y(PV)O4:Eu; YVO4:Eu,Tb黑光灯 YPO4:Ce,Th; MgSrBF3:Eu固体光源 GaP;GaAs;GaN;InGaN;YAG:Ce(2)显示:数字符号显示 发光二极管(LED)平板图像显示 OLED(3)显像:黑白电视 Gd2O2S:Tb彩色电视 Y2O3:Eu; Y2O2S:Eu飞点扫描 Y2SiO5:CeX射线成像 (Zn, Cd)S:Ag; CaWO4; BaFCl:Eu2+; La2O2S:Tb3+; Gd2O2S:Tb3+(4)探测:闪烁晶体 CsI, TlCl(5)激光:固体激光材料 YAG:Nd3+; YAP:Nd3+; YLF:Nd3+玻璃激光材料 掺Nd3+硅酸盐、硼酸盐和磷酸盐玻璃化学计量激光 PrCl3; NdP5O14; NdLiP4O12; NdKP4O12; NdK3(PO4)2; NdAl3(BO3)4; NdK5(MoO4)4液体激光 Eu3+激活的苯酰丙酮(BA)、二苯酰甲烷(DBM)、三氟乙酰丙酮(TFA)和苯三氟丙酮(BTFA)等气体激光 Sm(I), Eu(I), Eu(II), Tm(I), Yb(I), Yb(II), Yb等金属蒸气稀土发光材料专利技术集 1、一种制取长余辉发光材料的方法 2、稀土alo-bo绿色发光材料的制备 3、一种光致长余辉发光材料组合物及其制备方法 4、农膜稀土荧光粉转换剂的制备 5、用于测温技术的稀土荧光体 6、水性蓄能发光涂料 7、一种红外防伪发光材料的制备方法及其应用 8、光致发光釉及其制造方法 9、发光漆及其应用 10、铝酸盐高亮度长余辉发光材料及其制备方法 11、一种发光红磷光体 12、一种艳红色稀土荧光粉及其配制方法 13、稀土荧光探伤渗透液 14、碳还原法合成灯用稀士兰.绿两种荧光粉 15、包裹型稀土激活碱土金属铝酸盐发光材料及其制备工艺 16、稀土铝酸盐绿色发射荧光体的制备方法 17、稀土材料发光粉 18、一类高聚物稀土荧光组合物及其用途 19、稀土高分子光致发光材料及其合成方法 20、自发光颜料的生产方法 21、一种在254纳米紫外光下发光的复合材料 22、陶瓷发光材料及其制造工艺 23、一类高效稀土有机配合物电致发光材料及其制备方法 24、陶瓷发光材料制造工艺及制品 25、稀土石榴石绿色荧光体及制备方法 26、新型上转换发光材料及其制备方法 27、一种含稀土的氧化物红色发光材料及其制备方法 28、稀土发光材料的制备方法 29、一种半透明度高的发光材料制造方法 30、多色彩稀土荧光粉及其配制方法 31、稀土激活铝硅酸盐长余辉发光材料及其制备方法 32、长余辉无机发光材料的制备方法 33、一种新型的发光材料及其应用 34、用紫光二极管转换成发白光的稀土发光材料 35、稀土氧化物红色荧光粉及其制备方法 36、一种硼铝酸盐荧光粉及其制备方法 37、一种合成长余辉发光材料的新方法 38、含稀土有机无机纳米杂化发光材料的合成方法 39、多离子激活的碱土铝酸盐光致长余辉发光材料及制造方法 40、发光材料 41、拟薄水铝石晶种化稀土发光材料制备工艺 42、高聚物稀土化合物纳米杂化发光材料的合成方法 43、夜光材料的合成工艺 44、红色荧光粉的制造工艺 45、红色荧光粉 46、一种紫光或紫外激发的硼磷酸盐荧光粉及其制备方法 47、碱金属锡磷酸盐基发光材料及其制备方法 48、一种稀土激活的y2sio5荧光粉及其制备方法和应用 49、稀土氧化物基纳米发光粉体的制备方法 50、一种稀土掺杂的纳米级氧化钇基发光粉体的制备方法 51、稀土红色荧光粉及其制备方法 52、稀土掺杂钽酸盐透明发光薄膜及其制备方法 53、长余辉高亮度发光材料及其制备方法 54、机器可读荧光磷光防伪材料、该材料的制作方法及其应用 55、一种制备铕激活的钇钆硼酸盐荧光粉的方法 56、稀土绿色长余辉发光材料及其制备方法 57、高色纯度稀土钒磷酸钇钆铕红色荧光体及其制造方法 58、热固性发光粉末涂料及其制造方法 59、一种稀土荧光复合物及其用途 60、一种制备铝酸盐长余辉发光粉的方法 61、稀土包膜转光材料制备工艺 62、新型光存储发光材料及其用途 63、一种光固化稀土红色荧光防伪油墨及其制备方法 64、一种真空紫外激发的绿色硼酸盐发光材料及其制备方法 65、一种红色长余辉发光材料及其合成方法和应用 66、包含稀土元素硫化物的场发射白色发光材料及其制造方法 67、含联吡啶衍生物的稀土配合物及其作为电致发光材料的应用 68、包含稀土元素硫化物的绿色发光材料及其制造方法 69、稀土蓝色荧光材料、其制备方法和用途 70、一种晶格缺陷可调控型长余辉发光材料 71、电致发光材料 72、钇取代的硫代铝酸钡发光材料 73、一种人工合成的长余辉高亮度发光粉及其制备方法 74、用于电致发光荧光体的喷镀沉积方法 75、一种红色荧光粉的制备方法 76、耐蚀性陶瓷、含耐蚀性陶瓷的发光管及发光管的制造方法 77、发红色光余辉性光致发光荧光体和该荧光体的余辉性灯泡 78、含有稀土类元素的微粒和使用其的荧光探针 79、一种功能性纳米稀土荧光微粒及其制备和应用 80、氮化物荧光体,其制造方法及发光装置

稀土发光材料 自古以来,人类就喜欢光明而害怕黑暗,梦想能随意地控制光,现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用很大,稀土的作用远远超过其它元素。 一、稀土发光材料��物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光,另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在反回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光粉。稀土元素原子具有丰富的电子能级,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,从而获得多种发光性能。稀土是一个巨大的发光材料宝库,在人类开发的各种发光材料中,稀土元素发挥着非常重要的作用。��自1973年世界发生能源危机以来,各国纷纷致力于研制节能发光材料,于是利用稀土三基色荧光材料制作荧光灯的研究应运而生。1979年荷兰菲利浦公司首先研制成功,随后投放市场,从此,各种品种规格的稀土三基色荧光灯先后问世。随着人类生活水平的不断提高,彩电已开始向大屏幕和高清晰度方向发展。稀土荧光粉在这些方面显示自己十分优越的性能,从而为人类实现彩电的大屏幕化和高清晰度提供了理想的发光材料。��稀土荧光材料与相应的非稀土荧光材料相比,其发光效率及光色等性能都更胜一筹。因此近几年稀土荧光材料的用途越来越广泛,年用量增长较快。��根据激发源的不同,稀土发光材料可分为光致发光(以紫外光或可见光激发)、阴极射线发光(以电子束激发)、X射线发光(以X射线激发)以及电致发光(以电场激发)材料等。二、光致发光材料—灯用荧光粉��灯用发光材料自70年代末实用化以来,促使稀土节能荧光灯、金属卤化物灯向大功率、小型化、低光衰、高光效、高显色、无污染、无频闪、实用化、智能化、艺术化方向发展。主要用于各类不同用途的光源,如照明、复印机光源、光化学光源等。其中三基色荧光粉(由红、绿、蓝三种稀土的荧光粉按一定比例混合而成)制成的节能灯,由于光效高于白炽灯二倍以上,光色也好,受到世界各国的重视。稀土发光材料的质量提高和应用技术的发展,推动了新一代节能光源的科研、生产、应用,并带动了许多相关行业的发展,配套能力不断增强。��典型的热阴极荧光灯是在玻璃管内壁涂有荧光粉,在紫外线激发下发出可见光。当灯通电时,封装在灯两端的钨丝电极之间放电。主要是通过荧光粉将短波辐射转变成可见光而发光。稀土三基色荧光灯,它含有钇、铕和铽稀土荧光粉,能发出更亮的光,比标准荧光灯更接近太阳光谱。同时这种光可以节省50%的能耗,三基色荧光粉是将三种发射窄带红(611nm)、绿(545nm)和兰(450nm)色光谱的三种荧光粉混合而成。灯管先涂一薄层卤磷酸盐荧光粉,然后再涂一薄层三基色荧光粉。每支三基色荧光灯管平均含4.5克荧光粉,其中包括60%Eu3+掺杂的氧化钇(红粉)、30%Tb3+激活的铈镁铝酸盐(绿粉)和10%Eu2+激活的钡镁铝盐(蓝粉)。��三基色荧光粉常用的稀土激活荧光体有:红粉:铕(Eu3+)激活的氧化钇、有时用Bi3+共掺杂蓝粉:铕(Eu2+)激活的硅酸盐基质铕(Eu2+)激活的铝酸盐基质铕(Eu2+)激活的氯磷酸盐基质铕(Eu2+)激活的钡镁铝酸盐绿粉:铽(Tb3+)、铋(Bi3+)和铈(Ce3+)激活的镁铝酸盐铽(Tb3+)和钆(Gd3+)激活的镁钡铝酸盐1.稀土节能灯��稀土荧光粉主要应用于办公室、百货商店和工厂中的高性能荧光灯。80年代中期以来,随着含铽较少的较便宜的荧光粉开发成功,这种节能灯的应用迅速增长。90年代中期,国际上推出了TMT2直管型荧光灯,管径仅7mm,功率为6W~13W,光效为621m/W。T5直管型荧光灯管径为16mm,功率14W~35W,28W荧光灯光效可达104m/W,寿命大于16000h。我国新开发的大功率强光型55W~120W适用于室外照明的稀土紧凑型节能荧光灯管,光效801m/W以上。��新一代高频环保节能灯管T5荧光灯管,是理想的节能照明光源。灯管的特点是涂敷稀土三基色荧光粉为发光体,采用固态汞减少二次污染及高频电点灯的新技术,光效高、光色好、无频闪、提高了光的质量、缩短了工序、降低了能耗、减少了汞污染、净化了生产环境、提高了生产效率,是今后几年大力推广的产品,市场前景优于当前的紧凑型节能荧光灯。��近年国际上又推出加强型T5高频节能荧光灯管,提高了单位面积的光通量,充分发挥了细管径高光通的作用。��上海东利照明电器有限公司、江南节能灯厂、华星光电实业公司等单位近日以推出大功率、高光通、高显色、强光型紧凑型节能荧光灯。华星光电实业公司研制生产的T5管径55W~85W E40、E27灯头,体积与功率250W以下的高压汞灯、高压钠灯大致相同,显色指数Ra>80,适用于室外照明。��节能灯是绿色照明工程的重要组成部分,推广使用稀土三基色节能灯是节约能源、保护环境的有效措施之一。2.稀土荧光粉用其它类型灯(1)汞灯��稀土荧光粉用于高压汞灯中已有多年。这种灯的原理是利用氩气和汞蒸汽中的放电作用,它的光强度高于荧光灯。所用铕激活的钡酸钇荧光粉起改善光色作用。高压汞灯的主要应用是街道和工厂照明,这种场合需要强的白光。但是,近年来钠放电灯和金属卤化物HQT灯已代替了高压汞灯,它的市场已衰落。钠放电灯和金属卤化物HQT灯比汞灯的颜色再现性好,发天然白光。美国通用电报电话公司麻省实验室的研究人员已经研究出一种改良型低色温用的汞灯。将铈激活的钡酸钇荧光粉混入,制成400W的暖色汞灯,照明度25500流明,色温3350K,比普通汞灯的稳定性好、效率高。(2)碳弧灯��稀土氟化物加入到棒芯中,使弧光强度提高到10倍,同时弧光颜色由浅黄色变为接近日光色。这种碳弧灯用作探照灯以及彩色电影摄像和放映。(3)高压钠灯��高压钠灯中用半透明氧化铝作弧型管材料,氧化铝中添加少量氧化镁和氧化钇作烧结助剂来改善材料的光学性质,为了增强氧化铝的半透明度,氧化钇的粒径应在25微米左右。若粒径太大则会降低强度。目前高压钠灯中存在的问题是稀土杂质偏析导致钠浸蚀氧化铝管。

稀土元素化学实验毕业论文答辩

可以按照你们学院的制定的PPT模板(有学校LOGO的那种),如果没有要求就找一个风格简单严肃的PPT提供的模板,切记不要太花哨,会减弱你在答辩评委那里的印象分。答辩最主要的主体是你三年所做的工作成果,加油!给自己三年的努力画一个完美的句号!

论文答辩是一种比较正规的审查形式,有组织、有准备、有鉴定、有计划的。答辩会由校方、答辩委员会还有答辩者组成。我在此献上 毕业 答辩发言稿,希望大家喜欢。

毕业答辩发言稿一:

各位老师,上午好!

我叫赵晓琦,是土 木工 程__ 班的学生,我的论文题目为某某市八十八中学办公楼的设计。设计是在姚力老师的悉心指点下完成的,在那里我向我的老师表示深深的谢意,也向在坐各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对上大学来我有机会聆听教诲的各位老师表示由衷的敬意。

下面我将本论文设计的目的和主要资料向各位老师作一汇报,恳请各位老师批评指导。

首先我想简单介绍本设计。

本工程为某某市八十八中学办公楼采用多层框架结构,主体结构为6层,内外装修均为一般装修,为永久性建筑。该楼总建筑面积为3981㎡,拟建位置另行给定,抗震设防烈度为8度。

其次我想谈谈这篇论文的结构和主要资料。

毕业答辩发言稿二:

各位领导、来宾,老师、同学们:

大家上午好!

为了进一步提高广大学生的创业意识,鼓励创新观念的成长,促进同学们就业观念由“择业”向“创业”转换,促进产、学、研一体化发展,培养能够适应市场经济发展需求的骨干人才,厦门大学团委一直致力于激发大学生创新创业的热情,以“挑战杯” 创业计划 竞赛为契机,为大学生创新创业提供广阔的平台。

“恒安杯”厦门大学第五届创业计划竞赛从去年5月启动至今,共吸引了1000多名本科生、硕士生和博士生参加,申报了65个项目。有30支团队从去年10月的初赛中脱颖而出。经过初赛、复赛和决赛三个阶段的培训和角逐,目前闯入决赛的9支队伍今天在此进行决赛。现在我简要向各位介绍一下本次竞赛的举办情况。

毕业论文答辩流程

1、 自我介绍 :自我介绍作为答辩的发言稿,包括姓名、学号、专业。介绍时要举止大方、态度从容、面带微笑,礼貌得体的介绍自己,争取给答辩小组一个良好的印象。好的开端就意味着成功了一半。

2、答辩人陈述:收到成效的自我介绍只是这场答辩的开始,接下来的自我陈述才进入正轨。自述的主要内容包括论文标题;课题背景、选择此课题的原因及课题现阶段的发展情况;有关课题的具体内容,其中包括答辩人所持的观点看法、研究过程、实验数据、结果;答辩人在此课题中的研究模块、承担的具体工作、解决方案、研究结果。 文章 的创新部分;结论、价值和展望; 自我评价 。

3、提问与答辩:答辩教师的提问安排在答辩人自述之后,是答辩中相对灵活的环节,有问有答,是一个相互交流的过程。一般为3个问题,采用由浅入深的顺序提问,采取答辩人当场作答的方式。

4、 总结 :上述程序一一完毕,代表答辩也即将结束。答辩人最后纵观答辩全过程,做总结陈述,包括两方面的总结:毕业设计和论文写作的体会;参加答辩的收获。答辩教师也会对答辩人的表现做出点评:成绩、不足、建议。

5、致谢:感谢在毕业设计论文方面给予帮助的人们并且要礼貌地感谢答辩教师。

毕业答辩发言稿 范文 相关文章:

毕业论文答辩发言稿精选5篇

★ 毕业论文答辩演讲稿范文合集5篇

★ 毕业论文答辩发言稿精选集总5篇

★ 毕业论文答辩演讲稿范文精选5篇

★ 2020本科毕业答辩演讲稿最新范文【五篇】

★ 毕业论文答辩演讲稿范文集锦

★ 本科毕业答辩演讲稿范文

★ 毕业论文答辩发言稿精选集总

★ 毕业论文答辩演讲稿范文汇总

★ 毕业论文答辩发言稿精选合集

论文答辩的步骤如下:

1、自我介绍:

在开始答辩时,礼貌的介绍自己的姓名、专业信息等正常流程。注意亲和、从容、礼貌得体,为好的第一印象做准备。

2、答辩人陈述:

这个阶段我们需要自述论文标题、研究课题的方向和原因、在研究时遇到的问题、研究的方法、结果等论文关键部分,视情况决定要不要用PPT和脱稿陈述。这个阶段注意语气平缓,气势平稳,这样到后面提问阶段就不会慌忙,自乱阵脚。

3、提问与回答辩论:

下方的答辩老师会一边听你介绍论文,一遍快速翻阅论文的文章内容。虽然他们翻阅的速度很快,但毒辣的眼光总能帮助他们找到很刁钻的问题,我们切不可掉以轻心。我们回答老师提出的问题时,不能夸夸其谈,紧跟问题主旨,必要的时候也不能不懂装懂,要讲究真才实学。

4、总结:

总结代表着毕业答辩即将结束,由同学进行全程的总结陈述,体会答辩中遇到的各种情况,总结收获,总结时要客观对待自己的成功与失败,保证谦虚;然后是老师给出成绩、指导意见,点评。

5、致谢:

致谢是毕业答辩的最后一个流程,感谢协助我们课题研究的导师,感谢予以实验帮助的所有人和参与答辩的老师团体。

麻烦 发一份

稀土元素发光研究论文

稀土发光材料稀土发光材料:Rare Earth Luminescent Materials 稀土发光是由稀土4f电子在不同能级间跃出而产生的,因激发方式不同,发光可区分为光致发光(photoluminescence)、阴极射线发光(cathodluminescence)、电致发光(electroluminescence)、放射性发光(radiation luminescence)、X射线发光(X-ray luminescence)、摩擦发光(triboluminescence)、化学发光(chemiluminescence)和生物发光(bioluminescence)等。稀土发光具有吸收能力强,转换效率高,可发射从紫外线到红外光的光谱,特别在可见光区有很强的发射能力等优点。稀土发光材料已广泛应用在显示显像、新光源、X射线增光屏等各个方面。 稀土发光材料制造方法:(1)气相法:气体冷凝法;真空蒸发法;溅射法;化学气相沉积法(CVD);等离子体法;化学气相输运法等。(2)固相法:高温固相合成法;自蔓延燃烧合成法(SHS);室温和低热固相反应法;低温燃烧合成法;冲击波化学合成法;机械合金化法等。(3)液相法:沉淀法;均相沉淀法;共沉淀法;化合物沉淀法;熔盐法;水热氧化法;水热沉淀法;水热晶化法;水热合成法;水热脱水法;水热阳极氧化法;胶溶法;相转变法;气溶胶法;喷雾热解法;包裹沉淀法;溶胶-凝胶法;微乳液法;微波合成法等。稀土发光材料的主要应用:(1)光源:日光灯 Ca5(PO4)3(Cl,F):[Sb3+,Mn2+]; BaMg2Al16O27:Eu2+; MgAl11O16:[Ce3+, Tb3+]; Y2O3:Eu3+高压汞灯 Y(PV)O4:Eu; YVO4:Eu,Tb黑光灯 YPO4:Ce,Th; MgSrBF3:Eu固体光源 GaP;GaAs;GaN;InGaN;YAG:Ce(2)显示:数字符号显示 发光二极管(LED)平板图像显示 OLED(3)显像:黑白电视 Gd2O2S:Tb彩色电视 Y2O3:Eu; Y2O2S:Eu飞点扫描 Y2SiO5:CeX射线成像 (Zn, Cd)S:Ag; CaWO4; BaFCl:Eu2+; La2O2S:Tb3+; Gd2O2S:Tb3+(4)探测:闪烁晶体 CsI, TlCl(5)激光:固体激光材料 YAG:Nd3+; YAP:Nd3+; YLF:Nd3+玻璃激光材料 掺Nd3+硅酸盐、硼酸盐和磷酸盐玻璃化学计量激光 PrCl3; NdP5O14; NdLiP4O12; NdKP4O12; NdK3(PO4)2; NdAl3(BO3)4; NdK5(MoO4)4液体激光 Eu3+激活的苯酰丙酮(BA)、二苯酰甲烷(DBM)、三氟乙酰丙酮(TFA)和苯三氟丙酮(BTFA)等气体激光 Sm(I), Eu(I), Eu(II), Tm(I), Yb(I), Yb(II), Yb等金属蒸气稀土发光材料专利技术集 1、一种制取长余辉发光材料的方法 2、稀土alo-bo绿色发光材料的制备 3、一种光致长余辉发光材料组合物及其制备方法 4、农膜稀土荧光粉转换剂的制备 5、用于测温技术的稀土荧光体 6、水性蓄能发光涂料 7、一种红外防伪发光材料的制备方法及其应用 8、光致发光釉及其制造方法 9、发光漆及其应用 10、铝酸盐高亮度长余辉发光材料及其制备方法 11、一种发光红磷光体 12、一种艳红色稀土荧光粉及其配制方法 13、稀土荧光探伤渗透液 14、碳还原法合成灯用稀士兰.绿两种荧光粉 15、包裹型稀土激活碱土金属铝酸盐发光材料及其制备工艺 16、稀土铝酸盐绿色发射荧光体的制备方法 17、稀土材料发光粉 18、一类高聚物稀土荧光组合物及其用途 19、稀土高分子光致发光材料及其合成方法 20、自发光颜料的生产方法 21、一种在254纳米紫外光下发光的复合材料 22、陶瓷发光材料及其制造工艺 23、一类高效稀土有机配合物电致发光材料及其制备方法 24、陶瓷发光材料制造工艺及制品 25、稀土石榴石绿色荧光体及制备方法 26、新型上转换发光材料及其制备方法 27、一种含稀土的氧化物红色发光材料及其制备方法 28、稀土发光材料的制备方法 29、一种半透明度高的发光材料制造方法 30、多色彩稀土荧光粉及其配制方法 31、稀土激活铝硅酸盐长余辉发光材料及其制备方法 32、长余辉无机发光材料的制备方法 33、一种新型的发光材料及其应用 34、用紫光二极管转换成发白光的稀土发光材料 35、稀土氧化物红色荧光粉及其制备方法 36、一种硼铝酸盐荧光粉及其制备方法 37、一种合成长余辉发光材料的新方法 38、含稀土有机无机纳米杂化发光材料的合成方法 39、多离子激活的碱土铝酸盐光致长余辉发光材料及制造方法 40、发光材料 41、拟薄水铝石晶种化稀土发光材料制备工艺 42、高聚物稀土化合物纳米杂化发光材料的合成方法 43、夜光材料的合成工艺 44、红色荧光粉的制造工艺 45、红色荧光粉 46、一种紫光或紫外激发的硼磷酸盐荧光粉及其制备方法 47、碱金属锡磷酸盐基发光材料及其制备方法 48、一种稀土激活的y2sio5荧光粉及其制备方法和应用 49、稀土氧化物基纳米发光粉体的制备方法 50、一种稀土掺杂的纳米级氧化钇基发光粉体的制备方法 51、稀土红色荧光粉及其制备方法 52、稀土掺杂钽酸盐透明发光薄膜及其制备方法 53、长余辉高亮度发光材料及其制备方法 54、机器可读荧光磷光防伪材料、该材料的制作方法及其应用 55、一种制备铕激活的钇钆硼酸盐荧光粉的方法 56、稀土绿色长余辉发光材料及其制备方法 57、高色纯度稀土钒磷酸钇钆铕红色荧光体及其制造方法 58、热固性发光粉末涂料及其制造方法 59、一种稀土荧光复合物及其用途 60、一种制备铝酸盐长余辉发光粉的方法 61、稀土包膜转光材料制备工艺 62、新型光存储发光材料及其用途 63、一种光固化稀土红色荧光防伪油墨及其制备方法 64、一种真空紫外激发的绿色硼酸盐发光材料及其制备方法 65、一种红色长余辉发光材料及其合成方法和应用 66、包含稀土元素硫化物的场发射白色发光材料及其制造方法 67、含联吡啶衍生物的稀土配合物及其作为电致发光材料的应用 68、包含稀土元素硫化物的绿色发光材料及其制造方法 69、稀土蓝色荧光材料、其制备方法和用途 70、一种晶格缺陷可调控型长余辉发光材料 71、电致发光材料 72、钇取代的硫代铝酸钡发光材料 73、一种人工合成的长余辉高亮度发光粉及其制备方法 74、用于电致发光荧光体的喷镀沉积方法 75、一种红色荧光粉的制备方法 76、耐蚀性陶瓷、含耐蚀性陶瓷的发光管及发光管的制造方法 77、发红色光余辉性光致发光荧光体和该荧光体的余辉性灯泡 78、含有稀土类元素的微粒和使用其的荧光探针 79、一种功能性纳米稀土荧光微粒及其制备和应用 80、氮化物荧光体,其制造方法及发光装置

从需求出发,比如国家某高端零件的制备对材料有什么要求,要满足材料的性能要求,需要添加稀土元素,进而引出稀土元素的作用,进而引出研究的内容。

稀土发光机理是稀土元素原子的电子构型中存在4f轨道,当4f电子从高能级以辐射方式跃迁至低能级时就发出不同波长的光。

具有未充满的4f壳层的稀土原子或离子,其光谱大约有30000条可观察到的谱线,它们可以发射从紫外光、可见光到红外光区的各种波长的电磁辐射。

稀土离子丰富的能级和4f电子的跃迁特性,使稀土成为巨大的发光宝库,从中可发掘出更多新型的发光材料。

稀土发光材料的应用

1、稀土阴极射线发光材料

稀土阴极射线发光材料主要应用于示波器、电视机、计算机、雷达等的显示器和荧光屏。其中荧光粉在彩色电视机中发展的最快,主要包括红色荧光粉、绿色荧光粉、蓝色荧光粉等。

2、稀土光致发光材料

光致发光指利用可见光、红外光和紫外光材料产生的发光现象。光致发光材料主要有紧凑型荧光灯用稀土三基色荧光粉、高压汞灯用稀土荧光粉、稀土金属卤化物灯荧光粉、稀土长余辉发光材料、稀土激活的长余辉发光材料等,主要应用于电影、电视的拍摄、室内照明、军事设施等。

3、稀土电致发光材料

电致发光指稀土材料在电场作用下的发光。换句话说,它的发光过程就是将电能转化为光能的过程。电致发光材料在生产中的应用非常广泛,它能够对化合物进行化学修饰,从而改变其发射波长,协调发光的颜色,同时实现各种颜色的发光。

在稀土功能材料的发展中,尤其以稀土发光材料格外引人注目。稀土因其特殊的电子层结构,而具有一般元素所无法比拟的光谱性质,稀土发光几乎覆盖了整个固体发光的范畴,只要谈到发光,几乎离不开稀土。稀土元素的原子具有未充满的受到外界屏蔽的4f5d电子组态,因此有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射,构成广泛的发光和激光材料。随着稀土分离、提纯技术的进步,以及相关技术的促进,稀土发光材料的研究和应用得到显著发展。发光是稀土化合物光、电、磁三大功能中最突出的功能,受到人们极大的关注。就世界和美国24种稀土应用领域的消费分析结果来看,稀土发光材料的产值和价格均位于前列。中国的稀土应用研究中,发光材料占主要地位。稀土化合物的发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。具有未充满的4f壳层的稀土原子或离子,其光谱大约有30 000条可观察到的谱线,它们可以发射从紫外光、可见光到红外光区的各种波长的电磁辐射。稀土离子丰富的能级和4f电子的跃迁特性,使稀土成为巨大的发光宝库,从中可发掘出更多新型的发光材料。稀土发光材料的应用会给光源带来环保节能、色彩显色性能好及长寿命的作用,有利于推动照明显示领域产品的更新换代。我国稀土发光材料行业紧跟国际稀土发光材料研发和应用的发展潮流,与下游产业之间建立了良好的市场互动机制,成为节能照明和电子信息产业发展过程中不可或缺的基础材料。除上述领域外,稀土发光材料还被广泛应用于促进植物生长、紫外消毒、医疗保健、夜光显示和模拟自然光的全光谱光源等特种光源和器材的生产,应用领域不断得到拓展。

研究稀土元素的意义与价值论文

日本是稀土的主要使用国,目前中国出口的稀土数量居全球之首 稀土作为许多重大武器系统的关键材料,美国几乎都需从中国进口(某些程度上是战略的储备)。 稀土是中国最丰富的战略资源,它是很多高精尖产业所必不可少原料,中国有不少战略资源如铁矿等贫乏,但稀土资源却非常丰富。 在当前,资源是一个国家的宝贵财富,也是发展中国家维护自身权益,对抗大国强权的重要武器。中国改革开放的总设计师邓小平同志曾经意味深长地说:“中东有石油,我们有稀土。”稀土是一组同时具有电、磁、光、以及生物等多种特性的新型功能材料, 是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业, 如农业、化工、建材等起着重要作用。稀土用途广泛, 可以使用稀土的功能材料种类繁多, 正在形成一个规模宏大的高技术产业群, 有着十分广阔的市场前景和极为重要的战略意义。有“工业维生素”的美称。在军事方面 稀土有工业“黄金”之称,由于其具有优良的光电磁等物理特性,能与其他材料组成性能各异、品种繁多的新型材料,其最显著的功能就是大幅度提高其他产品的质量和性能。比如大幅度提高用于制造坦克、飞机、导弹的钢材、铝合金、镁合金、钛合金的战术性能。而且,稀土同样是电子、激光、核工业、超导等诸多高科技的润滑剂。稀土科技一旦用于军事,必然带来军事科技的跃升。从一定意义上说,美军在冷战后几次局部战争中压倒性控制,以及能够对敌人肆无忌惮地公开杀戮,正缘于稀土科技领域的超人一等。在冶金工业方面 稀土金属或氟化物、硅化物加入钢中,能起到精炼、脱硫、中和低熔点有害杂质的作用,并可以改善钢的加工性能;稀土硅铁合金、稀土硅镁合金作为球化剂生产稀土球墨铸铁,由于这种球墨铸铁特别适用于生产有特殊要求的复杂球铁件,被广泛用于汽车、拖拉机、柴油机等机械制造业;稀土金属添加至镁、铝、铜、锌、镍等有色合金中,可以改善合金的物理化学性能,并提高合金室温及高温机械性能。在石油化工方面 用稀土制成的分子筛催化剂,具有活性高、选择性好、抗重金属中毒能力强的优点,因而取代了硅酸铝催化剂用于石油催化裂化过程;在合成氨生产过程中,用少量的硝酸稀土为助催化剂,其处理气量比镍铝催化剂大1.5倍;在合成顺丁橡胶和异戊橡胶过程中,采用环烷酸稀土-三异丁基铝型催化剂,所获得的产品性能优良,具有设备挂胶少,运转稳定,后处理工序短等优点;复合稀土氧化物还可以用作内燃机尾气净化催化剂,环烷酸铈还可用作油漆催干剂等。在玻璃陶瓷方面 稀土氧化物或经过加工处理的稀土精矿,可作为抛光粉广泛用于光学玻璃、眼镜片、显象管、示波管、平板玻璃、塑料及金属餐具的抛光;在熔制玻璃过程中,可利用二氧化铈对铁有很强的氧化作用,降低玻璃中的铁含量,以达到脱除玻璃中绿色的目的;添加稀土氧化物可以制得不同用途的光学玻璃和特种玻璃,其中包括能通过红外线、吸收紫外线的玻璃、耐酸及耐热的玻璃、防X-射线的玻璃等;在陶釉和瓷釉中添加稀土,可以减轻釉的碎裂性,并能使制品呈现不同的颜色和光泽,被广泛用于陶瓷工业。在新材料方面 稀土钴及钕、铁、硼永磁材料,具有高剩磁、高矫顽力和高磁能积,被广泛用于电子及航天工业;纯稀土氧化物和三氧化二铁化合而成的石榴石型铁氧体单晶及多晶,可用于微波与电子工业;用高纯氧化钕制作的钇铝石榴石和钕玻璃,可作为固体激光材料;稀土六硼化物可用于制作电子发射的阴极材料;镧镍金属是70年代新发展起来的贮氢材料;铬酸镧是高温热电材料;近年来,世界各国采用钡钇铜氧元素改进的钡基氧化物制作的超导材料,可在液氮温区获得超导体,使超导材料的研制取得了突破性进展。 此外,稀土还广泛用于照明光源,投影电视荧光粉、增感屏荧光粉、三基色荧光粉、复印灯粉;在农业方面,向田间作物施用微量的硝酸稀土,可使其产量增加5~10%;在轻纺工业中,稀土氯化物还广泛用于鞣制毛皮、皮毛染色、毛线染色及地毯染色等方面。农业方面作用 研究结果表明,稀土元素可以提高植物的叶绿素含量,增强光合作用,促进根系发育,增加根系对养分吸收。稀土还能促进种子萌发,提高种子发芽率,促进幼苗生长。除了以上主要作用外,还具有使某些作物增强抗病、抗寒、抗旱的能力。 大量的研究还表明,使用适当浓度稀土元素能促进植物对养分的吸收、转化和利用。玉米用稀土拌种,出苗、拔节比对照早1~2天,株高增加0.2米,早熟3~5天,而且籽粒饱满,增产14%。大豆用稀土拌种,出苗提早1天,单株结荚数增加14.8~26.6个,3粒荚数增多,增产14.5%~20.0%。喷施稀土可使苹果和柑橘果实的Vc含量、总糖含量、糖酸比均有所提高,促进果实着色和早熟。并可抑制贮藏过程中呼吸强度,降低腐烂率。 “中国对西方发动稀土战”的论调就在西方满天飞。稀土这种分布在世界多国的资源,被描述成中国要挟他国的“独门武器”。德国《每日镜报》援引一名德国经济界驻京代表的话说,中国人玩稀土就像当年欧佩克玩石油一样;美国《新闻周刊》则称,稀土是高悬于中国贸易伙伴头上的“达摩克利斯之剑”。 1,日本。是渲染稀土荒担忧论调声音最大的,没有稀土资源,却身为世界稀土消费大国的日本。虽然它已廉价从中国购买、储备了能用20年的稀土,但仍然大张旗鼓地迈开了全球寻找稀土廉价供应商的脚步。近期,日本外交官的身影频繁穿梭于印度、越南、蒙古、哈萨克斯坦,这些国家有个共同点:拥有或可能拥有稀土。日本迅速同欧美组成“抗议阵营”,日媒指责中国的稀土战略,同俄罗斯玩弄天然气管道的手法如出一辙,是彻头彻尾的“资源武器化”。并搬出WTO规则来大肆制造国际舆论,目的恐怕不仅是想迫使中国在稀土出口上对日实质让步,而是要借此在国际舆论中将中国孤立化。 2,美国。美国稀土生产商近期表示,计划在2012年年底前,将集团在美国的稀土年产量大幅提升至2万吨,并以中国的一半价钱,抢占1/6市场。美国稀土生产商指出,从中国装运出口的稀土数量肯定减少。为打破中国控制稀土供应的局面,美国在加州的矿场计划于明年1月1日动工增产,项目将耗资5.11亿美元。美国能源部助理部长9月30日表示,重要资源供应源的多元化势在必行。 3,欧盟。据路透报道,欧盟贸易专员Karel De Gucht周三表示,他将在下月与中国举行会谈时向该国施压,要求其保证稀土供应,尽管尚无确凿的证据显示中国限制稀土出口已损及欧洲的相关产业。他表示,“如果需要,我们肯定会向世界贸易组织提出投诉,但直至目前,尚无确凿的证据显示欧洲企业因此受到影响。” 4,印日合作。印度总理辛格在日本访问向媒体透露,在中国减少对日稀土出口、中日关系面临考验时,印度将利用“大好机会”,促进与日本在稀土贸易及其它方面的合作。印度前外交官员则称,印日合作,可把中国“将死”。 5,真正目的。“事实上,除铁矿石之外,世界对于石油、煤炭资源的争夺仍然十分激烈,惨烈程度远远大于对稀土的争夺。”中国商务部研究院日本问题专家唐淳风说,一些西方国家渲染“稀土大战“其实是没影儿的事”。 一位中国专家称,不要把稀土和其他的一些金属资源以及石油,放在一起类比,它们并不一样。全球一年只需要12万吨,这是非常小的用量,其中还有很多是被有战略远见的国家储备起来的,稀土根本就不是像铁、铜、铝、石油这样大量消耗的资源,而是像味精一样稍用一点就能发挥巨大作用的战略元素。这位专家说,真正需要的那些应用强国,早就以低价大量储备了中国的稀土,所以现在中国对稀土的调控,根本不会威胁到它们。它们大肆炒作,其实是想让中国继续以不合理的廉价,供给他们稀土;同时消耗中国具有独特优势的战略资源,等到中国优势转为弱势,他们就会以极为昂贵的价钱反卖给中国。这正是几个稀土进口大国与中国较量的手法。有日本专家也认为,目前以日本为突出代表的国家,大造寻找或重启稀土开发的势头,不排除是为了牵制中国的一种姿态。 那些用资源换取政治利益,换取美国的战略支持的国家,将很快会发现自己陷于战略被动。 英国《每日电讯报》题为“稀土争端:一些大实话”的文章为中国说了些公道话。文章引述分析人士的话说,稀土一直都太便宜,世界需要习惯这些材料变得更贵,特别是中国本土工业开始使用更多的稀土,“这是中国在价值链上攀升的结果,也再度说明中国影响世界之大”。 稀土对水泥熟料烧成的矿化作用及其尾矿应用研究 本项目针对江西特有的稀土资源,选用南方稀土矿中丰度较大的Ce、Y、La、Nd等四种稀土氧化物作为研究对象,探讨它们对水泥熟料烧成的矿化作用,并以赣南较典型的稀土选矿尾矿作原料代替粘土配料制备水泥生料,研究其对水泥熟料矿物形成和熟料性能的影响。 通过化学分析、差热分析、ICP-AES分析及X-射线衍射、晶相显微镜、扫描电镜等现代分析手段,系统地研究了原料的特征,稀土氧化物和稀土尾矿对水泥生料中碳酸盐分解、生料易烧性、熟料矿物形态及组成以及水泥力学性能的影响。研究结果表明,稀土氧化物对碳酸盐的分解影响不大,对生料的易烧性有改善作用;稀土氧化物能促进熟料中A矿的形成和矿物的发育,有利于熟料中矿物结晶尺寸和分布均匀,但部分稀土在掺量过量时可能造成矿物的熔蚀,影响矿物的水化活性;在煅烧良好的条件下,稀土氧化物和尾矿对熟料强度有增进作用,对水泥凝结时间影响较小。掺加尾矿的试样由于含砂量较高,生料的易烧性低于粘土配料的生料,通过增加原料的粉磨细度可使易烧性得到进一步改善;利用稀土尾矿代替粘土配料能烧制性能优良的硅酸盐水泥熟料。 利用SEM-EDS分析了稀土氧化物在熟料中的分布并结合熟料的岩相分析...

从需求出发,比如国家某高端零件的制备对材料有什么要求,要满足材料的性能要求,需要添加稀土元素,进而引出稀土元素的作用,进而引出研究的内容。

稀土元素是指原子序数从57到71的15个镧系元素,在元素周期表中属ⅢB族,同族中39号元素钇一般也看作稀土元素,同族中21号元素钪早期也有人把划入稀土元素,但多数研究者将它排除在外,因为它们在自然界中与稀土元素共生关系不密切,化学性质差别也比较大。稀土元素根据它们在物理化学性质上的某些差别可以将它们分成两组:从La到Eu称为轻稀土(LREE),或铈组稀土;从Gd到Lu,包括Y称为重稀土(HREE),或钇组稀土。稀土元素的离子半径近似,电价以三价为主,故它们的地球化学行为近似。当然也存在一定的差别,其原因在于:①离子半径有微小差别;②碱性不同决定了它们的沉淀顺序和迁移能力有所不同;③形成络合物的能力各不相同,因而在自然界中的迁移能力也不相同;④它们被吸附的能力随原子序数的增加、半径的减小而减小。这样就造成了它们在自然界中发生一定程度的分离(即出现“亏损”和“富集”)而显示不同的分配特点。

(1)样品采集及分析

本次研究分别在川东南的南川、万盛、道真、武隆、石柱、黔江、酉阳、秀山、沿河,以及湘西的花垣、永顺、龙山、咸丰、宣恩等地共采集了210件志留系小河坝组砂岩样品(图3.5)。

从各个剖面选取了37件新鲜样品进行了稀土元素及微量元素地球化学分析(每个剖面的样品自底部向顶部依次编号见表3.6),主要岩性为砂岩、细砂岩,样品稀土元素分析在中国科学院青岛海洋研究所分析与检测中心完成。样品破碎后研磨至200目,然后装袋备用。分析步骤为:称取40mg样品于Teflon溶样罐中,加入0.6mLHNO3+2mLHF封盖后,静置2h后,于150℃电热板上溶样24h;加0.25mLHClO4于150℃电热板上敞开蒸酸至近干;加1mLHNO3+1mLH2O密闭于120℃电热板回溶12h;用高纯H2O定容至40g;然后在仪器ICP-MS上进行测试,各标准样品(GSR-1,GSR-3,BHVO-2,BCR-2)及空白样品所测稀土元素的线性较好,分析误差基本都小于5%,很少大于10%,相同样品测试结果一致,测试结果准确可信。各测试样品最终结果取三次测定的平均值。

表3.6 川东南-湘西志留系小河坝组砂岩稀土元素地球化学分析数据(μg/g)

注:数据测试在中国科学院青岛海洋研究所分析与检测中心进行。

(2)稀土元素含量及其特征值

各沉积岩中稀土元素含量及化学参数见表3.6和表3.7。

表3.7 川东南-湘西志留系小河坝组砂岩稀土元素(μg/g)及地球化学参数

续表

注:陨石数据根据Leed球粒陨石(田彰正,1973);稀土元素总量∑REE=La+Ce+Pr+Nd+Sm+Eu+Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;轻稀土元素含量LREE=La+Ce+Pr+Nd+Sm+Eu;重稀土元素含量HREE=Gd+Tb+Dy+Ho+Er+Tm+Yb+Lu;L/H:轻稀土含量与重稀土含量之比;(LaN/YbN):LaN和YbN经球粒陨石标准化的比值;Eu/Eu*=Eu/(SmN×GdN)1/2;Ce/Ce*=Ce/(LaN×PrN)1/2;(Lan/Ybn):Lan和Ybn经北美页岩标准化的比值。

川东南、湘西地区志留系小河坝组砂岩样品的稀土元素分析结果(表3.6)表明,在湘西的宣恩板寮、龙山水田坝、咸丰、永顺、花垣等地稀土总量(不包括Y)介于118.05~234.68μg/g之间,平均值为163.02μg/g。在川东南的南川、武隆、道真、秀山、酉阳、沿河、石柱漆辽、黔江石会等地稀土总量介于113.35~280.63μg/g之间,平均值为202.3μg/g。总体上,研究区志留系碎屑岩的稀土元素含量都明显高于大陆上地壳的平均稀土元素总量值(146.4μg/g),而比较接近北美页岩的平均值(173.2μg/g)。

其中,LREE/HREE为轻、重稀土元素比值,能够反映样品轻、重稀土的分异状况,在同一类岩石中,若该值较大,说明轻、重稀土分异明显,轻稀土元素相对富集,重稀土元素则相对亏损。川东南地区样品的LREE/HREE为4.41~10.81,平均值为9.05,在湘西样品的LREE/HREE为6.74~11.44,平均值为8.77,研究区都略高于北美页岩的比值(7.44),表明研究区相对富集轻稀土元素,重稀土相对亏损。

LaN/YbN是稀土元素球粒陨石标准化图解中分布曲线的斜率,反映曲线的倾斜程度。LaN/SmN、GdN/YbN分别反映了轻、重稀土元素之间的分馏程度,LaN/SmN值越大,表明轻稀土越富集;GdN/YbN值越小,表明重稀土越富集。川东南样品的LaN/YbN为2.23~12.57,平均值为10.52,湘西样品的LaN/YbN为8.69~13.61,平均值为10.05,表明研究区样品的轻、重稀土元素分异较大。LaN/SmN、GdN/YbN分别反映轻稀土元素之间、重稀土元素之间的分馏程度。川东南样品的LaN/SmN介于1.51~4.81之间,平均值为3.69,湘西地区样品的LaN/SmN介于之间2.62~4.01,平均值为3.51,表明研究区轻稀土元素之间分异明显;川东南地区样品的GdN/YbN介于1.52~2.86,平均值为1.95,湘西地区样品的GdN/YbN介于1.63~2.48,平均值为1.97,表明研究区重稀土元素之间分异不明显。

Eu具有明显的负异常,川东南地区样品的δEu为0.55~0.68,平均值为0.61,湘西地区的样品的δEu为0.55~0.70,平均值为0.63,研究区的δEu与北美页岩标准值(δEu=0.65)较为接近;川东南地区样品的δCe在0.66~0.96之间,平均值为0.94,湘西地区的样品的δCe在0.94~0.97之间,平均值为0.96,两区的δCe值基本正常。

(3)稀土元素的球粒陨石标准化配分模式

采用Leed球粒陨石(田彰正,1973)标准值对研究区志留系小河坝组砂岩样品进行标准化,其稀土元素配分模式基本类似,均为轻稀土元素富集、重稀土元素亏损型,分布曲线在轻稀土处具有较大的斜率,而在重稀土处较为平坦,Eu处出现一个明显“V”形,存在负Eu异常,表明沉积物的物源较为一致,物源相对稳定;从研究区稀土元素配分模式图3.6和图3.7可以看出La-Eu段轻稀土配分曲线较陡、斜率较大,表现为明显的“右倾”,说明轻稀土元素之间的分馏程度较高;Gd-Lu段重稀土配分曲线较为平坦、斜率较小,重稀土元素之间的分馏程度较低。

图3.6 湘西志留系小河坝组砂岩稀土元素配分模式

图3.7 川东南志留系小河坝组砂岩稀土元素配分模式

(4)稀土元素的物源分析

A.沉积速率

前人研究表明,稀土元素中各元素在电价、被吸附能力等性质上仍有一定的差异,随着环境的改变会发生分异,在海洋环境中尤为明显。主要表现为轻稀土元素与重稀土、铈(Ce)和铕(Eu)与其他元素间的分离。REE大部分被结合于碎屑矿物或以悬浮物入海,碎屑或悬浮颗粒在海水中停留时间的差异是造成REE分异程度不同的重要原因之一。当悬浮物在海水中停留时间较短时,REE随其快速沉积下来,与海水发生交换的机会少,分异弱,这种沉积物的页岩标准化的REE配分模式比较平缓,Ce呈正常型或弱负异常,曲线斜率Lan/Ybn值为1左右。当悬浮颗粒在海水中停留时间较长,即其沉降缓慢,促进了更细颗粒中的REE分解作用,使带入海水中的REE有足够的时间被粘土吸附、与有机质络合和进行相关的化学反应,导致REE的强烈分异,沉积物中页岩标准化稀土配分模式发生显著变化,含量上轻、重稀土元素出现亏损或富集,Lan/Ybn值明显大于1或小于1,Ce也发生选择性分异,氧化环境中易呈Ce4+沉淀,具显著负异常,而缺氧条件下负异常消失,甚至出现正异常。因此,可以认为REE的分异程度是沉积颗粒沉降速率快慢的响应。基于海水中粘土等细碎屑悬浮物是有机质和REE共同的“宿主”,有机质又是REE最强的吸附剂之一,二者具有共同的沉降速率。

本书将REE的分异程度作为一种指示剂来表征沉积物沉积速率。川东南地区志留系小河坝组砂岩Lan/Ybn值在0.62~1.85之间,均值为1.55(表3.7),湘西地区志留系小河坝组砂岩Lan/Ybn值在1.28~2.0之间,均值为1.48,从川东南到湘西地区Lan/Ybn的值逐步降低,表明沉积物的沉积速率有增加的趋势,反映了距物源近的特点。海水中有机质主要以颗粒状或细颗粒等形式沉淀,沉积颗粒的沉降速率对有机质的聚集和保存影响显著。研究区志留系小河坝期沉积速率普遍较高,使得龙马溪期沉积的有机质聚集和保存,这一点在前人对本区的有机碳含量研究上也有体现。总体上看,川东南地区沉积物的沉积速率较湘西低,表明湘西更接近物源区,其海水深度也较浅。

B.稀土元素对物源的指示意义

稀土元素在水体中停留的时间非常短,能够快速进入到细粒沉积物中且不发生分异,能更好地保留源区的地球化学信息(杨守业,1999;Cullers,1988),因此对沉积物具有示踪意义。杨守业等综合前人研究,认为控制沉积物中稀土元素组成最主要的因素是物源。在稀土元素示踪物源研究中,应注重稀土元素配分模式曲线的几何形态,而不是稀土元素的绝对丰度(赵振华,1997)。在实际应用中,研究者往往从配分模式曲线的特征来判断物质来源。相同来源的物质往往具有非常相似的稀土配分模式曲线,所以,在物源示踪研究中,稀土元素得到了广泛的应用。在反映盆地物源区性质的指标中,稀土元素分布模式是最可靠的指标之一。源自上地壳的稀元素具有轻稀土富集、重稀土含量稳定和明显负Eu异常等特征(McLennan,1995;Bhatia,1986)。本书做了川东南-湘西地区志留系小河坝组砂岩稀土元素样品Leed球粒陨石标准化的配分模式曲线(图3.6,3.7),稀土元素总体具有轻稀土富集、重稀土含量稳定、明显的负铕异常等特征,样品的球粒陨石标准化配分模式相似,均属轻稀土富集型,Ce基本正常。从研究区的稀土元素配分模式可以判断川东南-湘西地区志留系小河坝组的物源一致。总体显示出研究区志留系小河坝组砂岩与上地壳基本一致的分布模式,说明研究区志留系小河坝期沉积岩的原始物质应源自上地壳。

李双建和张廷山等对黔中隆起北侧的贵州习水喉滩、綦江观音桥志留系石牛栏组灰岩和靠近雪峰山隆起西北侧的湖南石门磺厂志留系罗惹坪组泥岩的稀土元素地球化学进行了研究(张廷山,1998;李双建,2008)。比较显示研究区地区的REE配分模式与石门磺石的罗惹坪组泥岩的REE配分模式(笔者采用Leed球粒陨石对参考文献中的数据进行统一标准化)十分接近(图3.8为本书数据,图3.9中的方形样品为贵州习水;三角形为湘西样品;菱形样品为湖北石门样品),都显示出轻稀土富集、重稀土相对亏损的右倾型,存在明显负Eu异常,Ce基本正常。且稀土元素各种特征参数比值都很接近,说明研究区与石门磺石具有相似的物质来源。而川东南地区的稀土元素配分模式图与靠近黔中隆起的贵州习水喉滩、綦江观音桥石牛栏组灰岩的稀土元素配分模式存在明显的不同。表明研究区与石门的罗惹坪组应为同源,而与贵州习水喉滩、綦江观音桥石牛栏组应不同源。

图3.8 湘西小河坝组砂岩稀土元素配分模式

图3.9 湘西地区侵入岩稀土元素配分模式(据刘钟伟,1994)

前人大量的研究结果表明,震旦纪-早志留世沉积时期,黔中隆起接受的是以碳酸盐岩为主的沉积,并且在其北侧未见有侵入岩体的报道,小河坝期若是黔中隆起向川东南地区提供的物源,那么在川东南地区的小河坝组砂岩应该体现碳酸盐岩作为物源的沉积记录,本次对研究区稀土测试研究结果显示,小河坝组砂岩物源区应为沉积岩与碱性玄武岩的混合区,所以物源只能是来自雪峰山隆起。同时与刘钟伟对湘西地区古丈、芷江、沅陵、怀化及通道一带侵入在新元古界板溪群(局部为下震旦统)中之北东向岩体的稀土元素配分模式相近(图3.9)。说明川东南志留系小河坝组砂岩的物源来自雪峰山隆起的新元古界板溪群及其侵入岩体。

据前人研究成果,川东南-湘西地区志留系小河坝组砂岩的物源来自雪峰山隆起南西段的古丈、芷江、沅陵、怀化及通道一带的新元古界板板溪群及其侵入板溪群中的基性-超基性岩体及中-基性喷出岩。小河坝组砂岩重砂矿物研究结果也证明了这一结论。

Bhatia et al.(1983,1986)在对澳大利亚东部不同大地构造背景的沉积盆地中砂岩和泥岩的稀土元素特征总结如表3.8。该表系统地揭示了稀土元素分布特征所反映的沉积盆地的大地构造背景和物源区类型。本书数据与表中数据对比显示,本区小河坝组砂岩的物源区与活动大陆边缘抬升基地类型相近。

表3.8 不同大地构造背景沉积盆地杂砂岩的稀土元素特征

川东南-湘西地区志留系小河坝组砂岩多表现明显负异常,应用上述稀土元素的特征进一步判断物源区的性质:根据轻重稀土比值与稀土总量图解(La/Yb-∑REE图解,底图据Alleyre,1978)。其投点主要分布在沉积岩和碱性玄武岩的交汇区,仅少数几个样品落在了沉积岩区(图3.10)。说明研究区志留系小河坝组砂岩的源区主要为沉积岩和碱性玄武岩混合区。

C. GdN/YbN比值与源区特征

在地球演化初期,Gd含量较高,随着元素分馏作用,Gd含量越来越小。Gd/Yb的比值也就随着地层时代的变新而逐渐变小(Taylor,1985;Mclennan,1993)。以Gd/Yb等于2.0为界,太古宇的Gd/Yb比值常大于2.0;而后太古宙的年轻地层则小于2.0。由于Gd和Yb在沉积过程中受地质作用的干扰较小,一旦封闭到沉积地层中,它们的含量就很难改变,因而可用它们判别母岩的特性。同样Gd/Yb的比值也是一个常用的判断沉积地层相对时间的方法,它具有随着地层时代的变新而逐渐变小的特点(邵磊等,2001)。

图3.10 川东南-湘西志留系小河坝砂岩La/Yb-∑REE图解(底图据Alleyre,1978)

川东南-湘西地区小河坝组砂岩37件Gd/Yb比值分析表明(图3.11),总体以2.0为界,样品数值全部在1.5~2.86,比较集中。可能反映其源岩类型比较单一。约76%的样品小于2.0。表明研究区志留系小河坝组砂岩的源岩地层时代主要以后太古宙地层为主;同时含有少量的太古宙地层的源岩。

图3.11 川东南-湘西地区小河坝组GdN-GdN/YbN关系图

世界上,90%以上的稀土资源都在我国,而稀土资源的作用范围非常广,从电子产品,化工产品,生活用具,到能源应用,都离不开它。可以说,这是一种非常重要的战略性资源。当然,它还有许多其他价值,这里就不一一累述了。总之,掌握了稀土资源,无论是在科技还是生活,都会产生重大的影响。

  • 索引序列
  • 稀土元素配合物论文答辩
  • 稀土配合物的研究进展论文
  • 稀土元素化学实验毕业论文答辩
  • 稀土元素发光研究论文
  • 研究稀土元素的意义与价值论文
  • 返回顶部