在线性代数中,正交变换是线性变换的一种,它从实内积空间V映射到V自身,且保证变换前后内积不变。
原因:
因为向量的模长与夹角都是用内积定义的,所以正交变换前后一对向量各自的模长和它们的夹角都不变。特别地,标准正交基经正交变换后仍为标准正交基。
在有限维空间中,正交变换在标准正交基下的矩阵表示为正交矩阵,其所有行和所有列也都各自构成V的一组标准正交基。因为正交矩阵的行列式只可能为+1或−1,故正交变换的行列式为+1或−1。
行列式为+1和−1的正交变换分别称为第一类的(对应旋转变换)和第二类的(对应瑕旋转变换)。可见,欧几里得空间中的正交变换只包含旋转、反射及它们的组合(即瑕旋转)。
正交变换的性质:
1、正交变换不会改变向量间的正交性,如果 和 正交,则 和 亦为正交。
2、如果 和皆为正交矩阵,则 亦为正交矩阵。
3、如果为正交矩阵, 的反矩阵 亦为正交矩阵。
4、正交变换容易做反运算。
5、对于正交变换,如果 和 可以做内积, 和 做内积之值等于 和 做内积之值。
参考资料:百度百科-正交变换
您好,正交变换是线性代数中的一个重要概念,指的是保持向量长度和夹角不变的线性变换。正交变换在许多领域中都有广泛的应用,如计算机图形学、物理学、工程学等。研究正交变换等价条件是一项重要的任务,可以帮助我们更好地理解正交变换的性质和应用。目前,正交变换等价条件的研究已经取得了一定的进展。其中,最基本的等价条件是矩阵的转置和逆矩阵相等。此外,还有许多其他的等价条件,如行列式等于1、特征值为1或-1等。这些等价条件在不同的情况下有不同的适用性,需要根据具体的问题进行选择。近年来,随着深度学习和神经网络的发展,正交变换在图像处理和模式识别中的应用越来越广泛。因此,研究正交变换的等价条件对于深度学习和神经网络的发展也具有重要的意义。一些研究者提出了基于正交变换的神经网络模型,利用正交变换来提高网络的鲁棒性和泛化能力。总之,正交变换等价条件的研究是一项具有重要意义的任务,可以帮助我们更好地理解正交变换的性质和应用。随着深度学习和神经网络的发展,正交变换在图像处理和模式识别中的应用也将越来越广泛。
1.正交变换x=Py:指矩阵P是正交矩阵,即P的列(行)向量两两正交,且长度为1。正交矩阵满足:P^TP=PP^T=E,即P^(-1)=P^T.2.正交变换的作用:①正交变换可以化二次型为标准型。在二次型中,我们希望找到一个可逆矩阵C,经可逆变换x=Cy,使二次型f=x^TAx=(Cy)^TACy=y^T(C^TAC)y变成标准型,也就是要使C^TAC为对角阵。由实对称矩阵的对角化知,任给对称阵A,总有正交矩阵P,使P^(-1)AP为对角阵,因为正交矩阵P^(-1)=P^T,所以P^TAP为对角阵。这样,如果我用的是正交变换x=Py,不就可以把二次型f=x^TAx化为f=y^T(P^TAP)y=y^T(P^(-1)AP)y=y^TΛy (其中,Λ为对角阵)了吗。如此一来,就用正交变换实现了二次型的标准化。这是正交变换的第一个作用。②正交变换可以研究图形的几何性质。因为正交矩阵满足:P^TP=PP^T=E,所以对于正交变换x=Py,有|x|=√(x^Tx)=√(y^TP^TPy)=√(y^Ty)=|y|.其中,|x|表示向量x的长度。由此可见,经过正交变换后,|x|=|y|,即向量长度保持不变。同理可证
正交变换等价条件是指,如果两个矩阵通过正交变换可以互相转换,那么它们等价。这个问题在数学和计算机科学中都有重要的应用,比如计算机视觉、自然语言处理、图像处理等领域中的特征提取和匹配等问题。目前,正交变换等价条件的研究已经有了一些重要的进展。以下是一些专家的研究成果:1. Elad and Kimmel(2001):研究了包括旋转、平移、倍长和缩短等正交变换在内的多种情况下,两个矩阵等价的充分必要条件,并给出了相应的判别式。2. Seung et al.(2002):提出了一种基于主成分分析(PCA)和最小二乘法的方法,用于解决高维数据中的正交变换等价性问题。3. Zhang et al.(2004):提出了一种新的正交变换等价性判别方法,该方法采用奇异值分解(SVD)来求解一个满足单射和齐次性的变换矩阵。这些研究成果丰富了我们对正交变换等价条件的理解,并为相关领域中的实际问题提供了有力的解决方法。
要看出与内积的联系,考虑在n维实数内积空间中的关于正交基写出的向量v。v的长度的平方是vv。如果矩阵形式为Qv的线性变换保持了向量长度,则所以有限维线性等距同构,比如旋转、反射和它们的组合,都产生正交矩阵。反过来也成立: 正交矩阵蕴涵了正交变换。但是,线性代数包括了在既不是有限维的也不是同样维度的空间之间的正交变换,它们没有等价的正交矩阵。有多种原由使正交矩阵对理论和实践是重要的。n×n正交矩阵形成了一个群,即指示为O(n) 的正交群,它和它的子群广泛的用在数学和物理科学中。例如,分子的点群是O(3) 的子群。因为浮点版本的正交矩阵有有利的性质,它们是字数值线性代数中很多算法比如QR分解的关键,通过适当的规范化,离散余弦变换(用于MP3压缩)可用正交矩阵表示。
正交矩阵方程AX = B的解决方案,问度娘就好了。
初等变换:1)交换矩阵的两行(列);2)用一个不为零的数乘矩阵的某一行(列);3)用一个数乘矩阵某一行(列)加到另一行(列)上。利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系等。例:
如果你感觉开题报告的格式太复杂,不想浪费太多的时间在格式上面,但是还必须要符合学校要求的标准格式,建议试一下求道无忧论文系统,3分钟搞定开题报告格式,输出标准的开题报告格式,把更多的精力放在开题报告内容上。
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠
证明如下:
初等矩阵是指由单位矩阵经过一次三种矩阵初等变换得到的矩阵。初等矩阵的模样可以写一个3阶或者4阶的单位矩阵。初等矩阵都可逆,其次,初等矩阵的逆矩阵其实是一个同类型的初等矩阵(可看作逆变换)。
扩展资料:
初等矩阵的应用:
1、在解线性方程组中的应用
初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。
2、用于求解一个矩阵的逆矩阵
有的时候,当矩阵的阶数比较高的时候,使用其行列式的值和伴随矩阵求解其逆矩阵会产生较大的计算量。这时,通常使用将原矩阵和相同行数(也等于列数)的单位矩阵并排,再使用初等变换的方法将这个并排矩阵的左边化为单位矩阵,这时,右边的矩阵即为原矩阵的逆矩阵。
同济的线性代数5版中有证明
开题报告写法:
1、明白开题报告的含义与作用:开题报告是在学位论文研究课题确定之后对课题进行的论证和设计,阐述这个课题有什么价值、应该怎样进行研究,提出研究方案,以保证整个研究工作有条不紊地进行。也就是说,确定了的开题报告是研究工作的行动指南,尽管可以随时修正,但不能随意推翻。
2、开展充分的调查研究工作:开题报告不是凭空写出来的,动笔写之前要做到大量的工作,包括广泛地阅读文献,熟悉导师或师兄师姐做过的工作,落实实验室工作条件,摸清楚研究对象基本情况。
3、认清开题活动的作用:开题活动是集思广益的学术交流,其作用是从同行那里获取更多有益的帮助。通过开题活动,让更多同行——导师以外的其他老师,课题组以外的其他同学——在短时间里听懂、看懂自己要做什么,并给予具体的建议。自己的开题报告写得不清晰,同行不知从何帮助,开题活动也就沦为走过场。
注意事项:
题目就是文章的眼睛,要明亮而有神,是论文研究内容的高度概括,是整篇论文的研讨中心,题目就是告诉别人你要干什么或解决什么问题。
因此,论文题目要注意以下几方面:题目应当精练并完整表达文章的本意,但切忌简单的罗列现象或者陈述事实。
文章题目不宜使用公文式的标题;文章题目要体现研究的侧重点,要呈现研究对象以及要解决的问题(也就是研究的对象和研究内容一定要在题目呈现);论文题目要新颖、简洁,字数最好不超过20个字,如果确因研究需要,就采用主副标题。
1 相关定义 定义1 设A∈,若对≠ x∈,都有AX > 0,则称A为正定矩阵,记为A∈. 记={A|≠ x∈,使AX > 0}. 定义2设A∈,如果对≠X∈,都有正对角矩阵D=> 0,使得AX > 0,则称A为广义正定矩阵,记为A∈,若D=与x无关,则记为A∈。记={A∈|≠X]正对角矩阵D,使DAX > 0}.定义3 设A∈,若=A,对≠ x∈ ,都有AX > 0,则称A为实对称正定矩阵,记为A ∈ S+. 记={A∈|≠x,=A,使AX > 0}.定义4 设A∈,如果对≠X,都有S=∈使得DAX > 0,则称A为广义正定矩阵,记为A∈,若S=与x无关,则记为A∈.记={A∈|≠X,S=,使DAX > 0}.定义5设A∈,如果对≠ X∈,都有S=.s+,使得AX > 0,则称A为广义正定矩阵,记为A∈.若S=与x无关,则记为A∈
开题报告怎么写如下:
一、论文拟研究解决的问题
明确提出论文所要解决的具体学术问题,也就是论文拟定的创新点。明确指出国内外文献就这一问题已经提出的观点、结论、解决方法、阶段性成果。评述上述文献研究成果的不足。提出你的论文准备论证的观点或解决方法,简述初步理由。
你的观点或方法正是需要通过论文研究撰写所要论证的核心内容,提出和论证它是论文的目的和任务,因而并不是定论,研究中可能推翻,也可能得不出结果。
开题报告的目的就是要请专家帮助判断你所提出的问题是否值得研究,你准备论证的观点方法是否能够研究出来。一般提出3或4个问题,可以是一个大问题下的几个子问题,也可以是几个并行的相关问题。
二、国内外研究现状
内容要求:列举与论文拟研究解决的问题密切相关的前沿文献。基于“论文拟研究解决的问题”提出,允许有部分内容重复。只简单评述与论文拟研究解决的问题密切相关的前沿文献,其他相关文献评述则在文献综述中评述。
三、论文研究的目的与意义
简介论文所研究问题的基本概念和背景。简单明了地指出论文所要研究解决的具体问题。简单阐述如果解决上述问题在学术上的推进或作用。基于论文拟研究解决的问题提出,允许有所重复。
四、论文研究主要内容
容要求:初步提出整个论文的写作大纲或内容结构。由此更能理解“论文拟研究解决的问题”不同于论文主要内容,而是论文的目的与核心。
论文开题报告模板!直接套用!
每一个内容都有参考句式,把自己的研究内容往上套即可。
1. 论题的背景及意义
例:...研究有利于全面...的特点,可以丰富现...的研究。
这一...研究可以弥补......研究的不足,深化与之密切相关......的研究......研究。
......角度进行研究,运用相关的......理论分析...问题,突破传统的......的角度去研......的模式,使......的研究能从一个新的角度获得解决方法。
2. 国内外研究现状
例:......在国际的研究现状;......国内的研究现春仔袭状。
文献评述(把上面的国内外的研扒兄究现状总结一下即可)
3. 研究目标、研究内容和拟解决的问题
A研究目标与内容
例:
本文拟......分析......分析两部分。首先对......情况重新审视,深入分析......,然后与其相关的......进行异同比较,最后归纳......的类型,并得......启示。本文的研究重戚裂点是.....情况
B拟解决的问题
例:
根据对......的现有研究成果,在全面考察的......情况下,结合......综合考虑......因素,以确定......
绘制相应的......模型后,通过实验结论证实其......的有效性和合理性。
4. 研究方法
例:
文春仔袭献研究法:通过图书馆、互联网、电子资源数据库等途径查阅大量文献,理解......等相关知识,理清......的发展脉络及研究现状,学习......有关理论,获取......等相关数据信息,为设计......提供思路和参照。
实验研究法:通过设计......选取......,进行数据分析,考察.......。
统计分析法:运用......数据分析软件,采用拍冲人工操作和计算机统计向结合的方法,进行定扒兄性与定量分析。经过人工和计算机校对筛选出所有合乎要求的信息,在定量研究春仔袭的基础上进行定性分析。
5. 创新之处和袭乎歼预期成果
例:
通过与戚裂现......技术的结合,使扒兄用......软件设计模型,......运用到......方面提春仔袭供新的视角。
6. 进度计划(根据自己院校顷凳修改相应时间扒兄即可)
例:
2020年10月中旬-2020年11月底确定论文选题,完成开题报告及答辩。
2020年12月初-2021年1月底撰写论文大纲完成论文前X章
2021年2月初-2021年2月底撰写论文后X章,完成初稿。
2021年3月初-20213月底交导戚裂师审批修改,完成二稿。
2021年4月初-2021年4月底进一步修改格式,完成三稿。
2021年5月初-2021年5月中旬查重定稿,装订成册及论文答辩准备。
7. 已取得的研究工作成绩
例:
已积累了一定的相关文献,初步研读了其中的大部分文献扒兄,并将其分类春仔袭以方便日后查阅参考,基本完成了本研究的准备工作。
8. 已具备的研究条件、尚缺少的研究条件和拟解决的途径
已具备的研究条件
例:
已经查阅到相关的论文和著作,并且研读了其的大部分文献,理清了论文的基本思路。
尚缺少的研究条件
例:
由......的使用权限有限,使得搜集到......不多,关......的搜集比较困难。
对......的理论知识的掌握还不够,自己......理论素养还不够深厚。
拟解决的途戚裂径
例:
利用图书馆的文献传戚裂递功能,向其他高校图书馆求助,同时向老师和前辈寻求帮助。
完毕!