wangweil0726
在线性代数中,正交变换是线性变换的一种,它从实内积空间V映射到V自身,且保证变换前后内积不变。
原因:
因为向量的模长与夹角都是用内积定义的,所以正交变换前后一对向量各自的模长和它们的夹角都不变。特别地,标准正交基经正交变换后仍为标准正交基。
在有限维空间中,正交变换在标准正交基下的矩阵表示为正交矩阵,其所有行和所有列也都各自构成V的一组标准正交基。因为正交矩阵的行列式只可能为+1或−1,故正交变换的行列式为+1或−1。
行列式为+1和−1的正交变换分别称为第一类的(对应旋转变换)和第二类的(对应瑕旋转变换)。可见,欧几里得空间中的正交变换只包含旋转、反射及它们的组合(即瑕旋转)。
正交变换的性质:
1、正交变换不会改变向量间的正交性,如果 和 正交,则 和 亦为正交。
2、如果 和皆为正交矩阵,则 亦为正交矩阵。
3、如果为正交矩阵, 的反矩阵 亦为正交矩阵。
4、正交变换容易做反运算。
5、对于正交变换,如果 和 可以做内积, 和 做内积之值等于 和 做内积之值。
参考资料:百度百科-正交变换
韩食小神厨
您好,正交变换是线性代数中的一个重要概念,指的是保持向量长度和夹角不变的线性变换。正交变换在许多领域中都有广泛的应用,如计算机图形学、物理学、工程学等。研究正交变换等价条件是一项重要的任务,可以帮助我们更好地理解正交变换的性质和应用。目前,正交变换等价条件的研究已经取得了一定的进展。其中,最基本的等价条件是矩阵的转置和逆矩阵相等。此外,还有许多其他的等价条件,如行列式等于1、特征值为1或-1等。这些等价条件在不同的情况下有不同的适用性,需要根据具体的问题进行选择。近年来,随着深度学习和神经网络的发展,正交变换在图像处理和模式识别中的应用越来越广泛。因此,研究正交变换的等价条件对于深度学习和神经网络的发展也具有重要的意义。一些研究者提出了基于正交变换的神经网络模型,利用正交变换来提高网络的鲁棒性和泛化能力。总之,正交变换等价条件的研究是一项具有重要意义的任务,可以帮助我们更好地理解正交变换的性质和应用。随着深度学习和神经网络的发展,正交变换在图像处理和模式识别中的应用也将越来越广泛。
兔了里个酱酱
1.正交变换x=Py:指矩阵P是正交矩阵,即P的列(行)向量两两正交,且长度为1。正交矩阵满足:P^TP=PP^T=E,即P^(-1)=P^T.2.正交变换的作用:①正交变换可以化二次型为标准型。在二次型中,我们希望找到一个可逆矩阵C,经可逆变换x=Cy,使二次型f=x^TAx=(Cy)^TACy=y^T(C^TAC)y变成标准型,也就是要使C^TAC为对角阵。由实对称矩阵的对角化知,任给对称阵A,总有正交矩阵P,使P^(-1)AP为对角阵,因为正交矩阵P^(-1)=P^T,所以P^TAP为对角阵。这样,如果我用的是正交变换x=Py,不就可以把二次型f=x^TAx化为f=y^T(P^TAP)y=y^T(P^(-1)AP)y=y^TΛy (其中,Λ为对角阵)了吗。如此一来,就用正交变换实现了二次型的标准化。这是正交变换的第一个作用。②正交变换可以研究图形的几何性质。因为正交矩阵满足:P^TP=PP^T=E,所以对于正交变换x=Py,有|x|=√(x^Tx)=√(y^TP^TPy)=√(y^Ty)=|y|.其中,|x|表示向量x的长度。由此可见,经过正交变换后,|x|=|y|,即向量长度保持不变。同理可证
nono521521
正交变换等价条件是指,如果两个矩阵通过正交变换可以互相转换,那么它们等价。这个问题在数学和计算机科学中都有重要的应用,比如计算机视觉、自然语言处理、图像处理等领域中的特征提取和匹配等问题。目前,正交变换等价条件的研究已经有了一些重要的进展。以下是一些专家的研究成果:1. Elad and Kimmel(2001):研究了包括旋转、平移、倍长和缩短等正交变换在内的多种情况下,两个矩阵等价的充分必要条件,并给出了相应的判别式。2. Seung et al.(2002):提出了一种基于主成分分析(PCA)和最小二乘法的方法,用于解决高维数据中的正交变换等价性问题。3. Zhang et al.(2004):提出了一种新的正交变换等价性判别方法,该方法采用奇异值分解(SVD)来求解一个满足单射和齐次性的变换矩阵。这些研究成果丰富了我们对正交变换等价条件的理解,并为相关领域中的实际问题提供了有力的解决方法。
在线性代数中,正交变换是线性变换的一种,它从实内积空间V映射到V自身,且保证变换前后内积不变。 原因: 因为向量的模长与夹角都是用内积定义的,所以正交变换前后一
不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了
亲,。。。。这个我能按照要求来
分块矩阵,求解!授人予鱼不如授人予渔,在《线性代数》的学习中,方法尤为重要。下面就让我们一起解决《线性代数》中令人头痛的——矩阵分块法吧!如果您对——矩阵分块法
这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。