考研的数学分为四种,分别是数学一、数学二、数学三、数学四 数学一是一般的理工科要考的,如计算机/材料等理工专业 数学二是对数学要求略微低一点的专业要考的,但他与数学一基本相当。如纺织专业 数学三是偏向于经济类别的考生,如经济管理 偏向概率 数学四是其它对数学要求相对低的学科。 而四种数学出题的题型相同,所占比例也相同,你很容易在网上或者书店找到某一年的考试题看一下每年出的题类型相同的。 大纲见下: 全国硕士研究生入学考试数学三考试大纲 考试科目 微积分、线性代数、概率论与数理统计 微积分 一、函数。极限、连续 考试内容 函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 反函数、复合函数、隐函数、分段函数 基本初等函数的性质及其图形 初等函数 数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小和无穷大的概念及关系 无穷小的基本性质及阶的比较 极限四则运算 极限存在的两个准则(单调有界准则和夹逼准则)两个重要极限 函数连续与间断的概念 初等函数的连续性 闭区间上连续函数的性质 考试要求 1.理解函数的概念,掌握函数的表示法. 2.了解函数的有界性、单调性、周期性和奇偶性. 3.理解复合函数、反函数、隐函数和分段函数的概念. 4.掌握基本初等函数的性质及其图形,理解初等函数的概念. 5.会建立简单应用问题中的函数关系式. 6.了解数列极限和函数极限(包括左极限与右极限)的概念. 7.了解无穷小的概念和基本性质.掌握无穷小的比较方法.了解无穷大的概念及其与无穷小的关系. 8.了解极限的性质与极限存在的两个准则.掌握极限的性质及四则运算法则,会应用两个重要极限. 9.理解函数连续性的概念(含左连续与右连续). 10. 了解连续函数的性质和初等函述的连续性. 了解闭区间上连续函数的性质(有界性、最大值与最小值定理和介值定理)及其简单应用. 二、一元函数微分学 考试内容 导数的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 导数的四则运算 基本初等函数的导数 复合函数、反函数和隐函数的导数 高阶导数 微分的概念和运算法则 微分中值定理及其应用 洛必达(L'Hospital)法则 函数单调性 函数的极值 函数图形的凹凸性、拐点、浙近线 函数图形的描绘 函数的最大值与最小值 考试要求 1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念). 2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,掌握反函数与隐函数求导法以及对数求导法. 3.了解高阶导数的概念,会求简单函数的高阶导数. 4.了解微分的概念,导数与微分之间的关系,以及一阶微分形式的不变性,会求函数的微分. 5.理解罗尔(Rolle)定理、拉格朗日( Lagrange)中值定理、柯西(Cauchy)中值定理的条件和结论,掌握这三个定理的简单应用. 6.会用洛必达法则求极限. 7.掌握函数单调性的判别方法及其应用,掌握极值、最大值和最小值的求法(含解较简单的应用题). 8.会用导数判断函数图形的凹凸性和拐点,会求函数图形的渐近线. 9.掌握函数作图的基本步骤和方法,会作某些简单函数的图形. 三、一元函数积分学 考试内容 原函数与不定积分的概念 不定积分的基本性质 基本积分公式 不定积分的换元积分法和分部积分法 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 定积分的换元积分法和分部积分法 广义积分的概念和计算 定积分的应用 考试要求 1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握计算不定积分的换元积分法和分部积分法. 2.了解定积分的概念和基本性质,了解定积分中值定理,掌握牛顿一莱布尼茨公式,以及定积分的换元积分法和分部积分法.了解变上限定积分定义的函数并会求它的导数. 3.会利用定积分计算平面图形的面积和旋转体的体积,会利用定积分求解简单的经济应用问题. 4.了解广义积分的概念,会计算广义积分,了解广义积分(此处略)的收敛与发散的条件. 四、多元函数微积分学 考试内容 多元函数的概念 二元函数的几何意义 二元函数的极限与连续性 有界闭区域上二元连续函数的性质 多元函数的偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值、最大值和最小值 二重积分的概念、基本性质和计算 无界区域上简单二重积分的计算 考试要求 1.了解多元函数的概念,了解二元函数的几何意义. 2.了解二元函数的极限与连续的直观意义,了解有界闭区域上二元连续函数的性质. 3.了解多元函数偏导数与全微分的概念,掌握求多元复合函数偏导数和全微分的方法,会用隐函数的求导法则. 4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件。会求二元函数的极值,会用拉格朗日乘数法求条件极值.会求简单多元函数的最大值和最小值,会求解一些简单的应用题. 5.了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法.会计算无界区域上的较简单的二重积分. 五、无穷级数 考试内容 常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数以及它们的收敛性 正项级数收敛性的判别 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 考试要求 1.了解级数的收敛与发散、收敛级数的和的概念. 2.掌握级数的基本性质和级数收敛的必要条件.掌握几何级数及p级数的收敛与发散的条件.掌握正项级数的比较判别法和比值判别法. 3.了解任意项级数绝对收敛与条件收敛的概念,以及它们之间的关系.掌握交错级数的莱布尼茨判别法. 4.会求幂级数的收敛半径、收敛区间及收敛域. 5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项微分和逐项积分),会求简单幂级数在其收敛区间内的和函数. 6.掌提 ex,sinx,cosx,ln(1+x)与(1+x)a幂级数的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展成幂级数. 六、常微分方程与差分方程 考试内容 常微分方程的概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程与差分方程的简单应用 考试要求 1.了解微分方程的阶及其解、通解、初始条件和特解等概念. 2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法. 3.会解二阶常系数齐次线性方程. 4.会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程. 5.了解差分与差分方程及其通解与特解等概念. 6.掌握一阶常系数线性差分方程的求解方法. 7.会应用微分方程和差分方程求解简单的经济应用问题. 线性代数 一、行列式 考试内容 行列式的概念和基本性质 行列式按行(列)展开定理 考试要求 1.了解n阶行列式的概念,掌握行列式的性质. 2.会应用行列式的性质和行列式按行(列)展开定理计算行列式. 二、矩阵 考试内容 矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算 1、理解矩阵的概念,了解单位矩阵、对角矩阵、数量矩阵、三角矩阵的定义和性质,了解对称矩阵和反对称矩阵及正交矩阵等的定义和性质。 2、掌握矩阵的线性运算、乘法,以及他们的运算规律,掌握矩阵转置的性质,了解方阵的幂,掌握方阵乘积的行列式的性质. 3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求矩阵的逆. 4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,会用初等变换求矩阵的逆和秩. 5.了解分块矩阵的概念,掌握分块矩阵的运算法则. 三、向量 考试内容 向量的概念 向量的线性组合与线性表示 向量组线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 考试要求 1.了解向量的概念,掌握向量的加法和数乘运算法则. 2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法. 3.理解向量组的极大无关组的概念,掌握求向量组的极大无关组的方法. 4.了解向量组等价的概念,理解向量组的秩的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系,会求向量组的秩. 四、线性方程组 考试内容 线性方程组的克莱姆(Cramer)法则 线例方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解 考试要求 1.会用克莱姆法则解线性方程组. 2.掌握线性方程组有解和无解的判定方法. 3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.掌握非齐次线性方程组的通解的求法,会用其特解及相应的导出组的基础解系表示齐次线性方程组的通解. 五、矩阵的特征值和特征向量 考试内容 矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵 考试要求 1、理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法. 2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法. 3.掌握实对称矩阵的特征值和特征向量性质. 六、二次型 考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准报和规范形 正交变换 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性 考试要求 1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换和合同矩阵的概念. 2.理解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理的条件和结论,会用正交变换和配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,掌握正定矩阵的性质. 概率论与数理统计 一、随机事件和概率 考试内容 随机事件与样本空间 事件的关系与运算 完全事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验 考试要求 1.了解样本空间(基本时间空间)的概念,理解随机事件的概念,掌握事件的关系及运算. 2、理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式等基本公式. 3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念. 二、随机变量及其概率分布 考试内容 随机变量及其概率分布 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的概率分布 随机变量函数的概率分布 考试要求 1.理解随机变量及其概率分布的概念,理解分布函数F(x)=P{X<=x}(负无穷2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、超几何分布、泊松(Poisson)分布及其应用. 3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布. 4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布N(μ,σ2)、指数分布及其应用,其中参数为λ(λ>0)的指数分布的密度函数为f(x)=(此处略). 5.会根据自变量的概率分布求其简单函数的概率分布. 三、随机变量的联合概率分布 考试内容 随机变量联合分布函数 离散型随机变量的联合概率分布、边缘分布和条件分布 连续型随机变量的联合概率密度、边缘密度和条件密度 随机变量的独立性和相关性 常见二维随机变量的联合分布 两个及两个以上随机变量的函数的概率分布 考试要求 1.理解随机变量的联合分布函数的概念和基本性质. 2.理解随机变量的联合分布的概念、性质及其两种基本表达式:离散型联合概率分布和连续型联合概率密度.掌握两个随机变量的联合分布的边缘分布和条件分布. 3.理解随机变量的独立性及相关性的概念,掌握随机变量独立的条件;理解随机变量的不相关性与独立性的关系. 4.掌握二维均匀分布和二维正态分布,理解其中参数的概率意义. 5.会根据两个随机变量的联合概率分布求其函数的概率分布,会根据多个独立随机变量的概率分布求其函数的概率分布. 四、随机变量的数字特征 考试内容 随机变量的数学期望(均值)、方差和标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差和相关系数及其性质 考试要求 1.理解随机变量数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,并会运用数字特征的基本性质计等具体分布的数字特征,掌握常用分布的数字特征. 2.会根据随机变量的概率分布求其函数的数学期望;会根据两个随机变量联合概率分布求其函数的数学期望. 3.掌握切比雪夫不等式. 五、大数定律和中心极限定理 考试内容 切比雪夫(Chebyshev)大数定律 伯努利(Bernonlli)大数定律 辛钦(Khinchine)大数定律 棣莫弗一拉普拉斯( De Moivre- Laplace)定理(二项分布以正态分布为极限分布) 列维一林德伯格(Levy-Lindberg)定理(独立同分布随机变量列的中心极限定理) 考试要求 1.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量的大数定律)成立的条件及结论. 2.掌握棣莫弗—拉普拉斯中心极限定理、列维—林得伯格中心极限定理的结论和应用条件,并会用相关定理近似计算有关事件的概率. 六、数理统计的基本概念 考试内容 总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 χ2分布 t分布 F分布 分位数 正态总体的常用抽样分布 考试要求 1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念.其中样本方差定义为:S2=(此处略) 2.了解产生χ2变量、t变量和F变量的典型模式;理解标准正态分布、χ2分布、t分布和F分布的分位数,会查相应的数值表. 3.掌握正态总体的抽样分布. 七、参数估计 考试内容 点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计 考试要求 1.理解参数的点估计、估计量与估计值的概念;了解估计量的无偏性、有效性(最小方差性)和相合性(一致性)的概念,并会验证估计量的无偏性;会利用大数定律证明估计量的相合性. 2.掌握矩估计法(一阶、二阶矩)和最大似然估计法. 3.掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法. 4 掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法. 八、假设检验 考试内容 显著性检验的基本思想和步骤 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验 考试要求 1.理解“假设”的概念和基本类型;理解显著性检验的基本思想,掌握假设检验的基本步骤;会构造简单假设的显著性检验. 2.理解假设检验可能产生的两类错误,对于较简单的情形,会计算两类错误的概率. 3.了解单个和两个正态总体参数的假设检验. 试卷结构 (一)内容比例 微积分 约50% 线性代数 约25% 概率论与数理统计 约 25% (二)题型比例 境空题与选择题约 30% 解答题(包括证明题) 约70% 由于这里回答问题限制字数,所以数学四的考纲无法贴上,请你自己去查找,网上有
答:(y-2xy)dx+x^2dy=0,写成x^2dy=y(2x-1)dx即dy/y=(2x-1)/x^2dx两边积分得:ln|y|=2ln|x|+1/x+c代入x=1,y=e,解得c=0所以ln|y|=2ln|x|+1/xy=x^2*e^(1/x)
更正一下,对二阶导数不是直接判断符号,而是对 H = AC-B^2在驻点(即稳定点)判别符号,这时没必要根据x直接解出y,也没必要判断一阶导数的符号。 当H = AC-B^2 = 0时,必须借助更高阶的偏导数来判别,依据是多元函数的Taylor公式,一般的教材都不涉及。这个问题倒是可以作为数学专业的毕业论文题目来进一步讨论。
它们本质上是一样的,但是在数学理论中,总有一些函数,人们已经证明它们的函数关系,但是还是无法表示成显函数的形式,就叫做隐函数。通常我们平时使用它,也就是给出一些自变量的具体的取值,带入隐函数的式子求取因变量的值而已。
1、几个带参数的二阶边界值问题的正解的存在性研究2、关于丢番图方程1+x+y=z的一类特殊情况的研究3、变限积分函数的性质及应用4、有限集上函数的迭代及其应用希望以上回答对你有帮助!————————————————————世界上没有任何东西是完美的,文章也是一样,我不敢保证我们团写出来的文章一定会让你捧上奖杯,获得名次。但这里面承载的心血和汗水不比任何写作团来的少,因为责任就是肩膀上的大山。不是我们写不出华丽清晰的文章,而是不可预定的因素太多,轻易地给您承诺说我是最好的恰恰说明了我的不成熟和轻浮。我想我简单的介绍并不能让你感觉眼前一亮,但你细细的品读定会感觉我们团靠谱务实的作风。
论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!
1. 圆锥曲线的性质及推广应用
2. 经济问题中的概率统计模型及应用
3. 通过逻辑趣题学推理
4. 直觉思维的训练和培养
5. 用高等数学知识解初等数学题
6. 浅谈数学中的变形技巧
7. 浅谈平均值不等式的应用
8. 浅谈高中立体几何的入门学习
9. 数形结合思想
10. 关于连通性的两个习题
11. 从赌博和概率到抽奖陷阱中的数学
12. 情感在数学教学中的作用
13. 因材施教因性施教
14. 关于抽象函数的若干问题
15. 创新教育背景下的数学教学
16. 实数基本理论的一些探讨
17. 论数学教学中的心理环境
18. 以数学教学为例谈谈课堂提问的设计原则
1. 网络优化
2. 泰勒公式及其应用
3. 浅谈中学数学中的反证法
4. 数学选择题的利和弊
5. 浅谈计算机辅助数学教学
6. 论研究性学习
7. 浅谈发展数学思维的学习方法
8. 关于整系数多项式有理根的几个定理及求解方法
9. 数学教学中课堂提问的误区与对策
10. 中学数学教学中的创造性思维的培养
11. 浅谈数学教学中的“问题情境”
12. 市场经济中的蛛网模型
13. 中学数学教学设计前期分析的研究
14. 数学课堂差异教学
15. 一种函数方程的解法
16. 积分中值定理的再讨论
17. 二阶变系数齐次微分方程的求解问题
18. 毕业设计课题(论文主题等)
19. 浅谈线性变换的对角化问题
1. 浅谈奥数竟赛的利与弊
2. 浅谈中学数学中数形结合的思想
3. 浅谈中学数学中不等式的教学
4. 中数教学研究
5. XXX课程网上教学系统分析与设计
6. 数学CAI课件开发研究
7. 中等职业学校数学教学改革研究与探讨
8. 中等职业学校数学教学设计研究
9. 中等职业学校中外数学教学的比较研究
10. 中等职业学校数学教材研究
11. 关于数学学科案例教学法的探讨
12. 中外著名数学家学术思想探讨
13. 试论数学美
14. 数学中的研究性学习
15. 数字危机
16. 中学数学中的化归方法
17. 高斯分布的启示
可能就是因为没有人能够正确的去推断出来,而且有的时候还会有一些认知和反应性的策略。
由于篇幅文字限制,不便于写数学式。 在台湾国立师范大学物理系有。 抱歉
因为这道题目本身就是一种猜想,猜想可以分为很多种,所以这也是七大数学难题之一。
2000年有个外国数学机构也列了七个著名的千禧难题,每个悬赏100万美元。应该都是比较有名的难题了…唯一一个被两次都列入的难题就是——黎曼猜想。
从微积分开始,黎曼的名字零星会冒出来:黎曼函数(这个函数真的不一般,性质很奇特)、黎曼积分、黎曼-勒贝格引理……这个时候还是不显山不露水。能了解到黎曼数学品味的课程,首先是复变函数。解析函数性质有多好就不多说了,各种巧妙的玩意,哪一个都让人流连忘返。复变函数本身就蕴藏了很多拓扑的精神,那是数学中最好玩的东西。而且解析函数又有着真实的物理背景——调和函数,数物两开花。光是这一个领域就够后面的数学家挖掘的了。
再往后,学习黎曼几何,你就知道和广义相对论的关系有多亲密。那个时候的数学家就已经明白了度量的本质,思考空间曲率。你说他一点也没有怀疑我们空间是否真的是平坦的吗?我反正是不信。只是大佬有一肚子话不愿意讲,怕惊了世人。
然后才是世人所知的黎曼猜想。大佬的论文常常是如履平地,波澜不惊,可能几句话就是一个大问题,但是他似乎一点也不在意,一顿操作哗哗哗,提出黎曼猜想戛然而止,事了拂衣去:你们接着算吧。
黎曼还有为数不多的几篇论文,有关于物理等方面,我也不是很懂,就不多说了。以前买了他的文集,也没太仔细看,但是只要你顺着他的思路算一算,你就知道他的算力有多深,别人是一步一个台阶,他直接梯云纵原地起飞……但是能了解到黎曼有多厉害,本身就要付出相应的努力。普通的数学爱好者只能人云亦云,对于大众能知道黎曼猜想也是不容易的事了。
对于方程F(x,y)=0,假定由此可以确定一个函数,把F(x,y)看成x,y的一个二元函数,那么对于方程左右求导,左边就可以用复合函数的求导法则,右边就是0,再把得到的微分方程变形一下就可以得到隐函数的导数。
^e^y+xy-e=0;
y是x的函数
对等式两边取导数
左边:e^y求导的结果为:(e^y)*y'
xy求导的结果为:y+x*y'
e求导的结果为0.
所以:(e^y)*y'+y+x*y'=0
将y'换成dy/dx就是结果。
扩展资料:
如果不限定函数连续,则式中正负号可以随x而变,因而有无穷个解;如果限定连续,则只有两个解(一个恒取正号,一个恒取负号);如果限定可微,则要排除x=±1,因而函数的定义域应是开区间(-1 微分学中主要考虑函数z=F(x,y)与y=ƒ(x)都连续可微的情形。 参考资料来源:百度百科-隐函数 1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导;2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x 的导数,也就是说,一定是链式求导;3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法, 这三个法则可解决所有的求导;4、然后解出dy/dx;5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。 1、通常的隐函数,都是一个既含有x又含有y的方程,将整个方程对x求导; 2、求导时,要将y当成函数看待,也就是凡遇到含有y的项时,要先对y求导,然后乘以y对x 的导数,也就是说,一定是链式求导; 3、凡有既含有x又含有y的项时,视函数形式,用积的的求导法、商的求导法、链式求导法, 这三个法则可解决所有的求导; 4、然后解出dy/dx; 5、如果需要求出高次导数,方法类似,将低次导数结果代入高次的表达式中。 扩展资料: 隐函数求导法则: 隐函数导数的求解一般可以采用以下方法: 1、先把隐函数转化成显函数,再利用显函数求导的方法求导; 2、隐函数左右两边对x求导(但要注意把y看作x的函数); 3、利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值; 4、把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。 举个例子,若欲求z = f(x,y)的导数,那么可以将原隐函数通过移项化为f(x,y,z)=0的形式,然后通过(式中F'y,F'x分别表示y和x对z的偏导数)来求解。 参考资料来源:百度百科-隐函数 例如xy=e^y,其中y=y(x), 两边对x求导,y+xy'=y'e^y 所以y'=y/(e^y-x) 教育专业毕业论文题目只是需要题目吗?论文呢? 1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。 学好数理化,走遍天下都不怕。写好数学论文的前提是需要有拟定一个优秀的数学论文题目,有哪些比较优秀的数学论文题目呢?下面我给大家带来2022最新数学方向 毕业 论文题目有哪些,希望能帮助到大家! ↓↓↓点击获取更多“知足常乐 议论文 ”↓↓↓ ★ 数学应用数学毕业论文 ★ ★ 大学生数学毕业论文 ★ ★ 大学毕业论文评语大全 ★ ★ 毕业论文答辩致谢词10篇 ★ 中学数学论文题目 1、用面积思想 方法 解题 2、向量空间与矩阵 3、向量空间与等价关系 4、代数中美学思想新探 5、谈在数学中数学情景的创设 6、数学 创新思维 及其培养 7、用函数奇偶性解题 8、用方程思想方法解题 9、用数形结合思想方法解题 10、浅谈数学教学中的幽默风趣 11、中学数学教学与女中学生发展 12、论代数中同构思想在解题中的应用 13、论教师的人格魅力 14、论农村中小学数学 教育 15、论师范院校数学教育 16、数学在母校的发展 17、数学学习兴趣的激发和培养 18、谈新课程理念下的数学教师角色的转变 19、数学新课程教材教学探索 20、利用函数单调性解题 21、数学毕业论文题目汇总 22、浅谈中学数学教学中学生能力的培养 23、变异思维与学生的创新精神 24、试论数学中的美学 25、数学课堂中的提问艺术 26、不等式的证明方法 27、数列问题研究 28、复数方程的解法 29、函数最值方法研究 30、图象法在中学数学中的应用 31、近年来高考命题研究 32、边数最少的自然图的构造 33、向量线性相关性讨论 34、组合数学在中学数学中的应用 35、函数最值研究 36、中学数学符号浅谈 37、论数学交流能力培养(数学语言、图形、 符号等) 38、探影响解决数学问题的心理因素 39、数学后进学生的心理分析 40、生活中处处有数学 41、数学毕业论文题目汇总 42、生活中的数学 43、欧几里得第五公设产生背景及对数学发展影响 44、略谈我国古代的数学成就 45、论数学史的教育价值 46、课程改革与数学教师 47、数学差生非智力因素的分析及对策 48、高考应用问题研究 49、“数形结合”思想在竞赛中的应用 50、浅谈数学的 文化 价值 51、浅谈数学中的对称美 52、三阶幻方性质的探究 53、试谈数学竞赛中的对称性 54、学竞赛中的信息型问题探究 55、柯西不等式分析 56、中国剩余定理应用 57、不定方程的研究 58、一些数学思维方法的证明 59、分类讨论思想在中学数学中的应用 60、生活数学文化分析 数学研究生论文题目推荐 1、混杂随机时滞微分方程的稳定性与可控性 2、多目标单元构建技术在圆锯片生产企业的应用研究 3、基于区间直觉模糊集的多属性群决策研究 4、排队论在交通控制系统中的应用研究 5、若干类新形式的预条件迭代法的收敛性研究 6、高职微积分教学引入数学文化的实践研究 7、分数阶微分方程的Hyers-Ulam稳定性 8、三维面板数据模型的序列相关检验 9、半参数近似因子模型中的高维协方差矩阵估计 10、高职院校高等数学教学改革研究 11、若干模型的分位数变量选择 12、若干变点模型的 经验 似然推断 13、基于Navier-Stokes方程的图像处理与应用研究 14、基于ESMD方法的模态统计特征研究 15、基于复杂网络的影响力节点识别算法的研究 16、基于不确定信息一致性及相关问题研究 17、基于奇异值及重组信任矩阵的协同过滤推荐算法的研究 18、广义时变脉冲系统的时域控制 19、正六边形铺砌上H-三角形边界H-点数的研究 20、外来物种入侵的广义生物经济系统建模与控制 21、具有较少顶点个数的有限群元阶素图 22、基于支持向量机的混合时间序列模型的研究与应用 23、基于Copula函数的某些金融风险的研究 24、基于智能算法的时间序列预测方法研究 25、基于Copula函数的非寿险多元索赔准备金评估方法的研究 26、具有五个顶点的共轭类类长图 27、刚体系统的优化方法数值模拟 28、基于差分进化算法的多准则决策问题研究 29、广义切换系统的指数稳定与H_∞控制问题研究 30、基于神经网络的混沌时间序列研究与应用 31、具有较少顶点的共轭类长素图 32、两类共扰食饵-捕食者模型的动力学行为分析 33、复杂网络社团划分及城市公交网络研究 34、在线核极限学习机的改进与应用研究 35、共振微分方程边值问题正解存在性的研究 36、几类非线性离散系统的自适应控制算法设计 37、数据维数约简及分类算法研究 38、几类非线性不确定系统的自适应模糊控制研究 39、区间二型TSK模糊逻辑系统的混合学习算法的研究 40、基于节点调用关系的软件执行网络结构特征分析 41、基于复杂网络的软件网络关键节点挖掘算法研究 42、圈图谱半径问题研究 43、非线性状态约束系统的自适应控制方法研究 44、多维power-normal分布及其参数估计问题的研究 45、旋流式系统的混沌仿真及其控制与同步研究 46、具有可选服务的M/M/1排队系统驱动的流模型 47、动力系统的混沌反控制与同步研究 48、载流矩形薄板在磁场中的随机分岔 49、广义马尔科夫跳变系统的稳定性分析与鲁棒控制 50、带有非线性功能响应函数的食饵-捕食系统的研究 51、基于观测器的饱和时滞广义系统的鲁棒控制 52、高职数学课程培养学生关键技能的研究 53、基于生存分析和似然理论的数控机床可靠性评估方法研究 54、面向不完全数据的疲劳可靠性分析方法研究 55、带平方根俘获率的可变生物种群模型的稳定性研究 56、一类非线性分数阶动力系统混沌同步控制研究 57、带有不耐烦顾客的M/M/m排队系统的顾客损失率 58、小波方法求解三类变分数阶微积分问题研究 59、乘积空间上拓扑度和不动点指数的计算及其应用 60、浓度对流扩散方程高精度并行格式的构造及其应用 专业微积分数学论文题目 1、一元微积分概念教学的设计研究 2、基于分数阶微积分的飞航式导弹控制系统设计方法研究 3、分数阶微积分运算数字滤波器设计与电路实现及其应用 4、分数阶微积分在现代信号分析与处理中应用的研究 5、广义分数阶微积分中若干问题的研究 6、分数阶微积分及其在粘弹性材料和控制理论中的应用 7、Riemann-Liouville分数阶微积分及其性质证明 8、中学微积分的教与学研究 9、高中数学教科书中微积分的变迁研究 10、HPM视域下的高中微积分教学研究 11、基于分数阶微积分理论的控制器设计及应用 12、微积分在高中数学教学中的作用 13、高中微积分的教学策略研究 14、高中微积分教学中数学史的渗透 15、关于高中微积分的教学研究 16、微积分与中学数学的关联 17、中学微积分课程的教学研究 18、高中微积分课程内容选择的探索 19、高中微积分教学研究 20、高中微积分教学现状的调查与分析 21、微分方程理论中的若干问题 22、倒向随机微分方程理论的一些应用:分形重倒向随机微分方程 23、基于偏微分方程图像分割技术的研究 24、状态受限的随机微分方程:倒向随机微分方程、随机变分不等式、分形随机可生存性 25、几类分数阶微分方程的数值方法研究 26、几类随机延迟微分方程的数值分析 27、微分求积法和微分求积单元法--原理与应用 28、基于偏微分方程的图像平滑与分割研究 29、小波与偏微分方程在图像处理中的应用研究 30、基于粒子群和微分进化的优化算法研究 31、基于变分问题和偏微分方程的图像处理技术研究 32、基于偏微分方程的图像去噪和增强研究 33、分数阶微分方程的理论分析与数值计算 34、基于偏微分方程的数字图象处理的研究 35、倒向随机微分方程、g-期望及其相关的半线性偏微分方程 36、反射倒向随机微分方程及其在混合零和微分对策 37、基于偏微分方程的图像降噪和图像恢复研究 38、基于偏微分方程理论的机械故障诊断技术研究 39、几类分数阶微分方程和随机延迟微分方程数值解的研究 40、非零和随机微分博弈及相关的高维倒向随机微分方程 41、高中微积分教学中数学史的渗透 42、关于高中微积分的教学研究 43、微积分与中学数学的关联 44、中学微积分课程的教学研究 45、大学一年级学生对微积分基本概念的理解 46、中学微积分课程教学研究 47、中美两国高中数学教材中微积分内容的比较研究 48、高中生微积分知识理解现状的调查研究 49、高中微积分教学研究 50、中美高校微积分教材比较研究 51、分数阶微积分方程的一种数值解法 52、HPM视域下的高中微积分教学研究 53、高中微积分课程内容选择的探索 54、新课程理念下高中微积分教学设计研究 55、基于分数阶微积分的线控转向系统控制策略研究 56、基于分数阶微积分的数字图像去噪与增强算法研究 57、高中微积分教学现状的调查与分析 58、高三学生微积分认知状况的思维层次研究 59、分数微积分理论在车辆底盘控制中的应用研究 60、新课程理念下高中微积分课程的教育价值及其教学研究复变函数相关的论文题目