首页 > 学术发表知识库 > 研究rfm模型的学位论文

研究rfm模型的学位论文

发布时间:

研究rfm模型的学位论文

• R(Recency):消费间隔,最近一次距离上次消费的时间间隔 • F(Frequency):消费频次,一段时间(1个月/1年...)内的消费总次数 • M(Monetary):消费金额,一段时间(1个月/1年...)内的消费总金额

RFM模型是用户价值研究中的经典模型,基于近度(Recency),频度(Frequency)和额度(Monetory)这3个指标对用户进行聚类,找出具有潜在价值的用户, 从而辅助商业决策,提高营销效率。RFM作为一种数据驱动的客户细分技术,可帮助营销人员做出更明智的战略性决策,使营销人员能够快速识别用户并将其细分为同类群体,并针对性制定个性化的营销策略,提高用户的参与度和留存率。       RFM建模所需要的数据源是相对简单的,只用到了购买记录中的时间和金额这两个字段。我们基于交易数据中用户的最后一次的购买时间,购买的次数以和频率,以及平均/总消费额对每个用户计算了三个维度的标准分。然后我们对于三个维度赋予了不同的权重,再基于加权后的分值应用K-Means进行聚类,根据每种人群三个维度与平均值之间的高低关系,确定哪些是需要保持用户,哪些是需要挽留的用户,哪些是需要发展的用户等。在将这些客户圈出之后,便可以对不同客户群使用不同针对性地营销策略(引导,唤醒等),提高复购率与转化率。值得注意的是,三个维度的权重制定并没有统一的标准,比较通用的方法是用层次分析法(AHP),实际场景结合行业以及具体公司的特点进行因地制宜、因人而异的优化。

RFM因素: • R值越高,顾客的有效期越近,对商家活动的响应越积极 • F值越高,顾客的消费频次越高,对商家的忠诚度就越高 • M值越高,顾客的消费能力越高,对商家贡献度就越高 • 想要提高复购率和留存率,需要时刻警惕R值

RFM分析: • 谁是您最有价值的客户? • 导致客户流失率增多的是哪些客户? • 谁有潜力成为有价值的客户? • 你的哪些客户可以保留? • 您哪些客户最有可能对参与度活动做出响应? • 谁是你不需要关注的无价值客户? • 针对哪些客户制定哪种发展、保留、挽回策略?

通过RFM模型,可以帮助营销人员实现客户细分;衡量客户价值和客户利润创收能力;识别优质客户;指定个性化的沟通和营销服务;为更多的营销决策提供有力支持。

数据导入:使用python的pandas.read_csv导入样本数据。 缺失值校验:因数据为生产真实的交易数据,质量相对较高,缺失值较低。

极值校验:第一份样本数据获取的用户订单实付金额,其中会存在优惠或补差支付,同时因就餐人数不一致,产生的的订单消费也会存在较大的差异,造成极致波动、标准差值较大,因此需对金额进行处理,以人均消费额替代订单支付金额,可去掉10元以下、万元以上的交易订单。

获取RFM值:使用 groupby获取RFM值

获取RFM评分值:数据离散,pandas.cut

实验数据RFM分值占比

说明:F、M分布不均匀,极值差异大,经数据探查知晓该商户开通了企业团餐业务,企业会给员工发放补贴,导致员工呈现较高的消费频次,该类用户的消费行为绝大程度依赖于企业,在实际的RFM模型可踢出此类订单,降低此类人群的分值,其次数据中的M值为客户实付金额,该商户支持预定、会餐、大小桌,同一单的消费群体不同,或可使用人均消费总额作为M值。 RFM数据合并,建立R、F、M数据框:pandas+numpy

计算RFM综合分值:权重法 权重值主要赋值方法可分为主观赋权法、客观赋权法,如下: 主观赋权法:主要由专家经验得到权数,然后对指标进行综合评价。是一种结合性方法,易操作,存在一定主观性。常用方法:层次分析法AHP、权值因子判断表法、德尔菲法、模糊分析法、二项系数法、环比评分法、最小平方法、序关系分析法等。 客观赋权法:依据历史数据研究指标之间的相关关系或指标与评估结果的影响关系来综合评价。这是定量研究,无须考虑决策者主观意愿和业务经验,计算方法较为复杂。常用方法:主成分分析、因子分析、熵值法、变异系数法、均方差法、回归分析法等。 因样本数据分布不均匀,故手动赋权重值,去除部分极值。

结论:以近90天的消费活跃来看,用户消费频次集中在1-6次,呈现出极佳的复购率。可以针对消费一次的人群进行特征分析。比如针对人群的流动性,若流动人群占比较大,可进一步推广特色菜吸引客户,若周边人群占比较高,可基于复购人群的特征进行分析,同时平台可提供该类人群近期消费偏好,供商家参考,制定针对性方案。

了解RFM定义后,将3个指标作为坐标系的XYZ坐标轴,从空间上切割成8类,作为用户的价值分层,如下图:

用户价值分层说明:

上面我们已经计算得到各个用户的RFM分值,接下来要依据分值进行分类。 定义RFM 的分值等级

使用pyecharts绘制玫瑰图:

结论:商家顾客表现出来的忠诚度较高,但新客获取能力较低。但是单纯看分层占比,并没有实际意义,可以基于价值分层与其他特征关联分析进行精准投放。如下图(网络参考图,本期实验并未涉及其他特征)所示:

用户画像是基于用户信息与行为衍生出来的特征属性,用户的准入信息是用户的主观特征,是一种既定的事实,通过对用户行为的采集、研究,刻画出单个用户的特征。其意义在于基于某一事物对群里特征进行分类,有效的体现事物的合适人群;同时针对群里特征的偏爱、习惯研究,可以刻画出用户的需求,实现精准化营销。

用户画像的基础成分来源于用户的准入信息(会员注册时的登记信息),更多的特征数据来源于用户的各类行为,而RFM模型便是基于用户消费行为提炼出来的价值指标。通过对各个价值分层的群体特征研究,可以有效提升获客能力以及针对各类人群实现精准化营销。

市场和运营往往绞尽脑汁做活动、上新品、蹭热点、做营销,拓渠道,不断开发客户、做回访维系客户感情,除了少数运气好的之外,但大多效果寥寥,这是为何?       经验丰富的营销人员都知道“了解客户”和“客户细分”的重要性。营销人员不仅要着眼于创造更多的访问量和点击量以提高客户获取,还必须遵循从提高点击率(CTR)转变为提高保留,忠诚度并建立客户关系的新范式。与其将整个客户群作为一个整体进行分析,不如将其划分为同类群体,了解每个群体的特征,并使他们参与相关的活动,而不是仅根据客户年龄或地理位置进行客户细分。而RFM分析是市场营销人员分析客户行为的最流行、最简单、最有效的客户细分方法之一。 针对RFM分层用户制定相应的营销策略:       • 重要价值客户是您的最佳客户,他们是那些最新购买,最常购买,并且花费最多的消费者。提供VIP服务和个性化服务,奖励这些客户,他们可以成为新产品的早期采用者,并有助于提升您的品牌。       • 重要发展客户:近期客户,消费金额高,但平均频率不太高,忠诚度不高。提供会员或忠诚度计划或推荐相关产品以实现向上销售并帮助他们成为您的忠实拥护者和高价值客户。       • 重要保持客户:经常购买、花费巨大,但最近没有购买的客户。向他们发送个性化的重新激活活动以重新连接,并提供续订和有用的产品以鼓励再次购买。       • 重要挽回客户:曾经光顾,消费金额大,购买频率低,但最近没有光顾的顾客。设计召回策略,通过相关的促销活动或续订带回他们,并进行调查以找出问题所在,避免将其输给竞争对手。       •一般价值客户:最近购买,消费频次高但消费金额低的客户,需要努力提高其客单价,提供产品优惠以吸引他们。       • 一般发展客户:最近购买,但消费金额和频次都不高的客户。可提供免费试用以提高客户兴趣,提高其对品牌的满意度。       • 一般保持客户:很久未购买,消费频次虽高但金额不高的客户。可以提供积分制,各种优惠和打折服务,改变宣传方向和策略与他们重新联系,而采用公平对待方式是最佳。       • 一般挽留客户:RFM值都很低的客户。针对这类客户可以对其减少营销和服务预算或直接放弃。

此外,目前的RFM分析中,一般给与M值更高的权重,如果一般挽留客户与一般发展客户占据多数,说明公司的用户结构不是很合理,需要尽快采取措施进行优化。

项目背景 在面向客户制定运营策略、营销策略时,我们希望针对不同的客户推行不同的策略,实现精准化运营,以期获取最大的转化率。精准化运营的前提是客户分类。通过客户分类,对客户群体进行细分,区别出低价值客户、高价值客户,对不同的客户群体开展不同的个性化服务,将有限的资源合理地分配给不同价值的客户,实现效益最大化。在客户分类中,RFM模型是一个经典的分类模型,模型利用通用交易环节中最核心的三个维度——最近消费(Recency)、消费频率(Frequency)、消费金额(Monetary)细分客户群体,从而分析不同群体的客户价值。 项目目标 本项目借助某电商客户数据,探讨如何对客户群体进行细分,以及细分后如何利用RFM模型对客户价值进行分析。在本项目中,主要希望实现以下三个目标:1.借助某电商客户数据,对客户进行群体分类;2.比较各细分群体的客户价值;3.对不同价值的客户制定相应的运营策略。 分析过程 1.数据预览   我们的源数据是订单表,记录着用户交易相关字段 通过数据可以发现,订单状态有交易成功和退款关闭的,检查是否还有其他情况 只有这两种情况,后续清洗中需剔除退款订单。然后观察数据类型与缺失情况 订单一共28833行,没有缺失,付款日期是时间格式,实付金额、邮费和购买数量是数值型,其他均为字符串类型 2. 数据清洗 (1)剔除退款 (2)关键字段提取:提取RFM模型所需要的买家昵称,付款时间,实付金额 (3)关键字段构造:构建模型所需的三个字段,R(最近一次购买时间间隔),F(购买频次),M(平均或累计购买金额) 首先构造R值,思路是按买家昵称分组,选取付款日期最大值 为了得到最终的R值,用今天减去每位用户最近一次付款时间,就得到R值了,这份订单是7月1日生成的,所以这里我们把“2019-7-1”当作“今天” 然后处理F,即每个用户累计购买频次( 明确一下单个用户一天内购买多次订单合并为一次订单 ) 思路:引入一个精确到天的日期标签,依照“买家昵称”和“日期标签”分组,把每个用户一天内的多次下单合并,再统计购买次数 最后处理M,本案例M指用户平均支付金额,可以通过总金额除以购买频次计算出来 三个指标合并 3. 维度打分  维度确认的核心是分值确定。RFM模型中打分一般采取5分制,依据数据和业务的理解,进行分值的划分 R值依据行业经验,设置为30天一个跨度,区间左闭右开 F值和购买频次挂钩,每多购买一次,分值多加一分 M值我们按照50元的一个区间来进行划分 这一步我们确定了一个打分框架,每一个用户的每个指标,都有其对应的分值 4. 分值计算  (1)算出每个用户的R,F,M分值 (2)简化分类结果   通过判断每个客户的R,F,M值是否大于平均值,来简化分类结果。0表示小于平均值,1表示大于平均值,整体组合下来有8个分组 5.客户分层 RFM经典分层按照R,F,M每一项指标是否高于平均值,把用户划分为8类 Python实现思路如下:先定义一个人群数值,将之前判断的R,F,M是否大于均值的三个值加起来 人群数值是数值类型,位于前面的0会自动略过,比如1代表001的高消费唤回客户人群,10对应010的一般客户 然后在python中定义一个判断函数,通过判断人群数值,来返回对应的分类标签 数据解读与建议: 首先查看各类用户占比情况 然后查看不同类型客户消费金额贡献占比 最后导出数据,在tableau中数据可视化展示 通过数据可视化后,我们可以发现: 1.客户流失情况严重,高消费唤回客户,流失客户占比超过总客户的50% 2.高消费唤回客户和频次深耕客户的金额总占比约66%,这两部分客户是消费的重点客户 3.流失客户和新客户的总人数占比约38%,但金额总占比只有约13%建议: 1.针对高消费唤回客户,流失客户采用唤回策略,推送相关信息,发礼品券等挽留客户 2.针对高消费唤回客户和频次深耕客户,考虑继续挖掘其消费特性,如喜爱购买的产品,消费的时间段,后续据此加强店铺产品与时间段的改进,最大程度留住这两部分客户 3.针对流失客户和新客户金额总占比低,建议推出一些低价产品,用来拉取新客户,保证店铺的活跃性。

rfm模型研究图书馆的论文数据

RFM的含义如下:

1、R(Recency):客户最近一次交易时间的间隔。R值越大,表示客户交易发生的日期越久,反之则表示客户交易发生的日期越近。

2、F(Frequency):客户在最近一段时间内交易的次数。F值越大,表示客户交易越频繁,反之则表示客户交易不够活跃。

3、M(Monetary):客户在最近一段时间内交易的金额。M值越大,表示客户价值越高,反之则表示客户价值越低。

4、RFM分析就是根据客户活跃程度和交易金额的贡献,进行客户价值细分的一种方法。

rfm分析方法如下:

我们通常采用交易数据的格式进行分析。因为交易数据可以整理成客户数据,而客户数据无法还原成交易数据。即用交易数据的字段可以得到客户数据的字段,反之不行。

具体是“交易数据”还是“客户数据”根据数据源文件的格式而定。

【变量】:选择各个变量

【分箱化】:评分的总分是多少

【保存】:生成哪些新的变量,可以自定义名称。

【输出】:可以全部勾选,为了能全面的解读RFM分析结果。

确定后,生成了四个新的变量

崭新-得分:最后一次交易的时间间隔得分;

频率-得分:交易总次数得分;

消费金额-得分:交易总金额得分;

RFM得分:RFM得分

分析结果解读:

该图主要用来查看每个RFM汇总得分的客户数量分布是否均匀。

我们期望均匀的分布,若不均分,则应该重新考虑RFM的适用性或尝试另一种分箱方法(减少分箱数目或随机分配绑定值)

“RFM热图”是交易金额均值在RS和FS绘制的矩阵图上的图形化表示,用颜色深浅表示交易金额均值的大小,颜色越深,表示相应矩阵块内的客户交易金额均值越高。

如本例随着RS和FS的分值增大,颜色越来越深,说明客户最近一次交易时间越近、交易次数越多,其平均交易金额越高。

该图是最后一次交易时间、交易总次数、交易总金额之间的散点图。

通过散点图可以清晰直观的看到三个分析指标两两之间的关系,便于指标相关性评估。

本例中,交易总次数和交易总金额存在较为明显的线性关系,而最后一次交易时间和另外两个分析指标之间的相关性较弱。

对于一个新上线产品的前期运营,我们一般的做法都是做活动、上新品、蹭热点、做营销、不断地去拓展新的客户。但是这种做法收效却不容乐观,真正获取的用户没有几个,最终都便宜了羊毛党。其实客户在不同阶段的需求是不一样的,有的客户图便宜,有的客户看新品,有的客户重服务。所以我们想要运营好一个产品,就需要对客户精细化运营。

精细化运营最经典的用户分群工具就是RFM模型,RFM模型是衡量用户价值和用户创新能力的经典工具,主要是由用户最近一次购买时间、消费频次、消费金额组成。

RFM模型是衡量客户价值和客户潜在价值的重要工具和手段,RFM是Rencency(最近一次消费),Frequency(消费频率),Monetary(消费金额)组合而成,此模型对于运营、销售、财务、市场来说都比较重要。

R值(Recency): 最近一次消费

表示用户最近一次消费距离现在的时间,消费时间越近的客户价值越大,1年前消费过的用户肯定没有1月前消费过的用户价值大,是衡量用户价值的一个指标。

基于R值的大小,可以看出上表中的客户2是最有价值的,客户3是最没有价值的,但是如果就此说明客户2是最有价值,而客户3是没有价值的是不成立的,对于客户价值我们不能仅看R值,还需要考虑F值和M值。这里我们只举出4个客户为例,但在真实的客户场景中,我们可以把客户按照周、月、季、年等维度的占比详细来观察出R的趋势变化。

F值(Frequency): 消费频率

消费频率是指用户在统计周期内购买商品的次数,经常购买的用户也就是熟客,其价值比偶尔来一次的客户价值大

基于F值的大小,可以看出客户4的价值最大,客户1的价值最小,但是如果考虑R值和M值就不能这样认为。其实客户对于产品的复购的核心因素是类目。有的类目产品复购率高(食品类)主要是食品属于易耗品,消耗周期短,购买的频率高,相对容易产生重复性购买。而有的类目产品复购率低(家电类),消耗周期长,购买频次低。建议在对F值进行统计时对于不同的类目要有相应的统计周期。

M值(Monetary): 消费金额

消费金额是指用户在统计周期内消费的总金额,体现了消费者对于企业的价值。

基于M值的大小,可以看出客户4的价值最高,客户1的价值最低,M值同上面的R值、F值类似,单一的值并不能说明客户的好坏,三者结合才能更好地精细化用户,对购买产品的用户合理的分隔,采用不同的机制去运营。

RFM模型的主观细分

根据RFM模型值得大小对客户进行细分,如下表所示,将客户分为了8部分去运营,对于不同的细分人群采取不同的运营策略,在实际的应用场景中,店铺可以根据自己店铺的实际情况来细分人群,购买人群多的就分多个人群,购买人群少的就少分几个人群,具体的情况根据店铺来定。

RFM模型的量化细分

上面的模型细分主要是根据RFM值的大小进行模糊的细分,而如果想要更细地对人群进行划分,就需要对RFM进行量化处理,一般采用的方式有

1、根据经验定义权重

RFM值=a*R值+b*F值+c*M值

对于其中的权重a,b,c则需要经验丰富的业务人员来判断

2、归一化处理

将RFM的值进行归一化处理,公式为

RFM值=R1值+F1值+M1值

上面的R1,F1,M1都是归一化处理过后的值

3、AHP层次分析得出权重值

RFM值=a1*R值+a2*F值+a3*M值

a1,a2,a3的值是AHP层次分析得出的权向量值

具体参考链接

最终按照得出值的大小进行人群细分,得出不同的人群

数学模型的研究论文

数学建模论文范文一篇,带例题,结构格式要求有摘要、关键词、问题背景、建模过程、模型解释、小结、参考文献点一下就可以进去了,希望你早日完成论文。祝你顺利资料什么的都有,论文相关的。加油!

数学建模内容摘要:数学作为现代科学的一种工具和手段,要了解什么是数学模型和数学建模,了解数学建模一般方法及步骤。关键词:数学模型、数学建模、实际问题伴随着当今社会的科学技术的飞速发展,数学已经渗透到各个领域,数学建模也显得尤为重要。数学建模在人们生活中扮演着重要的角色,而且随着计算机技术的发展,数学建模更是在人类的活动中起着重要作用,数学建模也更好的为人类服务。一、数学模型数学模型是对于现实世界的一个特定对象,一个特定目的,根据特有的内在规律,做出一些必要的假设,运用适当的数学工具,得到一个数学结构.简单地说:就是系统的某种特征的本质的数学表达式(或是用数学术语对部分现实世界的描述),即用数学式子(如函数,图形,代数方程,微分方程,积分方程,差分方程等)来描述(表述,模拟)所研究的客观对象或系统在某一方面的存在规律.随着社会的发展,生物,医学,社会,经济……,各学科,各行业都涌现现出大量的实际课题,急待人们去研究,去解决.但是,社会对数学的需求并不只是需要数学家和专门从事数学研究的人才,而更大量的是需要在各部门中从事实际工作的人善于运用数学知识及数学的思维方法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就像在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的.你所能遇到的都是数学和其他东西混杂在一起的问题,不是"干净的"数学,而是"脏"的数学.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题化成一个数学问题,这就称为数学模型.数学模型具有下列特征:数学模型的一个重要特征是高度的抽象性.通过数学模型能够将形象思维转化为抽象思维,从而可以突破实际系统的约束,运用已有的数学研究成果对研究对象进行深入的研究.数学模型的另一个特征是经济性.用数学模型研究不需要过多的专用设备和工具,可以节省大量的设备运行和维护费用,用数学模型可以大大加快研究工作的进度,缩短研究周期,特别是在电子计算机得到广泛应用的今天,这个优越性就更为突出.但是,数学模型具有局限性,在简化和抽象过程中必然造成某些失真.所谓"模型就是模型"(而不是原型),即是指该性质.二、数学建模 数学建模是利用数学方法解决实际问题的一种实践.即通过抽象,简化,假设,引进变量等处理过程后,将实际问题用数学方式表达,建立起数学模型,然后运用先进的数学方法及计算机技术进行求解.简而言之,建立数学模型的这个过程就称为数学建模.模型是客观实体有关属性的模拟.陈列在橱窗中的飞机模型外形应当象真正的飞机,至于它是否真的能飞则无关紧要;然而参加航模比赛的飞机模型则全然不同,如果飞行性能不佳,外形再象飞机,也不能算是一个好的模型.模型不一定是对实体的一种仿照,也可以是对实体的某些基本属性的抽象,例如,一张地质图并不需要用实物来模拟,它可以用抽象的符号,文字和数字来反映出该地区的地质结构.数学模型也是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略.数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识.这种应用知识从实际课题中抽象,提炼出数学模型的过程就称为数学建模.实际问题中有许多因素,在建立数学模型时你不可能,也没有必要把它们毫无遗漏地全部加以考虑,只能考虑其中的最主要的因素,舍弃其中的次要因素.数学模型建立起来了,实际问题化成了数学问题,就可以用数学工具,数学方法去解答这个实际问题.如果有现成的数学工具当然好.如果没有现成的数学工具,就促使数学家们寻找和发展出新的数学工具去解决它,这又推动了数学本身的发展.例如,开普勒由行星运行的观测数据总结出开普勒三定律,牛顿试图用自己发现的力学定律去解释它,但当时已有的数学工具是不够用的,这促使了微积分的发明.求解数学模型,除了用到数学推理以外,通常还要处理大量数据,进行大量计算,这在电子计算机发明之前是很难实现的.因此,很多数学模型,尽管从数学理论上解决了,但由于计算量太大而没法得到有用的结果,还是只有束之高阁.而电子计算机的出现和迅速发展,给用数学模型解决实际问题打开了广阔的道路.而在现在,要真正解决一个实际问题,离了计算机几乎是不行的.数学模型建立起来了,也用数学方法或数值方法求出了解答,是不是就万事大吉了呢 不是.既然数学模型只能近似地反映实际问题中的关系和规律,到底反映得好不好,还需要接受检验,如果数学模型建立得不好,没有正确地描述所给的实际问题,数学解答再正确也是没有用的.因此,在得出数学解答之后还要让所得的结论接受实际的检验,看它是否合理,是否可行,等等.如果不符合实际,还应设法找出原因,修改原来的模型,重新求解和检验,直到比较合理可行,才能算是得到了一个解答,可以先付诸实施.但是,十全十美的答案是没有的,已得到的解答仍有改进的余地,可以根据实际情况,或者继续研究和改进;或者暂时告一段落,待将来有新的情况和要求后再作改进. 应用数学知识去研究和和解决实际问题,遇到的第一项工作就是建立恰当的数学模型.从这一意义上讲,可以说数学建模是一切科学研究的基础.没有一个较好的数学模型就不可能得到较好的研究结果,所以,建立一个较好的数学模型乃是解决实际问题的关键之一.数学建模将各种知识综合应用于解决实际问题中,是培养和提高同学们应用所学知识分析问题,解决问题的能力的必备手段之一.三、数学建模的一般方法建立数学模型的方法并没有一定的模式,但一个理想的模型应能反映系统的全部重要特征:模型的可靠性和模型的使用性建模的一般方法:1.机理分析 机理分析就是根据对现实对象特性的认识,分析其因果关系,找出反映内部机理的规律,所建立的模型常有明确的物理或现实意义.(1) 比例分析法--建立变量之间函数关系的最基本最常用的方法. (2) 代数方法--求解离散问题(离散的数据,符号,图形)的主要方法. (3) 逻辑方法--是数学理论研究的重要方法,对社会学和经济学等领域的实际 问题,在决策,对策等学科中得到广泛应用. (4) 常微分方程--解决两个变量之间的变化规律,关键是建立"瞬时变化率"的表达式. (5) 偏微分方程--解决因变量与两个以上自变量之间的变化规律.2.测试分析方法 测试分析方法就是将研究对象视为一个"黑箱"系统,内部机理无法直接寻求,通过测量系统的输入输出数据,并以此为基础运用统计分析方法,按照事先确定的准则在某一类模型中选出一个数据拟合得最好的模型. (1) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(2) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.(3) 回归分析法--用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.(4) 时序分析法--处理的是动态的相关数据,又称为过程统计方法.将这两种方法结合起来使用,即用机理分析方法建立模型的结构,用系统测试方法来确定模型的参数,也是常用的建模方法, 在实际过程中用那一种方法建模主要是根据我们对研究对象的了解程度和建模目的来决定.机理分析法建模的具体步骤大致可见左图.3.仿真和其他方法(1) 计算机仿真(模拟)--实质上是统计估计方法,等效于抽样试验.① 离散系统仿真--有一组状态变量.② 连续系统仿真--有解析表达式或系统结构图.(2) 因子试验法--在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.(3) 人工现实法--基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.(参见:齐欢《数学模型方法》,华中理工大学出版社,1996)四、数学模型的分类数学模型可以按照不同的方式分类,下面介绍常用的几种.1.按照模型的应用领域(或所属学科)分:如人口模型,交通模型,环境模型,生态模型,城镇规划模型,水资源模型,再生资源利用模型,污染模型等.范畴更大一些则形成许多边缘学科如生物数学,医学数学,地质数学,数量经济学,数学社会学等.2.按照建立模型的数学方法(或所属数学分支)分:如初等数学模型,几何模型,微分方程模型,图论模型,马氏链模型,规划论模型等.按第一种方法分类的数学模型教科书中,着重于某一专门领域中用不同方法建立模型,而按第二种方法分类的书里,是用属于不同领域的现成的数学模型来解释某种数学技巧的应用.在本书中我们重点放在如何应用读者已具备的基本数学知识在各个不同领域中建模.3.按照模型的表现特性又有几种分法:确定性模型和随机性模型 取决于是否考虑随机因素的影响.近年来随着数学的发展,又有所谓突变性模型和模糊性模型.静态模型和动态模型 取决于是否考虑时间因素引起的变化.线性模型和非线性模型 取决于模型的基本关系,如微分方程是否是线性的.离散模型和连续模型 指模型中的变量(主要是时间变量)取为离散还是连续的.虽然从本质上讲大多数实际问题是随机性的,动态的,非线性的,但是由于确定性,静态,线性模型容易处理,并且往往可以作为初步的近似来解决问题,所以建模时常先考虑确定性,静态,线性模型.连续模型便于利用微积分方法求解,作理论分析,而离散模型便于在计算机上作数值计算,所以用哪种模型要看具体问题而定.在具体的建模过程中将连续模型离散化,或将离散变量视作连续,也是常采用的方法.4.按照建模目的分:有描述模型,分析模型,预报模型,优化模型,决策模型,控制模型等.5.按照对模型结构的了解程度分:有所谓白箱模型,灰箱模型,黑箱模型.这是把研究对象比喻成一只箱子里的机关,要通过建模来揭示它的奥妙.白箱主要包括用力学,热学,电学等一些机理相当清楚的学科描述的现象以及相应的工程技术问题,这方面的模型大多已经基本确定,还需深入研究的主要是优化设计和控制等问题了.灰箱主要指生态,气象,经济,交通等领域中机理尚不十分清楚的现象,在建立和改善模型方面都还不同程度地有许多工作要做.至于黑箱则主要指生命科学和社会科学等领域中一些机理(数量关系方面)很不清楚的现象.有些工程技术问题虽然主要基于物理,化学原理,但由于因素众多,关系复杂和观测困难等原因也常作为灰箱或黑箱模型处理.当然,白,灰,黑之间并没有明显的界限,而且随着科学技术的发展,箱子的"颜色"必然是逐渐由暗变亮的.五、数学建模的一般步骤建模的步骤一般分为下列几步:1.模型准备.首先要了解问题的实际背景,明确题目的要求,搜集各种必要的信息.2.模型假设.在明确建模目的,掌握必要资料的基础上,通过对资料的分析计算,找出起主要作用的因素,经必要的精炼,简化,提出若干符合客观实际的假设,使问题的主要特征凸现出来,忽略问题的次要方面.一般地说,一个实际问题不经过简化假设就很难翻译成数学问题,即使可能,也很难求解.不同的简化假设会得到不同的模型.假设作得不合理或过份简单,会导致模型失败或部分失败,于是应该修改和补充假设;假设作得过分详细,试图把复杂对象的各方面因素都考虑进去,可能使你很难甚至无法继续下一步的工作.通常,作假设的依据,一是出于对问题内在规律的认识,二是来自对数据或现象的分析,也可以是二者的综合.作假设时既要运用与问题相关的物理,化学,生物,经济等方面的知识,又要充分发挥想象力,洞察力和判断力,善于辨别问题的主次,果断地抓住主要因素,舍弃次要因素,尽量将问题线性化,均匀化.经验在这里也常起重要作用.写出假设时,语言要精确,就象做习题时写出已知条件那样.3.模型构成.根据所作的假设以及事物之间的联系, 利用适当的数学工具去刻划各变量之间的关系,建立相应的数学结构――即建立数学模型.把问题化为数学问题.要注意尽量采取简单的数学工具,因为简单的数学模型往往更能反映事物的本质,而且也容易使更多的人掌握和使用.4.模型求解.利用已知的数学方法来求解上一步所得到的数学问题,这时往往还要作出进一步的简化或假设.在难以得出解析解时,也应当借助计算机求出数值解.5.模型分析.对模型解答进行数学上的分析,有时要根据问题的性质分析变量间的依赖关系或稳定状况,有时是根据所得结果给出数学上的预报,有时则可能要给出数学上的最优决策或控制,不论哪种情况还常常需要进行误差分析,模型对数据的稳定性或灵敏性分析等.6.模型检验.分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果结果不够理想,应该修改,补充假设或重新建模,有些模型需要经过几次反复,不断完善.7.模型应用.所建立的模型必须在实际中应用才能产生效益,在应用中不断改进和完善.应用的方式自然取决于问题的性质和建模的目的.参考文献:(1)齐欢《数学模型方法》,华中理工大学出版社,1996。(2)《数学的实践与认识》,(季刊),中国数学会编辑出版。

无忧在线有很多数学建模论文,你去搜一下就行

论文的研究模型

论文的理论模型写法:

模型准备一般需要写你的论文用到的边缘方法的理论,例如,图论用到Dijkstra或者Floyd算法,统计使用遗传算法、灰度预测等。类似这些方法的理论基础,因为不便在模型建立与求解中大篇幅展开,可以在模型准备中做简要说明。

模型准备这一部分的作用是使论文层次分明,起到由浅入深的效果。类似于模型假设和符号说明,对正文起铺垫作用。

数学建模简介:数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言作表述来建立数学模型。

模型准备一般需要写你的论文用到的边缘方法的理论,例如,图论用到Dijkstra或者Floyd算法,统计使用遗传算法、灰度预测等。类似这些方法的理论基础,因为不便在模型建立与求解中大篇幅展开,可以在模型准备中做简要说明。

模型有三个层次:

第一个层次,简单的图表和指标,一般的问卷调查结果的展示都会采取这种方式,生动形象。

第二个层次,描述性统计,分析数据分布特征。

第三个层次,计量分析,建立模型。而计量分析又可以分为几个层次,第一层次是简单回归,包括双变量、多元回归,基本计量问题(共线性、异方差、自相关)的处理。

第二层次更专业点儿,包括模型设定误差检验与模型修正、特殊数据类型(时间序列、虚拟变量、面板数据等)的模型选择和处理、联立方程、VEC模型、VAR模型、条件异方差模型等;第三层次包括有序因变量、面板VAR、神经网络、分位数模型、季节调整模型等等。模型,建立一套研究范式,然后按此模型进行研究。

选题与预估计

问题1:暂定一个题目(包括研究对象、研究问题、拟使用的理论或方法等方面,可使用副标题,副标题一般指向研究方法或研究角度)。

问题2:给出研究目标与研究问题,并初步进行回答(研究之前必须要有预设的初步结论。所谓“实证分析”,可以将其看作是对所提出的初步结论的检验)。

问题3:给出文献综述(要求:①文献综述的内容必须与你的研究紧密相关,即根据自己研究的问题或内容梳理、概括相关文献(要注意相关性);②文献综述要能构成你研究的基础,可将其视为你的研究的理论知识平台或背景;③文献综述必须能够引出你所研究的问题,即根据自己的边际贡献或研究特点评述已有文献(要注意针对性))。

问题4:论证你所研究的问题以及其重要性(先列出“重要性”的论点,然后给出相应的论据)。

问题5:尝试运用计量软件(如:Eviews、SPSS、STATA或R)导入数据,对数据进行初步描述性分析与预估计。

写论文常用理论模型有:1、杜威“做中学”。2、斯金纳“强化理论”。3、皮亚杰“认识发展理论”。4、维果斯基“最近发展区理论”。

1、杜威“做中学”杜威(John Dewey)提出“做中学”这个基本原则主要思想是“人的经验如何影响学习”。由于人们最初的知识和最牢固地保持的知识,是关于怎样做(how to do)的知识。因此,教学过程应该就是“做”的过程。

在他看来,如果儿童没有“做”的机会,那必然会阻碍儿童的自然发展。儿童生来就有一种要做事和要工作的愿望,对活动具有强烈的兴趣,对此要给予特别的重视。

杜威认为,“从做中学”也就是“从活动中学”、从经验中学入它使得学校里知识的获得与生活过程中的活动联系了起来。由于儿童能从那些真正有教育意义和有兴趣的活动中进行学习,那就有助于儿童的生长和发展。在开展学生动手实践、探究式教学等相关教学研究比较常用。

2、斯金纳“强化理论”

强调强化在学习中的作用。斯金纳把强化分成积极强化和消极强化两种。教学中的积极强化是教师的赞许等,消极强化是教师不再皱眉等。这两种强化都增加了反应再发生的可能性。斯金纳认为不能把消极强化与惩罚混为一谈。

他通过系统的实验观察得出了一条重要结论:惩罚就是企图呈现消极强化物或排除积极强化物去刺激某个反应,仅是一种治标的方法,它对被惩罚者和惩罚者都是不利的。他的实验证明,惩罚只能暂时降低反应率,而不能减少消退过程中反应的总次数。斯金纳对惩罚的科学研究,对改变当时美国和欧洲盛行的体罚教育起了一定作用。

文学类论文的研究模型

文献法比较研究法综合归纳法等等加油哦,我就是汉语言文学专业毕业的

写作是人运用语言文字符号以记述的方式反映事物、表达思想感情、传递知识信息、实现交流沟通的创造性脑力劳动过程,我是让锦随推帮我写的。作为一个完整的系统过程,写作活动大致可分为“采集—构思—表述”三个阶段。与作家的自由写作、职业人群的专业写作不同,语文课程意义的写作,是学生在教师指导下按照特定要求用书面语言创造文本,以发展和提高自身写作能力的学习活动。简单来说,写作是生活中与人沟通、交流、分享信息的一种方式,就像我们平常说话一样。写作就是用笔来说话。

将两部相似作品,人物等对比,相同点不同点分条目对比(一1 2二 1 2 三1 2 四 1 2……)

观察法, 对比法, 文献研究法, 跨科学研究法, 描述性研究法......

  • 索引序列
  • 研究rfm模型的学位论文
  • rfm模型研究图书馆的论文数据
  • 数学模型的研究论文
  • 论文的研究模型
  • 文学类论文的研究模型
  • 返回顶部