线性代数在科学领域有很多应用的场景,如下: 矩阵,是线性代数中涉及的内容, 线性代数是用来描述状态和变化的,而矩阵是存储状态和变化的信息的媒介,可以分为状态(静态)和变化(动态)信息来看待。 描述一个事物的状态需要在一个选好的坐标系(什么样的向量空间)中进行,所以矩阵所包含的信息从来都是成对出现(坐标值和坐标系)。而基就是坐标系的信息,可以将其拆分出来。 当把矩阵以动态信息来看待时,其信息的侧重点在于变化二字。这时的矩阵可以看做是一个方程。 通过矩阵内所描述的变化规则从一个状态变换到另一个状态。变换可以理解为事物本身的变化,也可以理解为坐标系的变化。 矩阵的本质: 探讨矩阵的本质的话,可以先看这篇文章: 理解矩阵(最通俗易懂的教程——高数-线性代数-矩阵 其思路概括来说如下: 首先要有空间的概念,如果不考虑严谨的定义,你可以用我们熟知的二维或者三维空间来想象:里面有无穷多的点,通过某些动作,可以从一个点“移动”到另一个点,容纳运动是空间的本质特征。 线性空间也是一种空间,线性空间是容纳向量对象运动的。如果选定了坐标系,那么一个向量可以用它在每个维度上的坐标值来表示,比如二维空间里可以表示为[x, y],三维空间可以表示为[x, y, z],更高维虽然无法想象,但仍然可以用类似的数学方式表示出来。 向量共有两种形式,一种为列向量,一种为行向量。虽然我们可能比较习惯行向量,但在这里,我们默认使用列向量。比如[-1,2]就这样表示: 我们可以通过某种运算,把空间里的一个点“移动”另一个位置。比如我们想把[-1,2]移动到[5,2],可以执行如下运算: 上图中左边的这个变量,就是一个矩阵,所以矩阵是线性空间中运动(变换)的描述。 换言之, 矩阵的乘法,本质是一种运动 。但除此以外,还有另外一种理解方式。 我们知道,运动是相对的,把[-1,2]变成[5,2],除了“移动”,还可以通过变换坐标系的方式实现。也就是说,找到这样的一个坐标系,在那里,同样的一个向量可以表示为[5,2]。 在这个情况下,对上面那个矩阵相乘例子而言,里面的那个2x2方阵就可以理解为一个坐标系,在这个坐标系下,[-1,2]这个向量可以表示为[5,2]。 比如上面这个动图中,通过坐标系变化,把红色向量[0,1]、绿色向量[1,0]变成了[3,0]和[1,-2]。 因此, 矩阵的实质就是将坐标整体线性变换 矩阵的基本定义: 矩阵: 有m*n个数排成m行n列的数表成为m行n列矩阵,简称m x n矩阵,记为A。 负矩阵: -A称为矩阵A的负矩阵 行矩阵: 只有一行的矩阵称为行矩阵,又称为行向量;A=(a1 a2 ...an) 列矩阵: 只有一列的矩阵称为列矩阵,又称为列向量; 同型矩阵: 两个矩阵行数列数均相等,称他们为同型矩阵; 相等: 若两个矩阵是同型矩阵,且它们的对应元素相等,成这两个矩阵相等。 零矩阵: 元素都是零的矩阵。注意:不同型的零矩阵是不同的。 系数矩阵 :线性方程组的系数构成的矩阵称为系数矩阵。 方阵: 当矩阵的行数与列数相等的时候,称之为方阵 奇异矩阵: 对应的行列式等于0的方阵。即当|A| = 0时。 非奇异矩阵: 对应的行列式不等于0的方阵。即|A|≠0时。 数量矩阵: 如果一个矩阵的对角线元素全部相同,其余元素都是0,这个矩阵叫数量矩阵,又叫纯量矩阵。 对角矩阵: 简称对角阵(默认为正对角阵)。是一个主对角线之外的元素皆为 0 的矩阵。对角线上元素可以为 0 或其它值。记为 A = diag(λ1,λ2,..,λn) ; 分为正对角阵和反对角阵。 对称矩阵: 是元素以主对角线为对称轴对应相等的矩阵对阵矩阵定义为:A=AT(A的转置),对称矩阵的元素A(i,j)=A(j,i). 反对称矩阵: 反对称矩阵(又称斜对称矩阵)定义是:A= - AT(A的转置前加负号)它的第Ⅰ行和第Ⅰ列各数绝对值 相等,符号相反,于是,对于对角线元素,A(i,i)=-A(i,i),有2A(i,i)=0 单位矩阵: 主对角线上的元素为1,其它元素为0的矩阵。用E表示 例如一个 3 × 3的矩阵: 别的矩阵和单位矩阵相乘,得到的结果就是其自身:A × I = A 行列式: 行列式(Determinant)是数学中的一个函数,将一个n×n的矩阵A映射到一个标量,记作 det(A)或 |A|。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。 在任意的一个方阵都存在这样的一个标量,称作该方阵的行列式. 余子式: 代数余子式是这样定义的,对于一个方阵M,给定行、列元素的代数余子式等于对应的余子式的有符号的行列式 我们把上面的这句定义给提炼一下,某个矩阵的代数余子式是行列式,那么我们已经注意到了,某个矩阵的余子式是一个矩阵.这样我们就知道两者的不同之处了,一个是标量,一个是矩阵,这就是两者的不同之处.好了,了解完两者的不同之处之后,我们来看代数余子式的计算方法是怎么定义的,如下所示. 只有上面的公式让我们感到很无助不是,那么接下来我们用一个接着余子式的示例来求解对应的代数余子式.如下所示 那么说了这么多余子式和代数余子式的知识,到底对我们的行列式的求解有什么帮助呢?其实,我们是可以利用余子式和代数余子式直接计算任意n维方阵的行列式,首先,我们找到矩阵的任意一行i(i不大于最大行数),然后,列数j依次增加.具体的计算公式如下所示. 那么有了公式之后避免不了就是验证,接下来我们就用公式来推导4x4方阵的行列式.由于有了计算公式的便利,我们计算起来就比较方便了,但是我们要仔细判断每一个项的正负(自己验证的时候没注意,验证出错两三遍).这里,我选择的i =1(自己验证的时候可自行选择i) ,具体的验证过程如下所示.(由于其中的项过多,所以分两步截图.) 通过上面我们发现,行数列数越多的方阵行列式的复杂度就会越高.复杂度会呈指数增长.我们计算到4x4的就已经非常的麻烦了(其实4x4的行列式我们已经够用了),那么要是在来个10x10的方阵行列式,我们岂不要疯掉?这里,书中提到了一种行列式的计算方式叫做" 主元选择 "的计算方式,感兴趣的小伙伴可自行查询资料. 上面我们已经说完了行列式,但是说了一大堆,我们还是懵圈的,那么行列式是用来干什么的呢?或者说是行列式代表着什么意义呢?其实,在2D中行列式代表着以基向量为两边的平行四边形的有符号面积.在3D环境中则代表着以基向量为三边的平行六面体有符号体积.我们看以下示例来验证我们的想法. 如图所示,在2D环境中有基向量v = [3 0] ,u = [1 2].那么它的面积是3x2 = 6,它的行列式是3x2-1x0 = 6,我们发现行列式是和面积相等的(当然了,如果基向量v = [-3 0] ,行列式最终计算出来的值为-6) 接下来,我们看一下在3D环境中的有三个基向量u = [2 0 0],v = [1 2 0],w= [0 0 1],如图所示 然后我们计算由上面三个基向量所围成的正六面体的体积为1x2x2 = 4,计算的三个基向量所组成的矩阵的行列式.发现两者的绝对值是相等的.如下所示. 伴随矩阵: 矩阵A的伴随矩阵就是其余子矩阵的转置矩阵,记做: 用伴随矩阵求逆矩阵 这个是我自己想飞算法: 逆矩阵: 设A是数域上的一个n阶方阵,若在相同数域上存在另一个n阶矩阵B,使得: AB=BA=E。则我们称B是A的逆矩阵,而A则被称为可逆矩阵。记作: A-1 A × A-1 = I 那么我该如何计算方阵M的逆呢?在我看的3D图形上是给出了如下的方法. 在上面的公式中矩阵的行列式我们知道如何求解,那么adj M是什么鬼?adj M叫做矩阵M的伴随矩阵,定义为矩阵M的代数余子式矩阵的转置矩阵(挺绕口).没事,我们看一下示例是如何解释的这个的.假设矩阵M如下所示. 矩阵A的|A|的行列式还可以如此计算: 拉普拉斯展开 在数学中,拉普拉斯展开(或称拉普拉斯公式)是一个关于行列式的展开式。将一个n×n矩阵B的行列式进行拉普拉斯展开,即是将其表示成关于矩阵B的某一行(或某一列)的n个元素的(n-1)×(n-1)余子式的和。行列式的拉普拉斯展开一般被简称为行列式按某一行(或按某一列)的展开。由于矩阵B有n行n列,它的拉普拉斯展开一共有2n种。拉普拉斯展开的推广称为拉普拉斯定理,是将一行的元素推广为关于k行的一切子式。它们的每一项和对应的代数余子式的乘积之和仍然是B的行列式。研究一些特定的展开可以减少对于矩阵B之行列式的计算,拉普拉斯公式也常用于一些抽象的推导中。 转置矩阵 转置矩阵其实是原来矩阵的行变成了新矩阵的列,以一个90°的角度进行了旋转。下面两个图就是矩阵A和它的转置矩阵AT。 矩阵转置的推理 将一个矩阵转置之后,再次转置一次,便会得到原来的矩阵. 对于任意的对角矩阵D,都有转置矩阵DT=D,包括单位矩阵I也是如此. 正交矩阵: 先来看一下正交矩阵是如何定义的,若方阵M是正交的,则当且仅当M与他的转置矩阵M^T的乘积等于单位矩阵,那么就称矩阵M为正交矩阵. MTM=I 在矩阵的逆中我们知道,矩阵的逆和矩阵的乘积为单位矩阵I,由此推理,我们可以知道,如果该矩阵为正交矩阵,那么矩阵的逆和转置矩阵是相等的. MT=M-1 那么正交矩阵存在的意义是什么呢?其实如果一个矩阵是正交矩阵,那么矩阵的逆和转置矩阵是相等的.转置矩阵是非常简单计算的,而计算矩阵的逆如果使用代数余子式计算是非常的麻烦,所以我们可以直接计算转置矩阵然后直接得到该矩阵的逆. 矩阵的运算: 加法运算: 例如: 颜色相同的方框数字进行相加,例如这里: 8 + 3 = 11,6 + 10 = 16 减法运算: 需要注意的是,进行加减运算的两个矩阵维度必须是相同的。 矩阵乘以标量 类似,矩阵除以标量不再赘述 矩阵相乘 需要注意的是: 1.左边矩阵的列数,要和右边矩阵的行数相同。 2.相乘的位置不能互换. A × B ≠ B × A 3.相乘的次序不影响结果( A × B ) × C = A × ( B × C ) 矩阵的本质就是线性方程式,两者是一一对应关系。如果从线性方程式的角度,理解矩阵乘法就毫无难度。 下面是一组线性方程式。 矩阵的最初目的,只是为线性方程组提供一个简写形式。 老实说,从上面这种写法,已经能看出矩阵乘法的规则了:系数矩阵第一行的2和1,各自与 x 和 y 的乘积之和,等于3。不过,这不算严格的证明,只是线性方程式转为矩阵的书写规则。 下面才是严格的证明。有三组未知数 x、y 和 t,其中 x 和 y 的关系如下。 x 和 t 的关系如下。 有了这两组方程式,就可以求 y 和 t 的关系。从矩阵来看,很显然,只要把第二个矩阵代入第一个矩阵即可。 从方程式来看,也可以把第二个方程组代入第一个方程组。上面的方程组可以整理成下面的形式。 最后那个矩阵等式,与前面的矩阵等式一对照,就会得到下面的关系。 矩阵乘法的计算规则,从而得到证明。矩阵相乘的应用: 先看一个例子: 某公司有四个工厂生产三种产品,已知每种产品的产量,利润和占地空间,因为工厂设在不同的地方,所以老板想调整一下各个工厂的产品输出,所以你告诉老板每个工厂的现有利润和占地空间。 产量:吨 工厂\产品P1p2p3 甲524 乙382 丙604 丁016 利润:万元 空间:平方米 产品利润空间 P124 P213 P332 一般求解是这样的:产量利润=总利润,产量空间=总空间 所以就是那12个结果,都会算 如果用矩阵来表示呢 直接拿(产量)*(利润,空间)就能直观的看到结果了。 这里是矩阵乘法的简单应用。 4X4齐次矩阵 两条平行线会相交吗? 在没有认识到齐次空间之前,我们知道两条平行线是不能相交的,但是两条平行线真的不能相交吗?我们看下面这幅图,我们都知道两条铁轨是平行的,但是这两条平行的铁轨在无穷远处会相交于一点.这对吗?在笛卡尔2D坐标系中, 我们用 (x, y) 表示笛卡尔空间中的一个 2D 点,而处于无限远处的点 (∞,∞) 在笛卡尔空间里是没有意义的。所以我们是无法解释这种现象的,但是在齐次空间中,我们可以解释这种现象. 带着上面的两个问题,我们开始我们的齐次坐标之旅.其实齐次空间的出现主要是用于投影问题的解决.所谓齐次坐标就是将一个原本是n维的向量用一个n+1维向量来表示. 4D齐次空间有4个分量分别是(x,y,z,w),第四个是w,称为齐次坐标.那么在3D笛卡尔坐标系中可以使用其次坐标表示为(x/w,y/w,z/w). 那么我们就解决第一个问题,解释两条平行线投射到一个2D平面中相交于一点.我们知道在2D笛卡尔坐标系中用Ax+By+C= 0表示一条直线.两条平行直线相交的话,要关联两个方程式.如下所示. 在笛卡尔坐标系中,上述的两者如果相交,那么C=D=0,也就是两者是同一条过原点的直线.显然是解释不了两条平行线相交于一点的.如果我们引入齐次坐标的概念的话,我们把x/w, y/w 代替 x, y 放到投影空间里,如下所示. 上面的方程式组可以转换为下面的方程式组. 在C≠D的情况下,那么对方程组求解,就是w = 0两条直线相交,那么就是(x,y,0).两条直线相交于无限远处. 那么引进齐次坐标有什么必要,它有什么优点呢? 1.它提供了用矩阵运算把二维、三维甚至高维空间中的一个点集从一个坐标系变换到另一个坐标系的有效方法. 2.它可以表示无穷远的点。n+1维的齐次坐标中如果h=0,实际上就表示了n维空间的一个无穷远点。对于齐次坐标[a,b,h],保持a,b不变, 点沿直线 ax+by=0 逐渐走向无穷远处的过程. 矩阵的几何解释 与其说矩阵的几何意义这么生涩难懂,不如说的是矩阵在几何中到底是有什么作用呢?一般来说,方阵可以描述任意的线性变换.,也就说,在几何当中,我们用矩阵表示几何体的空间变换.比如我们在程序中常用的平移、旋转、缩放等等.(没事,这时候说的可能很生涩,看到最后你就会明白怎么回事的) 为了更好的理解矩阵的几何意义,我们先用一个简单的示例来说明一下.如果我们把一张图片放入一个2D的坐标系中(为了给下面做铺垫,向量形式为[x,y,0]),并且规定它的大小为边长为1的正方形.向量p = [0,1,0],向量q = [1,0,0].如下图所示. 现在我们就单独的看图片的右上顶点 [1,1,0] (可看做向量). 首先我们先把[1,1,0]这个向量拆分一下.如下所示. 紧接着.我们要定义一下,p,q和r定义为指向 +x,+y,+z方面的单位向量.然后用单位向量表示图片的右上顶点 [1,1,0] .如下所示. 现在,向量[1,1,0]就被表示成p,q和r的线性变换了.向量p,q和r被称为基向量.这里的基向量是笛卡尔坐标系.但是事实上,一个坐标系能用任意的3个基向量表示.当然了,这三个向量不在同一个平面.向量p,q和r创建一个3x3的矩阵M.如下所示. 当然了,矩阵M可不单单只有上面的一种形式,上面的只能算是一种形式,记住我们说过的,一个坐标系能用任意的3个基向量表示.接下来,我们再次研究一个向量和一个矩阵相乘.(图形变换的开始部分),先看一下公式. 我们还是要借助一开始栋哥的那个坐标系图形.如果矩阵M如下所示.那么图形将不会发生任何变换. 接下来,我们就搞起图形变换了.如果矩阵M发生了如下改变,那么图形会有什么样的变化呢? 在矩阵M中.向量 p 从[1 0 0]变换到[2 1 0], q 从[0 1 0]变换到[-1 2 0], r 未发生变化.然后我们图形的右上点会再次发生缩放和旋转的变换. 得到效果图如下所示. 上面是2D中的变换,3D中的变化一样类似.例如现在有向量OB[1 1 1],如下图所示. 同时矩阵M如下所示. 结果变换之后,向量的图像如下所示. 平移矩阵 在3D图形:矩阵与线性变换我说过几种线性变换,比如旋转,缩放,镜像等等,唯独没有平移,但是在日常开发过程中,平移应该算的上我们很常用的一种仿射变换了.那么这是为什么呢?根据书上所说,矩阵的乘法性质所决定的,零向量总是变换成零向量,所以任何矩阵的乘法表达的变换是不会有平移的.但是我们却可以使用4X4平移矩阵表示3D环境中的平移变换,使用3X3平移矩阵表示2D环境中的平移变换.(假设w不变且w = 1)具体公式如下所示.
矩阵理论在线性代数的应用【1】
摘 要 线性代数是工科院校必修的一门课程,本文给出了用矩阵理论来求行列式、性方程组、化二次型为标准形等问题的一般方法,对于学习线性代数具有一定的指导性。
关键词 矩阵 行列式 线性方程组 二次型
线性代数是研究线性空间和线性变换的一门学科。
它具有很强的抽象性,而矩阵是由抽象转化为具体的重要桥梁与纽带,并把相关的运算转化为矩阵的简单运算,使线性代数的研究在一定程度上化复杂为简单、变抽象为具体和变散乱为整齐有序。
1 矩阵为行列式的计算提供了新的技巧和方法
我们计算行列式常常用定义法、化为三角形法、递推法、数学归纳法、加边法和降阶法但是在学习了矩阵理论知识后,矩阵为行列式的计算提供了新的技巧和方法.
注:此例的关键是利用分块初等变换把行列式化成容易计算的分块上三角形行列式。
由以上可以看出矩阵对行列式的计算具有一定的指导作用,应用矩阵可以使行列式的计算变的简单和容易操作。
2 矩阵是解线性方程组的最佳工具
故原方程组的一般解为,其中是自由未知量。
通过引入矩阵秩的概念,解决了线性方程组有解的判定问题;引入矩阵及矩阵的行(列)初等变换概念,使线性方程组与矩阵(增广矩阵)一一对应,将线性方程组的初等变换抽象为矩阵的行初等变换。
线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解方程组的过程也表现为变换这些矩阵的过程.从而用矩阵来研究线性方程组使得问题变得简单明了。
3 矩阵是化简二次型的“好帮手”
总之,矩阵理论在线性代数中具有重要的作用,对线性代数的学习有不可忽视的指导作用。
我们从对矩阵理论的认识和矩阵理论与线性代数的联系来论述了矩阵理论的重要作用。
不仅加深了对矩阵理论的认识与掌握,而且得到了用矩阵理论来解决相关问题的重要方法和一般步骤。
矩阵理论不仅在线性代数中有重要的作用,还在图论、统计学和经济等许多科学中有重要作用。
矩阵理论中的许多思想和方法极大地丰富了数学的代数理论。
随着人们对科学研究的深入,矩阵理论的应用愈来愈广,作用越来越突出,矩阵理论自身的发展将会更加完善。
矩阵的其它理论在线性代数中的作用将有待于进一步来研究。
参考文献
[1] 胡金得,王飞燕.线性代数辅导(第三版)[M].北京:清华大学出版社,2003.
[2] 邓勇.矩阵:线性代数的重要工具[J].思茅师范高等专科学校学报,2005(3):55-56.
[3] 朱仁先.关于矩阵若干问题的探讨[J].滁州学院学报,2005(3):111-113.
[4] 北京大学数学系几何与代数教研室高等代数[M].北京:高等教育出版社,2003.
[5] 胡金得,王飞燕.线性代数辅导(第三版)[M].北京:清华大学出版社,2003.
线性代数中矩阵的应用【2】
摘 要:伴随着社会经济的快速发展,信息技术的进步,数学应用领域也得到了扩展,已从传统物理领域扩展至非物理领域,于当前现代化管理、高科技的发展以及生产力水平的提升中有着非常重要的作用。
下面笔者就线性代数中矩阵的应用进行研究,借助于关于矩阵应用的典型案例来分析,以加深人们对矩阵应用领域的认识。
关键词:代数 应用 线性 矩阵
线性代数作为数学分支之一,是一门重要的学科。
在线性代数的研究中,对矩阵所实施的研究最多,矩阵为一个数表,该数表能变换,形成为新数表,简而言之就是若抽象出某一种变化规律,可借助于代数理论知识来对所研究的`这一数表实施变换,以此获得所需结论。
近年来,随着社会经济发展速度的加快,科学技术水平的提高,线形代数中矩阵的应用领域也变得更为广泛,本文就线性代数中矩阵的应用进行详细地阐述。
1 矩阵在量纲化分析法中的应用
大部分物理量均有量纲,其主要分为两种,即基本量纲与导出量纲,其中基本量纲有社会长度L、时间T以及质量M,其他量均为导出量。
基于量纲一致这一原则,等号两端的各变量能构建一个相应的线性方程组,经矩阵变换来解决各量之间所存关系。
比如勾股定理证明,假设某RT△斜边长是c,两直角边长各为a和b,在此如果选△面积s,斜边c,两锐角a和β为需研究变量,则必定有以下关系,即,该公式中所存量纲有四个,其中有三个为基本量纲,则必然有一个量为无量纲,把上述量纲列成为矩阵,所获矩阵图形如,其中每一列表示一个变量量纲数据。
基于该矩阵,所获解线性方程为,综合上述方程可得解,即x11为2,x21为0,x31为0,因此,可得关系式,该公式中λ表示唯一需明确的无量纲量,从该公式可知RT△面积和斜边c平方之间成比例。
在此,于该三角形斜边做一高,把其划分为两个形似三角形,其面积各为s1与s2,此时,原RT△的边长a和b则是两个相似小三角形的斜边。
通过上述内容可知所获原理和结论相似,则有s1=λa2与s2=λb2,因s1+s2=s,对此,基于此,可证明勾股定理,即为。
由于量纲分析在运算上所涉及到的内容仅有代数,对此,若进行的试验十分昂贵,一般在实验前,人们倾向于事先在不同的假设下构建若干的相似模型,接着择优选择来进行实验。
从侧面上来讲,这种方法对于部分常数还起到一定的压缩或者恢复的作用。
2 矩阵在生产总值和城乡人口流动分析中的应用
2.1 生产总值
3 结语
综上所述,经线性代数中矩阵在不同领域中应用案例的分析可知,矩阵所具潜能非常的大,伴随着信息技术水平的提高,网络技术的进步,矩阵的应用也会更加深入。
由于各学科间、各行业之间的交叉变得越来越频繁,且界限也变得越来越模糊,在这种形势下,数学这门学科所具基础性也更为明显,对此,在学科研究与行业研究中融入数学,不仅可使研究更加具有说服力,同时还可使研究变得更为简洁,获得更为合理且科学的研究成果。
参考文献
[1] 侯祥林,张宁,徐厚生,等.基于动态设计变量优化方法的代数黎卡提方程算法与应用[J].沈阳建筑大学学报:自然科学版,2010,26(3):609-612.
[2] 黄玉梅,彭涛.线性代数中矩阵的应用典型案例[J].兰州大学学报:自然科学版,2009,45(Z1):123-125.
[3] 殷婷,王杰.多机系统Hamilton实现的Hessian矩阵正定判定与应用[J].电力系统保护与控制,2013(23):16-22.
[4] 朱瑞可,李兴源,赵睿,等.矩阵束算法在同步电机参数辨识中的应用[J].电力系统自动化,2012,36(6):52-55,84.
一般而言,所谓矩阵就是由一组数的全体,在括号()内排列成m行n列(横的称行,纵的称列)的一个数表,并称它为m*n矩阵。矩阵通常是用大写字母A,B…等表示。
《线性代数》教学的一些思考中华硕博网 2009年02月13日 点击数: 1 来源:中国论文下载中心中华硕博网核心提示: [摘要]《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与熟悉,提出《线性代数》教学抽象概念的[摘要]《线性代数》是工科高校中颇为重要的一门课,也是较抽象难学的一门课程。本文从理论与实践两方面以作者的体会与熟悉,提出《线性代数》教学抽象概念的讲解应注重的几点问题,阐释了如何进行《线性代数》课程的课堂教学,并且能收到良好的教学效果。[关键词]线性代数数学概念教学方法《线性代数》是高等院校理、工类专业重要的数学基础课。它不但广泛应用于概率统计、微分方程、控制理论等数学分支,而且其知识已渗透到自然科学的其它学科,如工程技术、经济与社会科学等领域。不仅如此,这门课程对提高学生的数学素养、练习与提高学生的抽象思维能力与逻辑推理能力都有重要作用。但由于“线性代数”本身的特点,对其内容学生感到比较抽象,要深入理解与把握代数的基本概念与基本理论学生感到相当吃力、难以理解。因此,为培养与提高学生应用数学知识、解决实际问题的能力,进一步研究这门课程的教学思想和方法对提高教学效果甚为重要。一、加强基本概念的教与学线性代数这一抽象的数学理论和方法体系是由一系列基本概念构成的。行列式、矩阵、逆矩阵、初等矩阵、转置、线性表示、线性相关、特征值与特征向量等抽象概念根植于客观的现实世界,有着深刻的实际背景,即是比较直接抽象的产物。高等数学与初等数学在含义与思维模式上的变化必然会在教学中有所反映。线性代数作为中学代数的继续与提高,与其有着很大不同,这不仅表现在内容上,更重要的是表现在研究的观点和方法上。在研究过程中一再体现由具体事物抽象出一般的概念,再以一般概念回到具体事物去的辨证观点和严格的逻辑推理。新生刚进入大学,其思维方式很难从初等数学的那种直观、简洁的方法上升到线性代数抽象复杂的方式,故思维方式在短期内很难达到线性代数的要求。大部分同学习惯于传统的公式,用公式套题,不习惯于理解定理的实质,用一些已知的定理、性质及结论来推理、解题等。在概念的教学中,教师要研究概念的熟悉过程的特点和规律性,根据学生的熟悉能力发展的规律来选择适当的教学方式。因此,在概念教学中应注重以下几点。1。合理借助概念的直观性尽管抽象性是《线性代数》这门课的突出特点,直观性教学同样可应用到这门课的教学上,且在教学中占有重要地位。欧拉认为:“数学这门科学,需要观察,也需要实验,模型和图形的广泛应用就是这样的例子。”直观有助于概念的引入和形成。如介绍向量的概念,尽管抽象,但它具有几何直观背景,在二维空间、三维空间中,向量都是有向线段,由此教学中可从向量的几何定义出发讲解抽象到现有形式的过程,降低学生抽象思考的难度。2。充分利用概念的实际背景和学生的经验教师在教学中应充分利用学生已有的数学现实和生活经验,引导和启发学生进行概念发现和创造。如在讲解n阶行列式,首先从学生已把握的二元、三元一次方程组的求解入手,然后求出方程组的解由二阶、三阶行列式表示,分析二阶、三阶行列式的特点。二阶行列式,不难看出:它含有两项,若不考虑符号,每项均是来自不同行不同列的两个元素的乘积,那么会提出这样的问题:右边各项之前所带的正负号有什么规律?同样的,三阶行列式若不考虑符号,它含有3!=6项,每项也是来自不同行不同列的三个元素的乘积,并且包含了所有由不同行不同列的三个元素的组合。为解决n阶行列式,又引出排列的概念、性质,介绍奇偶排列后,又回到我们提出的问题上,可以发现,行标按自然排列,列标排列为奇排列时,该项为负;列标排列为偶排列时,该项为正(问题得到解决)。经过这一过程,学生对n阶行列式已有接触和了解,此时可给出n阶行列式定义,这样一来,学生就轻易理解和把握n阶行列式的性质了。3。注重概念体系的建立R。斯根普指出:“个别的概念一定要融入与其它概念合成的概念结构中才有效用。”数学中的概念往往不是孤立的,理解概念间的联系既能促进新概念的引入,也有助于接近已学过概念的本质及整个概念体系的建立。如矩阵的秩与向量组的秩的联系:矩阵的秩等于它的行向量组的秩,也等于它的列向量组的秩;矩阵行(列)满秩,与向量组的线性相关和线性无关也有一定的联系。二、学生要把握科学的学习方法学习重在理解,学生必须在理解、领悟其深刻含义的基础上记忆定义、定理及一些结论,才能收到理想的效果。线性代数的最大特点就是:知识体系是一环扣一环,环环相连的。前面的知识是后面学习的基础,如用初等变换求矩阵的秩熟练与否,直接影响求向量组的秩及极大无关组,进一步影响到求由向量组生成的向量空间的基与维数;又如求解线性方程组的通解熟练与否,会影响到后面特征向量的求解,以及利用正交变换将二次型化为标准型等。因此,学习线性代数,一定要坚持温故而知新的学习方法,及时复习巩固,为此,教师课前的知识回顾以及学生提前预习是十分必要的。三、加强对学生解题的基本练习一定量的典型练习题能有助于学生深化对所学知识的理解,培养学生一题多解的能力,解题后反思,及时总结解题思路和方法。如证实抽象矩阵的可逆,就有很多方法,一是用定义。二是用秩的有关命题。三是借助于特征值理论。四是证实矩阵的行列式不为零等。四、培养与激发学生的学习爱好爱好是最好的老师。教师一方面在传授知识,另一方面要鼓励学生有针对性的设计他们的目标,这样,他们才肯自觉钻研,乐于钻研。同时,课堂教学中可选择近年来研究生入学考题及一些与实际联系较紧的题目讲解或练习,以激发学生的学习欲望,并给他们带来成功的满足。此外,还可以适当介绍一些有趣的应用典范或教学史来激发学生的学习热情,提高他们的学习爱好。五、发挥多媒体优势,增强教学效果多媒体教学成为当前高校教学模式的重要手段。教师只有把传统教学手段、教师自己的特色和多媒体辅助教学三者有机结合起来,才能真正发挥多媒体课堂教学的效果。总之,教师在教学中所做的一切,其目的应在于既教会他们有用的知识,又教会学生有益的思考方式及良好的思维习惯。参考文献:[1]张向阳.线性代数教学中的几点体会.山西财经大学学报(高等教育版),2006。[2]于朝霞.线性代数与空间解析几何.北京:中国科学技术出版社,2003。
[1] 北京大学数学系几何与代数教研代数小组 编《高等代数》(第二版)北京高等出版社,1988[2] 熊廷煌 主编《高等代数简明教程》武汉湖北教育出版社,1987[3] 霍元极 主编《高等代数》北京师范大学出版社,1988[4] 丘维声 主编《高等代数》(上册)高等教育出版社,1996[5] 关治,陈精良《数学计算方法》北京清华大学出版社,1990[6] 邓建中,刘之行 《计算方法》西安交通大学出版社,2001[7] 张元达 《线性代数原理》上海教育出版社,1980[8] 蒋尔雄,等《线性代数》人民教育出版社,1978
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
矩阵的秩一般有2种方式定义1. 用向量组的秩定义矩阵的秩 = 行向量组的秩 = 列向量组的秩2. 用非零子式定义矩阵的秩等于矩阵的最高阶非零子式的阶单纯计算矩阵的秩时, 可用初等行变换把矩阵化成梯形梯矩阵中非零行数就是矩阵的秩
定义:矩阵的行向量组的秩称为矩阵的行秩,矩阵的列向量组的秩称为矩阵的列秩 引理:若齐次线性方程组 的系数矩阵 的行秩 则它有非零解 证明:定理:矩阵的行秩与列秩相等 证明:定理: 矩阵 的行列式为零 A的秩小于n 证明:推论:齐次线性方程组 有非零解的充要条件是它的系数矩阵 的行列式等于零 定义:在一个 矩阵A中任意选定k行和k列,位于这些选定的行和列的交点上的 个元素按原来的次序所组成的k级行列式称为A的一个k级子式 注: 定理:一矩阵的秩是r的充要条件为矩阵中有一个r级子式不为零,同时所有r+1级子式全为零 证明:注: 1.矩阵A的秩 r的充要条件为A有一个r级子式不为零 2.矩阵A的秩 r的充要条件为A的所有r+1级子式全为零 3.在秩为r的矩阵中,不为零的r级子式所在的行正是它行向量组的一个极大线性无关组,所在的列正是它列向量组的一个极大线性无关组 注:初等行变换初等列变换不改变矩阵的秩 阶梯形矩阵的秩就等于其中非零行的数目 证明:其中
设新组的秩是p,将新组的极大线性无关组扩充为整个组的极大线性无关组必须添r-p个向量,添加的向量不能从新组中取,只能从s-m个在新组的向量中取,故s-m大于或等于r-p,由此可得求证的不等式。
如果 m <= s-r则 r+m-s <=0结论自然成立若 m>s-r则取到的向量中至少含有 m-(s-r) 个线性无关的向量即取出的向量组的秩≥r+m-s
高数学习应该按照这些套路来。
课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。
至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。
当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。
数学中的无穷以潜无穷和实无穷两种形式出现。
在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。
数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
以上内容参考 百度百科-高等数学
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。1.2.1 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。
黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。数学很有用学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53 满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。
1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。
线性代数是高等代数的一大分支.我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数.在线性代数中最重要的内容就是行列式和矩阵.行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章.向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情.向量用于梯度 , 散度 , 旋度就更有说服力.同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情).因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙.然而已经证明这两个概念是数学物理上高度有用的工具. 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的. 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行列式的概念和它的展开已经有了清楚的叙述.欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) . 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则). 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了.对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件. Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人.并且给出了一条法则,用二阶子式和它们的余子式来展开行列式.就对行列式本身进行研究这一点而言,他是这门理论的奠基人. Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名. 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论.另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理.相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的.拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法.为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件.这个条件就是今天所谓的正、负的定义.尽管拉格朗日没有明确地提出利用矩阵. 高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题.(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学.)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统.在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学.而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中.许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当. 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义.二者要在大约同一时间和同一地点相遇. 1848 年英格兰的 J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数. 1855 年矩阵代数得到了 Arthur Cayley 的工作培育. Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积.他还进一步研究了那些包括矩阵逆在内的代数问题.著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的.利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的.在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系. 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义.第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre ) 一 书中提出的. (1844) .他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵.在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述.其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量.我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的. 矩阵的发展是与线性变换密切相连的.到 19 世纪它还仅占线性变换理论形成中有限的空间.现代向量空间的定义是由 Peano 于 1888 年提出的.二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面. 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决.于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础. 源自 上海交大