首页 > 学术发表知识库 > 直流稳压电路毕业论文参考文献

直流稳压电路毕业论文参考文献

发布时间:

直流稳压电路毕业论文参考文献

直流稳压电源的毕业论文不算太难,去那个591论文网找几篇现成的拼凑一下就行。我论文就这么来的,然后还真就过了。。O(∩_∩)O~

集成直流稳压电源的设计 一、设计要求电源变压器只做理论设计,合理选择集成稳压器,合理设置保护电路,完成全电路理论设计、安装调试、绘制电路图,自制印刷板。主要技术指标1、同时输出±15V电压、输出电流为2A。2、输出纹波电压小于5mV,稳压系数小于5×10-3;输出内阻小于0.1Ω。3、加输出保护电路,最大输出电流不超过2A。二、基本原理1. 直流稳压电源的基本原理 直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如图1所示。各部分电路的作用如下:图1 直流稳压电源基本组成框图(1) 电源变压器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压ui。(2)整流滤波电路 整流电路将交流电压ui 变换成脉动的直流电压。再经滤波电路滤除纹波,输出直流电压Ui。常用的整流滤波电路有全波整流滤波、桥式整流滤波、倍压整流滤波电路如图(b)桥式整流电容滤波电路各滤波电容C满足:RL1C=(3~5)T/2式中T为输入交流信号周期;RL1为整流滤波电路的等效负载电阻。(3) 三端集成稳压器常用的集成稳压器有固定式三端稳压器与可调式三端稳压器(均属电压串联型),下面分别介绍其典型应用。① 固定三端稳集成压器正压系列:78XX系列,该系列稳压块有过流、过热和调整管安全工作区保护,以防过载而损坏。一般不需要外接元件即可工作,有时为改善性能也加少量元件。78XX系列又分三个子系列,即78XX、78MXX和78LXX。其差别只在输出电流和外形,78XX输出电流为1.5A,78MXX输出电流为0.5A,78LXX输出电流为0.1A。负压系列:79XX系列与78XX系列相比,除了输出电压极性、引脚定义不同外,其他特点都相同。② 可调式三端集成稳压器正压系列:W317系列稳压块能在输出电压为1.25V~37V的范围内连续可调,外接元件只需一个固定电阻和一只电位器。其芯片内有过流、过热和安全工作区保护。最大输出电流为1.5A。其典型电路如图7-2-4所示。其中电阻R1与电位器RP组成电压输出调节电器,输出电压U0的表达式为: U0≈1.25(1+RP/R1) 式中,R1一般取值为(120~240Ω),输出端与调整压差为稳压器的基准电压(典型值为1.25V)。所以流经电阻R1的泄放电流为5~10mA/。负压系列:W337系列,与W317系列相比,除了输出电压极性、引脚定义不同外,其他特点都相同。 图7-2-4 可调式三端稳压器的典型应用2. 稳压电源的性能指标及测试方法稳压电源的技术指标分为两种:一种是特性指标。包括允许的输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标。用来衡量输出直流电压的稳定程度。包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、温度系数及纹波电压等。测试电路如图7-2-6所示,可简述如下: 图7-2-6 稳压电源性能指标测试电路⑴ 波电压纹波电压是指叠加在输出电压U0上的交流分量。用示波器观测其峰-峰值。△Uopp一般为毫伏量级。也可以用交流电压表测量其有效值。但因△U0不是正弦波,所以用有效值衡量其纹波电压,存在一定误差。⑵稳压系数及电压调整率稳压系数:在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化。电压调整率:输入电压相对变化±10%时的输出电压相对变化量,即 Ku=△U0/U0稳压系数Su和电压调整率Ku均说明输入电压相对变化对输出电压的影响,因此只需测试其中之一即可.⑶输出电阻及电流调整率输出电阻:放大器的输出电阻相同,其值为当输入电压不变时,输出电压变化量与输出电流变化量之比的绝对值,即 ro=|△U0|/|I0|电流调整率:输出电流从0变到最大值ILmax时所产生的输出电压相对变化值,即 Ki=△U0/U0输出电阻r0和电流调整率Ki均说明负载电流变化对输出电压的影响,因此也只需测试其中之一即可.四.设计指导 直流稳压电源的一般设计思路为:由输出电压U0、电流I0确定稳压电路形式,通过计算极限参数(电压、电流和功率)选择器件;有稳压电路所要求的直流电压(Ui)、直流电流(Ii)输入确定整流滤波电路形式,选择整流二极管及滤波电容并确定变压器的副边电压Ui的有效值、电流Ii(有效值)即变压器功率.最后由电路的最大功耗工作条件确定稳压器、扩流功率管的散热措施. 下图为集成稳压电源的典型电路.其主要器件有变压器Tr、整流二极管VD1~VD4、滤波电容C、集成稳压器及测试用的负载电阻RL.图7-2-7 集成稳压电源的典型电路下面介绍这些器件的一般原则.1.集成稳压器稳压电路输入电压Ui的确定:为保证稳压器在电网量低时仍处于稳压状态,要求 UI≥Uomax +(UI-U0)min式中(UI-U0)min 是稳压器的最小输入输出压差,典型值为3V.按一般电源指标的要求,当输入交流电压220V变化±10%时,电源应稳压.所以稳压电路的最低输入电压 U1min≈[Uomax+(UI-U0)min]/0.9.另一方面,为保证稳压器安全工作,要求 UI≤Uomin +(UI-U0)max 式中(UI-U0)max是稳压器允许的最大输入输出压差,典型值为35V.2.电源变压器确定整流滤波电路形式后,由稳压器要求的最低输入直流电压Uimin计算出变压器的副边电压Ui 、副边电流Ii. 五.按指标设计电路图 1. 器件选择电路参数计算如下:⑴确定稳压电路的最低输入直流电压Uimin Uimin≈[Uomax+(Ui-U0)min]/0.9代入各指标,计算得: Uimin≥(15+3)/0.9=20V取值为20V.⑵确定电源变压器副边电压、电流及功率 Ui≥Uomax/1.1. I1≥Iimax所以我们取I1为1.1A.UI≥20/1.1=18.2V ,变压器副边功率P2≥20W变压器的效率 =0.7,则原边功率P1≥28.6W.由上分析,可选购副边电压为19V,输出1.1A,功率30W的变压器.⑶选整流二极管及滤波电容因电路形式为桥式整流电容滤波,通过每个整流哦极管的反峰电压和工作电流求出滤波电容值。已知整流二极管1N5401 ,其极限参数为URM=50V,ID=5A.滤波电容:C1≈(3~5)T×Iimax/2U1min=(1650~2750)μF故取2只2200μF/25V的电解电容作滤波电容。2.压电源功耗估算当输入交流电压增加10%时,稳压器输入直流电压最大,即 Uimax=1.1×1.1×19=22.99V所以稳压器承受的最大压差为:22.99-5≈18V最大功耗为:Uimax×Iimax=18×1.1=19.8W故选用散热功率≥19.8W的散热器.3.其他措施如果集成稳压器离滤波电容C1较远时,应在W317靠近输入端处接上一只0.33μF的旁电路C2。接在调整端和地之间的电容C3,是用来旁电路电位器RP两端的纹波电压。当C3的电容电量为10μF时,纹波抑制比可提高20dB,减到原来的1/10.另一方面,由于在电路中接了电容C3,此时一旦输入端或输出端发生短路,C3中储存的电荷会通过稳压器内部的调整管和基准放大管而损坏稳压器.为了防止在这种情况下C3的放电电流通过稳压器,在R1两端并接一只二极管VD2.W317集成稳压器在没有容性负载的情况下可以稳定的工作.但当输出端有500~5000pF的容性负载时,就容易发生自激.为了抑制自激,在输出端接一只1μF钽电容或25μF的铝电解电容C4.该电容还可以改善电源的瞬态响应.但是接上该电容后,集成稳压器的输入端一旦发生短路.C4将对稳压器的输出端放电,其放电电流可能损坏稳压器,故在稳压器的输入与输出端之间,接一只保护二极管VD1。六.电路安装与指标测试1.安装整流滤波电路 首先应在变压器的副边接入保险丝FU,以防电源输出端短路损坏变压器或其他器件,整流滤波电路主要检查整流二极管是否接反,否则会损坏变压器.检查无误后,通电测试(可用调压器逐渐将入交流电压升到220V),用滑线变阻器作等效负载,用示波器观察输出是否正常.2.安装稳压电路部分 集成稳压器要安装适当散热器,根据散热器安装的位置决定是否需要集成稳压器与散热器之间绝缘,输入端加直流电压UI(可用直流电源作输入,也可用调试好的整流滤波电路作输入),滑线变阻器作等效负载,调节电位器RP,输出电压应随之变化,说明稳压电路正常工作.注意检查在额定负载电流下稳压器的发热情况.3.总装及指标测试 将整流滤波电路与稳压电路相连接并接上等效负载,测量下列各值是否满足要求:① UI为最高值(电网电压为242V), U0为最小值(此例为+5V),测稳压器输入、输出端压差是否小于额定值,并检查散热器的温升是否满足要求(此时应使输出电流为最大负载电流).② UI为最低值(电网电压为198V), U0为最大值(此例为+15V)测稳压器输输出端压差是否大于3V,并检查输出稳压情况.如果上述结果符合设计要求,便可按照前面介绍的测试方法,进行质量指标测试.七、综合总结 通过本次设计,让我们更进一步的了解到直流稳压电源的工作原理以及它的要求和性能指标.也让我们认识到在此次设计电路中所存在的问题;而通过不断的努力去解决这些问题.在解决设计问题的同时自己也在其中有所收获.我们这次设计的这个直流稳压电源电路;采用了电压调整管(uA723)外加调整管(2SC3280)来实现电压的调整部分;还通过单片机(89C51)来实现电路的控制,也实现了扩充多功能;而稳流部分可调式三端稳压电源管来实现。 八、参考文献资料 ◆<<电子线路基础>>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社.。◆<<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社。◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社。图可能出不来,自己另外在百度上搜图。(我也是网上找的,修改了一下)

<电子技术课程设计>直流稳压电源课程设计任务书一:设计任务及要求:1. 设计任务设计一集成直流稳压电源,满足:(1)当输入电压在220V交流时,输出直流电压为6V。(2)输出纹波电压小于5mv,稳压系数<=0.01;(3)具有短路保护功能。(4) 最大输出电流为:Imax=1.0A;2.通过集成直流稳压电源的设计,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。(2)掌握直流稳压电源的调试及主要技术指标的测试方法。3.设计要求(1) 电源变压器只做选择性设计;(2) 合理选择集成稳压器;(3) 完成全电路理论设计、绘制电路图;(4)撰写设计报告。 目录一.设计任务及要求:二.基本原理与分析三.三端集成稳压器四.稳压电源的技术指标及对稳压电源的要求五.集成电路选用时应注意的问题六.参数性能指标及测试方法七.心得体会八.参考文献附:部分二、原理与分析1.直流稳压电源的基本原理直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如下。各部分的作用: (1)电源变压器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。(2)整流滤波电路:整流电路将交流电压Ui变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。 各滤波电容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。 (3)三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。常用可调式正压集成稳压器有CW317(LM317)系列,它们的输出电压从1.25V-37伏可调,最简的电路外接元件只需一个固定电阻和一只电位器。其芯片内有过渡、过热和安全工作区保护,最大输出电流为1.5A。其典型电路如图2,其中电阻R1与电位器R2组成输出电压调节器,输出电压Uo的表达式为:Uo=1.25(1+R2/R1)式中R1一般取120-240欧姆,输出端与调整端的压差为稳压器的基准电压(典型值为1.25V)。 2.稳压电流的性能指标及测试方法 稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。测试电路如图3。 图3 稳压电源性能指标测试电路(1) 纹波电压:叠加在输出电压上的交流电压分量。用示波器观测其峰峰值一般为毫伏量级。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差。(2)稳压系数:在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即:(3) 电压调整率:输入电压相对变化为±10%时的输出电压相对变化量,稳压系数和电压调整率均说明输入电压变化对输出电压的影响,因此只需测试其中之一即可。(4) 输出电阻及电流调整率输出电阻与放大器的输出电阻相同,其值为当输入电压不变时,输出电压变化量与输出电流变化量之比的绝对值.电流调整率:输出电流从0变到最大值时所产生的输出电压相对变化值。输出电阻和电流调整率均说明负载电流变化对输出电压的影响,因此也只需测试其中之一即可。直流稳压电源设计 (未经整理仅供参考) 直流稳压电源设计 一. 设计任务与设计的基本要求: (1).直流稳压电源的任务: 利用所学的知识设计并制作交流变换为直流的稳压电源. (2)直流稳压电源的基本要求: A.稳压电源 在输入电压为220V.50HZ. 电压变化范围为+10%~-10%条件下: a. 输出电压可调范围为:+9V~+12V; b. 最大输出电流为:Imax=1.5A; c. 电压调整率≤0.2%(输入电压220V变化范围+10%~-10%下,满载); d. 负载调整率≤2%(最低输入电压下,空载到满载); e. 纹波电压(峰-峰值) ≤5mV(最低输入电压下,满载); f. 效率≥40%(输出电压为+9V,输入电压为220V下,满载); g. 具有过流保护及短路保护功能; B. 稳流电源 在输入电压固定为直流+12V的条件下; a. 输出电流为:4~20mA可调; b. 负载调整率≤2%(输入电压+12V,负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率); C. DC-DC变换器 在输入电压为+9V~+12V条件下: a. 输出电压为+100V,输出电流为10mA; b. 电压调整率≤2%(输入电压变化范围+9V~+12V); c. 负载调整率≤2%(输入电压+12V下,空载到满载); d. 纹波电压(峰-峰值) ≤100mA(输入电压+9V下,满载); 注:以下是本电路的发挥部分: (1)扩充功能: a. 排除短路故障后,自动恢复为正常状态; b. 过热保护; c. 防止开, 关机时产生的”过冲”; (2)提高稳压电源的技术指标; a. 提高稳压调整率和负载调整率; b. 扩大输出电压调节范围和提高最大输出电流值. (3)改善DC-DC变换器的性能; a. 提高效率(在100V, 100mA下测试); b. 提高输出电压. (4)用数字显示输出电压和输出电流. 摘 要 本系统稳压电源部分采用电压调整器uA723外加调整管2SC3280实现此功能,再通过单片机MCS-51(89C51)来起控制电路,实现了扩充多种功能.稳流部分采用了三端稳压调整器LM317T实现.DC-DC变换器采用了两片PFM控制芯片MAX770来实现,使输出电压提高到+100V,输出电流最大可以达到100mA.电压调整,负载调整率及纹波电压均优于指标要求.可以说本系统比其它同类产品要好的多. 二.方案论证与比较 1.稳压电源部分 方案一:简单的并联型稳压电源; 并联型稳压电源的调整元件与负载并联,因而具有极低的输出电阻,动态特性好,电路简单,并具有自动保护功能;负载短路时调整管截止,可靠性高,但效率低,尤其是在小电流时调整管需承受很大的电流,损耗过大,因而不能采用此方案. 方案二:输出可调的开关电源; 开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护与过流保护,但是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因而也不能采用此方案. 方案三:由uA723组成的零伏起调电源; uA723内部设有高精度基准电压源和高增益的放大器,外围电路比较简单,电压稳定度也比较高,其典型电压调整率为0.01%,负载调整率为0.03%,且热稳定性好,输出噪声也很小,还内设有过电流控制电路,使用安全可靠,具有较高的性价比,为首选方案,所以此方案为必选题. 2.稳流电源部分 方案一: 采用7805三端稳压器电源; 固定式三端稳压电源(7805)是由输出脚Vo,输入脚Vi和接地脚GND组成,它的稳压值为+5V,它属于CW78xx系列的稳压器,输入端接电容可以进一步的滤波,输出端也要接电容可以改善负载的瞬间影响,此电路的稳定性也比较好,只是采用的电容必须要漏电流要小的钽电容,如果采用电解电容,则电容量要比其它的数值要增加10倍,但是它不可以调整输出的直流电源;所以此方案不易采用. 方案二:采用LM317可调式三端稳压器电源; LM317可调式三端稳压器电源能够连续输出可调的直流电压. 不过它只能连续可调的正电压,稳压器内部含有过流,过热保护电路;由一个电阻(R)和一个可变电位器(RP)组成电压输出调节电路,输出电压为:Vo=1.25(1+RP/R).由此可见此稳压器的性能和稳压稳定都比上一个三端稳压电源要好,所以此此方案可选,此电源就选用了LM317三端稳压电源,也就是方案二. 3.DC-DC变换部分; 方案一:用正弦信号(几十赫兹以下)驱动硅钢型互感耦合变压器,经整流滤波后输出.由于硅钢的磁滞特性,这种电源的开关频率不算高,易出现磁饱和,因而不利于制作高效率的开关电源. 方案二:采用高频磁芯和开关特性好的VMOS管的PFM或PWM型开关电源,负载调整特性好,效率高,性能优良,但制作调试复杂,所以此方案也不于采纳, 方案三:采用充电泵型变换器,该类电源以电容代替电感作贮能元件,为一个或多个电容供电.该类电源的最大特点是元件易得,体积小,电路比较简单,无电感;但由于对充电泵的要求严格,不适合于工作在大负载条件下,因而在大多数电源中没有被广泛使用. 综合考虑效率,输出功率,输入输出电压,负载调整率,纹波系数,本设计选用方案二.考虑到PWM对磁性元件,开关元件特性的要求较低,因而较易实现.对于效率和纹波的要求可以通过仔细调整磁性元件的参数(L,Q,M等)使其工作在最佳状态,所以我们在选择方案的时候考虑到电路要简单,元件要容易找,还有在电路设计的时候避免遇到某些不必要的问题,所以我们选择了上述的方案中的第二个方案;第二个方案就能够达到我们的要求,的所以方案二我们采用了,利用开关特性和负载调整特性好及效率高,性能优良,而采用了它.(方案二) 三.直流稳压电源电路的方框图如下: 220V电源部分---变压部分---整流滤波部分---稳压电源稳流电源部分---+9V^+12V直流稳压电源方框图 四.电路原理及各部的分离电路; 1.稳压电路部分; 采用精密电压调整器uA723,外加大功率调整管以提供大电流输出.uA723的特点如下: ①无外接调整管时最大输出电流为:I=150mA; ②外接调整管时,输出电流最大可达到12A以上; ③最大输入电压为:Vmax=40V; ④输出电压可调整范围为: +9V~+12V; 具体的电路图如下图所示: 电源变压器的效率如下所示:(小型变压器) 副边功率P2/vA <1010^30 30^80 80^200 效率 η 0.6 0.7 0.8 0.85由uA723的特性可知:要使电路实现零伏起调,uA723的7脚至少要获得-2V的附加电压,本方案不采用多抽头的变压器,该-2V电压可通过由电容C1,C2和二极管D1,D2组成的倍压电路获得.其输出电压由电阻R1和齐纳二极管Z1固定-5.6V ,使uA723中的差分放大器在输出电压为0时仍能工作,主要的正电压通过整流桥和滤波电容C3从变压器获得.uA723的供电电压由齐纳二极管Z2固定在33V,以防止超过其极限电压值(40V).由BG2,BG3组成的达林顿管将输出电流提高到超过1A的范围. 在12脚和3脚间加0.6V的电压可调节极限电流值,该电压是电阻R9和电位器VR3是压降的总和,VR3的压降是VR3的电阻值与晶体管三极管BG1的集电极电流值的乘积,极限电流值可以通过电位器VR3连续调节. 输出电压由电位器VR2进行线性调节,电位器VR1用于调节零输出电压. 本设计还通过单片来实现了短路过流保护,过热保护,具体的电路图如下:过热保护:温度开关KT一端通过一个上拉电阻接正电源,另一端接地,当温度过高时开关断开,产生一个零电平跳变送给单片来进行处理. 过流检测和短路保护原理:采用单片机MCS-51(89C51)对输出电流进行周期性的检测,可以方便地实现短路保护及短路故障排除后自恢复的所有功能.过流或短路时,检测电路向单片P1口发出报警信号,单片证实后启动它的保护电路,经过短时间延时后继续查询P1口上的内容,如无报警信号,则电路又恢复到正常状态. 过热保护,发声报警等功能也直接由单片机(89C51)来实现控制. 2.稳流电源部分; LM317是三端可调式正电压调整器,正常工作时在其调整端与输出端之间有一个高稳定度的1.25V电压,利用该电压即可以获得可调的电流输出.实际中, LM317输出端与电位器之间串接了一个10Ω/1W的电阻,使最大电流限制在125mA左右,以免发生过流现象. 具体的电路图如下所示: 3.DC-DC变换部分; DC-DC变换器的核心部件是两片升压开关调节器MAX770,MAX770结合了PFM低的吸取电流和PWM大功率应用下效率高的特点,能比以往的PWM器件提供更大的电流. MAX770有以下的特点: ①开关频率较高(300KHZ),减小了电感的尺寸; ②在较宽输出电流范围内可以达到87%的效率; ③功耗比较低; 用MAX770制成的升压器如下图所示;由于MAX770对VMOS管的驱动能力有限,使用了一片MAX770很难实现本电路的性能指标,因此本电路采用了两级MAX770. 五. 测试方法与调试过程; 1.稳压电源部分; (1) 输出电压范围测试 调节可调电位器,用数字型万用表测出电阻两端的输出电压,最小值为0.821V,最大值为:24.61V. (2) 最大输出电流测试 将输出电压调整至9V,输出端接通可调电阻,串入数字万用表,测得最大输出电流为:2.06A. (3) 电压调整率测试 将调压变压器输出端接稳压电源的输入端,将稳压电源输出电压调整至9V,调节调压变压器,使其输出从176V升至到253V,用数字万用表测量负载两端的电压,测得最大电压变化量为:10mV,计算得电压调整率为:(0.01/9)*100%=0.11%. (4)负载调整率测试 空载时将输出电压调整至9V,在负载端接入300Ω/120W的变阻器,将变阻器从6Ω调整至100Ω,用数字万用表监视输出电压的变化,测得最大电压变化量为:0.04V,因此负载调整率为:(0.04/9)*100%=0.44%. (5)纹波电压测试 将电压输出调整至9V,外接一个6Ω的电阻,将示波器置于AC/5mV输入挡,测得负载上的纹波电压为:1mV. (6)效率测试 将电压输出调整至9V,外接一个6Ω的电阻,其输出功率P0=81/6=13.5W.在负载不变的情况下,测出稳压电源的交流输入电压为:12V,交流电流为:2.05A.因此输入功率Pi=12*2.05=24.7W(设功率因数为1),电源效率为(P0/Pi)*100%=(13.5/24.7)*100%=40%,达到上述所要求的指标. (7)过流保护及短路保护功能测试 将电压输出调至为9V,外接一个6Ω的电阻,用万用表测得输出电流为:0.说明过流保护功能正常.再将输出短路,现象如同上,说明短路保护功能一切正常. (8)采用单片机(89C51)来实现保护,检测 短路故障排除自恢复,过热保护,防止关机时产生的”过冲”均测试通过;一切正常. 2.稳流电源部分; (1) 输出电流测试 输入电压为+12V,改变外接电阻的大小,记录最小电流值Imin与最大电流Imax.Imax=45.40mA, Imin=1.46mA. (2) 负载调整率的测量 输入电压+12V,负载电阻由220Ω至300Ω之间变化,设定输出电流20mA,每上升20Ω测输出电流,数据如下所示: 电阻/Ω 200 220 240 260 280 300 电流/mA 19.71 19.72 19.70 19.70 19.70 19.70 负载调整率≈0.02/20.00=0.1%. 3. DC-DC变换器部分; (1) 输出电压电流测试 输入电压由+9V至+12V变化,负载接3.6KΩ/10W电阻,测得输出电压为+100.11V,输出电流为:30.7mA. (2) 电压调整率的测试 空载,输入电压由+9V至+12V变化,测得最大电压变化为:0.1V. (3) 负载调整率的测试 输入电压+12V,空载,测得输出电压 +100.1V;10KΩ/5W电阻,测得输出电压为: +100.0V. (4) 纹波电压测试 输入电压 +9V,接3.6KΩ/10W的电阻,示波置于交流AC/250mV挡,测得纹波电压.Vpp≈80mV. (5) 效率的测试 输入电流为:5A,输入电压为:11.8V时,测得输出电压为100.08V(3.6KΩ的电阻,电流为:27.8mA),计算可得出: η=64.3%. 六. 电路的结果分析 1. 稳压电路部分; (1) 输出电压的可调范围 由于本电路中uA723的7脚接-2V,因此可以实现从零伏起调,这也是本电路的特色之一,本电路实现了0^20V可调,超过指标要求. (2)最大输出电流 它由uA723的3脚所接电阻R9决定,计算公式为:Imax=0.6/R9,由于本电路中R9为0.33Ω,因此Imax限制为2A左右. (3)电压和负载调整率及纹波电压 优于指标要求,这是由uA723优良特性与方案设计思路决定的. (4)效率的测试 输出为9V,而输入为17V左右,因此有一部分功率被调整管吸收,从而导致了效率并不是很高. 2. 稳流电路部分; (1) Rmin=10Ω, Rmax=1010Ω I’min=1.25/1010≈1.24mA > Imin 受输入电压+12V与LM317内部压降约为1.7V的影响,可能的最大电流为: I’max=(12-1.7)/220≈46.82mA > Imax Imin>I’min是由于LM317在小电流负载下稳压性能变差造成的. Imax>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社,1986年3月. ◆ <<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社,1982年6月. ◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社,2000年5月.

在网上搜啊!搜着了你就幸运了 搜不着的话就自己做吧

直流稳压电源论文参考文献

<电子技术课程设计>直流稳压电源课程设计任务书一:设计任务及要求:1. 设计任务设计一集成直流稳压电源,满足:(1)当输入电压在220V交流时,输出直流电压为6V。(2)输出纹波电压小于5mv,稳压系数<=0.01;(3)具有短路保护功能。(4) 最大输出电流为:Imax=1.0A;2.通过集成直流稳压电源的设计,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压电源。(2)掌握直流稳压电源的调试及主要技术指标的测试方法。3.设计要求(1) 电源变压器只做选择性设计;(2) 合理选择集成稳压器;(3) 完成全电路理论设计、绘制电路图;(4)撰写设计报告。 目录一.设计任务及要求:二.基本原理与分析三.三端集成稳压器四.稳压电源的技术指标及对稳压电源的要求五.集成电路选用时应注意的问题六.参数性能指标及测试方法七.心得体会八.参考文献附:部分二、原理与分析1.直流稳压电源的基本原理直流稳压电源一般由电源变压器T、整流滤波电路及稳压电路所组成,基本框图如下。各部分的作用: (1)电源变压器T的作用是将电网220V的交流电压变换成整流滤波电路所需要的交流电压Ui。变压器副边与原边的功率比为P2/ P1=η,式中η是变压器的效率。(2)整流滤波电路:整流电路将交流电压Ui变换成脉动的直流电压。再经滤波电路滤除较大的纹波成分,输出纹波较小的直流电压U1。常用的整流滤波电路有全波整流滤波、桥式整流滤波等。 各滤波电容C满足RL-C=(3~5)T/2,或中T为输入交流信号周期,RL为整流滤波电路的等效负载电阻。 (3)三端集成稳压器:常用的集成稳压器有固定式三端稳压器与可调式三端稳压器。常用可调式正压集成稳压器有CW317(LM317)系列,它们的输出电压从1.25V-37伏可调,最简的电路外接元件只需一个固定电阻和一只电位器。其芯片内有过渡、过热和安全工作区保护,最大输出电流为1.5A。其典型电路如图2,其中电阻R1与电位器R2组成输出电压调节器,输出电压Uo的表达式为:Uo=1.25(1+R2/R1)式中R1一般取120-240欧姆,输出端与调整端的压差为稳压器的基准电压(典型值为1.25V)。 2.稳压电流的性能指标及测试方法 稳压电源的技术指标分为两种:一种是特性指标,包括允许输入电压、输出电压、输出电流及输出电压调节范围等;另一种是质量指标,用来衡量输出直流电压的稳定程度,包括稳压系数(或电压调整率)、输出电阻(或电流调整率)、纹波电压(纹波系数)及温度系数。测试电路如图3。 图3 稳压电源性能指标测试电路(1) 纹波电压:叠加在输出电压上的交流电压分量。用示波器观测其峰峰值一般为毫伏量级。也可用交流毫伏表测量其有效值,但因纹波不是正弦波,所以有一定的误差。(2)稳压系数:在负载电流、环境温度不变的情况下,输入电压的相对变化引起输出电压的相对变化,即:(3) 电压调整率:输入电压相对变化为±10%时的输出电压相对变化量,稳压系数和电压调整率均说明输入电压变化对输出电压的影响,因此只需测试其中之一即可。(4) 输出电阻及电流调整率输出电阻与放大器的输出电阻相同,其值为当输入电压不变时,输出电压变化量与输出电流变化量之比的绝对值.电流调整率:输出电流从0变到最大值时所产生的输出电压相对变化值。输出电阻和电流调整率均说明负载电流变化对输出电压的影响,因此也只需测试其中之一即可。直流稳压电源设计 (未经整理仅供参考) 直流稳压电源设计 一. 设计任务与设计的基本要求: (1).直流稳压电源的任务: 利用所学的知识设计并制作交流变换为直流的稳压电源. (2)直流稳压电源的基本要求: A.稳压电源 在输入电压为220V.50HZ. 电压变化范围为+10%~-10%条件下: a. 输出电压可调范围为:+9V~+12V; b. 最大输出电流为:Imax=1.5A; c. 电压调整率≤0.2%(输入电压220V变化范围+10%~-10%下,满载); d. 负载调整率≤2%(最低输入电压下,空载到满载); e. 纹波电压(峰-峰值) ≤5mV(最低输入电压下,满载); f. 效率≥40%(输出电压为+9V,输入电压为220V下,满载); g. 具有过流保护及短路保护功能; B. 稳流电源 在输入电压固定为直流+12V的条件下; a. 输出电流为:4~20mA可调; b. 负载调整率≤2%(输入电压+12V,负载电阻由200Ω~300Ω变化时,输出电流为20mA时的相对变化率); C. DC-DC变换器 在输入电压为+9V~+12V条件下: a. 输出电压为+100V,输出电流为10mA; b. 电压调整率≤2%(输入电压变化范围+9V~+12V); c. 负载调整率≤2%(输入电压+12V下,空载到满载); d. 纹波电压(峰-峰值) ≤100mA(输入电压+9V下,满载); 注:以下是本电路的发挥部分: (1)扩充功能: a. 排除短路故障后,自动恢复为正常状态; b. 过热保护; c. 防止开, 关机时产生的”过冲”; (2)提高稳压电源的技术指标; a. 提高稳压调整率和负载调整率; b. 扩大输出电压调节范围和提高最大输出电流值. (3)改善DC-DC变换器的性能; a. 提高效率(在100V, 100mA下测试); b. 提高输出电压. (4)用数字显示输出电压和输出电流. 摘 要 本系统稳压电源部分采用电压调整器uA723外加调整管2SC3280实现此功能,再通过单片机MCS-51(89C51)来起控制电路,实现了扩充多种功能.稳流部分采用了三端稳压调整器LM317T实现.DC-DC变换器采用了两片PFM控制芯片MAX770来实现,使输出电压提高到+100V,输出电流最大可以达到100mA.电压调整,负载调整率及纹波电压均优于指标要求.可以说本系统比其它同类产品要好的多. 二.方案论证与比较 1.稳压电源部分 方案一:简单的并联型稳压电源; 并联型稳压电源的调整元件与负载并联,因而具有极低的输出电阻,动态特性好,电路简单,并具有自动保护功能;负载短路时调整管截止,可靠性高,但效率低,尤其是在小电流时调整管需承受很大的电流,损耗过大,因而不能采用此方案. 方案二:输出可调的开关电源; 开关电源的功能元件工作在开关状态,因而效率高,输出功率大;且容易实现短路保护与过流保护,但是电路比较复杂,设计繁琐,在低输出电压时开关频率低,纹波大,稳定度极差,因而也不能采用此方案. 方案三:由uA723组成的零伏起调电源; uA723内部设有高精度基准电压源和高增益的放大器,外围电路比较简单,电压稳定度也比较高,其典型电压调整率为0.01%,负载调整率为0.03%,且热稳定性好,输出噪声也很小,还内设有过电流控制电路,使用安全可靠,具有较高的性价比,为首选方案,所以此方案为必选题. 2.稳流电源部分 方案一: 采用7805三端稳压器电源; 固定式三端稳压电源(7805)是由输出脚Vo,输入脚Vi和接地脚GND组成,它的稳压值为+5V,它属于CW78xx系列的稳压器,输入端接电容可以进一步的滤波,输出端也要接电容可以改善负载的瞬间影响,此电路的稳定性也比较好,只是采用的电容必须要漏电流要小的钽电容,如果采用电解电容,则电容量要比其它的数值要增加10倍,但是它不可以调整输出的直流电源;所以此方案不易采用. 方案二:采用LM317可调式三端稳压器电源; LM317可调式三端稳压器电源能够连续输出可调的直流电压. 不过它只能连续可调的正电压,稳压器内部含有过流,过热保护电路;由一个电阻(R)和一个可变电位器(RP)组成电压输出调节电路,输出电压为:Vo=1.25(1+RP/R).由此可见此稳压器的性能和稳压稳定都比上一个三端稳压电源要好,所以此此方案可选,此电源就选用了LM317三端稳压电源,也就是方案二. 3.DC-DC变换部分; 方案一:用正弦信号(几十赫兹以下)驱动硅钢型互感耦合变压器,经整流滤波后输出.由于硅钢的磁滞特性,这种电源的开关频率不算高,易出现磁饱和,因而不利于制作高效率的开关电源. 方案二:采用高频磁芯和开关特性好的VMOS管的PFM或PWM型开关电源,负载调整特性好,效率高,性能优良,但制作调试复杂,所以此方案也不于采纳, 方案三:采用充电泵型变换器,该类电源以电容代替电感作贮能元件,为一个或多个电容供电.该类电源的最大特点是元件易得,体积小,电路比较简单,无电感;但由于对充电泵的要求严格,不适合于工作在大负载条件下,因而在大多数电源中没有被广泛使用. 综合考虑效率,输出功率,输入输出电压,负载调整率,纹波系数,本设计选用方案二.考虑到PWM对磁性元件,开关元件特性的要求较低,因而较易实现.对于效率和纹波的要求可以通过仔细调整磁性元件的参数(L,Q,M等)使其工作在最佳状态,所以我们在选择方案的时候考虑到电路要简单,元件要容易找,还有在电路设计的时候避免遇到某些不必要的问题,所以我们选择了上述的方案中的第二个方案;第二个方案就能够达到我们的要求,的所以方案二我们采用了,利用开关特性和负载调整特性好及效率高,性能优良,而采用了它.(方案二) 三.直流稳压电源电路的方框图如下: 220V电源部分---变压部分---整流滤波部分---稳压电源稳流电源部分---+9V^+12V直流稳压电源方框图 四.电路原理及各部的分离电路; 1.稳压电路部分; 采用精密电压调整器uA723,外加大功率调整管以提供大电流输出.uA723的特点如下: ①无外接调整管时最大输出电流为:I=150mA; ②外接调整管时,输出电流最大可达到12A以上; ③最大输入电压为:Vmax=40V; ④输出电压可调整范围为: +9V~+12V; 具体的电路图如下图所示: 电源变压器的效率如下所示:(小型变压器) 副边功率P2/vA <1010^30 30^80 80^200 效率 η 0.6 0.7 0.8 0.85由uA723的特性可知:要使电路实现零伏起调,uA723的7脚至少要获得-2V的附加电压,本方案不采用多抽头的变压器,该-2V电压可通过由电容C1,C2和二极管D1,D2组成的倍压电路获得.其输出电压由电阻R1和齐纳二极管Z1固定-5.6V ,使uA723中的差分放大器在输出电压为0时仍能工作,主要的正电压通过整流桥和滤波电容C3从变压器获得.uA723的供电电压由齐纳二极管Z2固定在33V,以防止超过其极限电压值(40V).由BG2,BG3组成的达林顿管将输出电流提高到超过1A的范围. 在12脚和3脚间加0.6V的电压可调节极限电流值,该电压是电阻R9和电位器VR3是压降的总和,VR3的压降是VR3的电阻值与晶体管三极管BG1的集电极电流值的乘积,极限电流值可以通过电位器VR3连续调节. 输出电压由电位器VR2进行线性调节,电位器VR1用于调节零输出电压. 本设计还通过单片来实现了短路过流保护,过热保护,具体的电路图如下:过热保护:温度开关KT一端通过一个上拉电阻接正电源,另一端接地,当温度过高时开关断开,产生一个零电平跳变送给单片来进行处理. 过流检测和短路保护原理:采用单片机MCS-51(89C51)对输出电流进行周期性的检测,可以方便地实现短路保护及短路故障排除后自恢复的所有功能.过流或短路时,检测电路向单片P1口发出报警信号,单片证实后启动它的保护电路,经过短时间延时后继续查询P1口上的内容,如无报警信号,则电路又恢复到正常状态. 过热保护,发声报警等功能也直接由单片机(89C51)来实现控制. 2.稳流电源部分; LM317是三端可调式正电压调整器,正常工作时在其调整端与输出端之间有一个高稳定度的1.25V电压,利用该电压即可以获得可调的电流输出.实际中, LM317输出端与电位器之间串接了一个10Ω/1W的电阻,使最大电流限制在125mA左右,以免发生过流现象. 具体的电路图如下所示: 3.DC-DC变换部分; DC-DC变换器的核心部件是两片升压开关调节器MAX770,MAX770结合了PFM低的吸取电流和PWM大功率应用下效率高的特点,能比以往的PWM器件提供更大的电流. MAX770有以下的特点: ①开关频率较高(300KHZ),减小了电感的尺寸; ②在较宽输出电流范围内可以达到87%的效率; ③功耗比较低; 用MAX770制成的升压器如下图所示;由于MAX770对VMOS管的驱动能力有限,使用了一片MAX770很难实现本电路的性能指标,因此本电路采用了两级MAX770. 五. 测试方法与调试过程; 1.稳压电源部分; (1) 输出电压范围测试 调节可调电位器,用数字型万用表测出电阻两端的输出电压,最小值为0.821V,最大值为:24.61V. (2) 最大输出电流测试 将输出电压调整至9V,输出端接通可调电阻,串入数字万用表,测得最大输出电流为:2.06A. (3) 电压调整率测试 将调压变压器输出端接稳压电源的输入端,将稳压电源输出电压调整至9V,调节调压变压器,使其输出从176V升至到253V,用数字万用表测量负载两端的电压,测得最大电压变化量为:10mV,计算得电压调整率为:(0.01/9)*100%=0.11%. (4)负载调整率测试 空载时将输出电压调整至9V,在负载端接入300Ω/120W的变阻器,将变阻器从6Ω调整至100Ω,用数字万用表监视输出电压的变化,测得最大电压变化量为:0.04V,因此负载调整率为:(0.04/9)*100%=0.44%. (5)纹波电压测试 将电压输出调整至9V,外接一个6Ω的电阻,将示波器置于AC/5mV输入挡,测得负载上的纹波电压为:1mV. (6)效率测试 将电压输出调整至9V,外接一个6Ω的电阻,其输出功率P0=81/6=13.5W.在负载不变的情况下,测出稳压电源的交流输入电压为:12V,交流电流为:2.05A.因此输入功率Pi=12*2.05=24.7W(设功率因数为1),电源效率为(P0/Pi)*100%=(13.5/24.7)*100%=40%,达到上述所要求的指标. (7)过流保护及短路保护功能测试 将电压输出调至为9V,外接一个6Ω的电阻,用万用表测得输出电流为:0.说明过流保护功能正常.再将输出短路,现象如同上,说明短路保护功能一切正常. (8)采用单片机(89C51)来实现保护,检测 短路故障排除自恢复,过热保护,防止关机时产生的”过冲”均测试通过;一切正常. 2.稳流电源部分; (1) 输出电流测试 输入电压为+12V,改变外接电阻的大小,记录最小电流值Imin与最大电流Imax.Imax=45.40mA, Imin=1.46mA. (2) 负载调整率的测量 输入电压+12V,负载电阻由220Ω至300Ω之间变化,设定输出电流20mA,每上升20Ω测输出电流,数据如下所示: 电阻/Ω 200 220 240 260 280 300 电流/mA 19.71 19.72 19.70 19.70 19.70 19.70 负载调整率≈0.02/20.00=0.1%. 3. DC-DC变换器部分; (1) 输出电压电流测试 输入电压由+9V至+12V变化,负载接3.6KΩ/10W电阻,测得输出电压为+100.11V,输出电流为:30.7mA. (2) 电压调整率的测试 空载,输入电压由+9V至+12V变化,测得最大电压变化为:0.1V. (3) 负载调整率的测试 输入电压+12V,空载,测得输出电压 +100.1V;10KΩ/5W电阻,测得输出电压为: +100.0V. (4) 纹波电压测试 输入电压 +9V,接3.6KΩ/10W的电阻,示波置于交流AC/250mV挡,测得纹波电压.Vpp≈80mV. (5) 效率的测试 输入电流为:5A,输入电压为:11.8V时,测得输出电压为100.08V(3.6KΩ的电阻,电流为:27.8mA),计算可得出: η=64.3%. 六. 电路的结果分析 1. 稳压电路部分; (1) 输出电压的可调范围 由于本电路中uA723的7脚接-2V,因此可以实现从零伏起调,这也是本电路的特色之一,本电路实现了0^20V可调,超过指标要求. (2)最大输出电流 它由uA723的3脚所接电阻R9决定,计算公式为:Imax=0.6/R9,由于本电路中R9为0.33Ω,因此Imax限制为2A左右. (3)电压和负载调整率及纹波电压 优于指标要求,这是由uA723优良特性与方案设计思路决定的. (4)效率的测试 输出为9V,而输入为17V左右,因此有一部分功率被调整管吸收,从而导致了效率并不是很高. 2. 稳流电路部分; (1) Rmin=10Ω, Rmax=1010Ω I’min=1.25/1010≈1.24mA > Imin 受输入电压+12V与LM317内部压降约为1.7V的影响,可能的最大电流为: I’max=(12-1.7)/220≈46.82mA > Imax Imin>I’min是由于LM317在小电流负载下稳压性能变差造成的. Imax>,华东师范大学物理系万嘉若,林康运等编著,高等教育出版社,1986年3月. ◆ <<电子技术基础>>,华中工学院电子学教研室编,康华光主编,高等教育出版社,1982年6月. ◆<<电子线路设计>>,(第二版)华中科技大学谢自美主编,华中科技大学出版社,2000年5月.

[1]胡辉、《单片机原理及应用设计》、中国水利水电出版社、2005 [2]杨素行、《模拟电子技术基础简明教程》、高等教育出版社、2008 [3]余孟尝、《数字电子技术基础简明教程》、高等教育出版社、2007 [4]谭浩强、《C程序设计》、清华大学出版社、2007 [5]龚尚福、《微机原理与接口技术》、西安电子科技大学出版社、2006 [6]何希才 张明莉、《新型稳压电源及其应用实例》、电子工业出版社、2004 [7]裴云庆 杨旭 王兆安、《开关稳压电源的设计和应用》、机械工业出版社、2010[8]唐竞新.数字电子电路[M].第1版.北京:清华大学出版社,2003[9]康华光.电子技术基础[M].数字部分.第4版.北京:高等教育出版社,1998[10]电子工程手册编委会等.中外集成电路简明速查手册[M]---TTL,CMOS.北京电子工业出版社,1991[11]杨长春.论数字技术[J].《电子报》合订本.成都:四川科学技术出版社,2002.12[12]睢丙东编.《单片机实用技术》.北京: 清华大学出版社,2005.[13]胡汉才编.《单片机原理及其接口技术》.北京:清华大学出版社,2004年.

稳压电路论文参考文献

作为学生,这个作业是稍微看看书就轻松解决的问题。拿到网上征求答案,实在是不该啊。

直流稳压电源的毕业论文不算太难,去那个591论文网找几篇现成的拼凑一下就行。我论文就这么来的,然后还真就过了。。O(∩_∩)O~

在网上搜啊!搜着了你就幸运了 搜不着的话就自己做吧

去"幸福校园"网站看看,那的论文很多引言:直流稳压电源一般分为线性和开关电源两类。对于单片机数字控制的电路系统,通常采用基于PWM控制的开关电源。而对于放大器的模拟放大系统,采用线性稳压电源则更具有优势,线性直流稳压电源具有稳压和滤波的双重作用,产生的干扰很小,随着集成电路技术的发展,较高输出电流和数值可调的集成稳压器相继出现,由此而构成的线性直流稳压电源结构简单,维修方便,功率200W以下时,整机的体积也不大。一般来讲,线性直流稳压电源的纹波抑制比,电压调整率和噪声抑制等性能比开关直流稳压电源要好,更重要的是工作可靠,故障率低,更适合于放大器的模拟控制系统。因此,针对电荷放大器的需要,本文提出了一种基于集成稳压器的多输出线性直流稳压电源的设计。方案设计:一 (1)总体方案:直流稳压电源一般是由电源变压器T,整流滤波电路和稳压电路所组成,一般原理如下面的框图所示: 根据功能的要求,总体设计方案如下:

数控稳压直流电源毕业论文

(4)现代诊断技术 随着电信技术的发展,IC和微机性价比的提高,如通信诊断也称远程诊断,即利用电话通讯线把带故障的CNC系统和专业维修中心的专用通讯诊断计算机通过连接进行测试诊断.三 数控机床各部故障分析及维修3.1 数控机床主轴伺服系统故障检查及维修电子工业的飞速发展,使各种集成度高、性能先进的调速驱动层出不穷,给数控机床的更新换代提供了有利条件,但对于目前大中型企业还无法将旧数控机床全部改造的现实,修理旧的驱动系统,仍是维修战线上的一项艰巨任务。在维修主回路采用错位选触无环流可逆调速驱动系统的数控车床中所遇到的部分故障及处理方法。1. 故障现象:1.8m卧车在点动时,花盘来回摆动。检查:测量驱动控制系统中的±20V直流稳压电源的纹波为4V峰峰值,大大超过了规定的范围。分析:在控制系统的放大电路中,高、低通滤波器可以滤掉,如:测速机反馈,电流反馈,电压反馈中的各次谐波干扰信号,但无法滤除系统本身直流电源电路中的谐波分量,因它存在于整个系统中,这些谐波进入放大器就会使放大器阻塞,使系统产生各种不正常的现象。在点动状态下,因电机的转速较低,这些谐波已超过了点动时的电压值,造成了系统的振荡,使主轴花盘来回摆动,而且一旦去除谐波信号,故障马上消失。处理:将电压板中的100MF和1000MF滤波电容换下焊上新电容,并测量纹波只有几个毫伏后将电源板安装好,开机试运行,故障消除。2. 故障现象:5m立车在运行加工中发出哐哐声后,烧保险。检查:发现5FC5FG、5RG5RQ正反组全无脉冲输出(线路见图2),测量结果,IC7反相器损坏,又发现1FG1FC输出波形较其他波形幅值低得多。分析:5m立车主驱动直流电机的驱动电压由晶闸管全控桥反并联整流电路提供。12路触发脉冲中,有两路消失,另一路触发脉冲的幅值较其它正常触发脉冲要短三分之一,当出现哐哐的齿轮撞击声时,误以为液压马达联轴节处出现了问题,但过了一会儿两路保险丝烧坏,实际上,在这次故障的前一段时间里已烧过两次保险,当时只认为是偶然的电网不稳造成,因换上保险丝后,故障就消除了。由于5m立车加工运行时的转速较低,虽然可控硅整流电路是桥式整流,但是线路中触发脉冲丢失和幅值小同时存在时,也会造成电流不连续,输出的电压不稳,从而使电机的转速不稳。一开始出现的哐哐声,实际就是转速不稳的表现。由于电流断续而引起的烧保险故障能发生在运行后停车和正常运行的任何时刻。处理:将放大管T1(另一组触发电路中的放大管,功能如图2中的T7)及反相器IC7换下,故障消除。3.2 机床PLC初始故障的诊断机床PLC初始故障的诊断为了保护机床和维修方便,PLC有显示和检测机床故障的能力。一旦发生故障,维修人员就能根据机床的故障显示号去确定故障类别,予以排除。但在实际加工过程中,我们发现有时PLC同时显示几个故障,它们是由某一个故障引起的连锁故障,排除了初始的引发故障,其它故障报警就消失了。可是从机床PLC显示的所有报警故障中,维修人员并不知道哪个故障是初始引发故障,维修人员只能逐个故障去查,这就增加了维修难度。机床PLC初始故障诊断功能,通过PLC程序,准确判断出初始故障的报警号。维修中,首先排除初始故障,其它引发故障自行消失,这样就极大地方便了机床的维修,提高了机床维修的快速性和准确性。 2 初始故障诊断原理设计的PLC程序不单单是把各个故障都能检测和显示出来,还能把最关键的初始故障自动判断出来。初始故障诊断原理:以3个故障为例,其中设置了3个故障检测位,分别为R500.0、R510.0、R520.0;3个初始故障检测位为R500.2、R510.2、R520.2;F149.1为系统复位信号。初始状态时,无报警出现,故障检测位都为“0”,初始故障检测位也都为“0”,复位信号F149.1为“0”。在3个故障中假设首先发生第二个故障。在程序扫描的第一个周期内,其对应的故障检测位R510.0变为“1”,R500.2、R520.2、F149.1初始值为“0”,初始故障检测位R510.2变为“1”,通过自锁保持为“1”,直到故障被排除,系统复位信号发出后“1”状态才被解除。在程序扫描的第二个周期内,R510.2保持为“1”,实现了对R500.1、R520.1的封锁,即使此时另外某一个故障检测位为“1”,也不能导致其初始故障检测位变为“1”。通过此PLC程序的控制,就能从同时发生的众多故障里准确地判断出初始故障。在JCS018数控机床中,遇到了多个故障同时发生的问题,如换刀报警和液压报警同时出现。维修时,先检查液压控制部分,然后才能确认故障出在换刀过程中。检查后我们才知道换刀的动力由液压驱动来提供。PLC控制程序设计中,当遇到换刀故障时,为防止更大的意外发生,在报警的同时也断开了液压控制,因此换刀故障发生时出现了两个报警信息。为遵循原机床的设计思路,而又能准确地发出报警信息,给JCS018数控机床增加了对初始故障的检查功能。按照前面的程序分析,换刀和液压故障检测位分别为R500.0和R510.0,初始故障可从初始故障检测位R500.2和R510.2读出。当该机床再发生类似故障时,就能很快地判断出初始故障。3.3 数控设备检测元件故障及维修检测元件是数控机床伺服系统的重要组成部分,它起着检测各控制轴的位移和速度的作用,它把检测到的信号反馈回去,构成闭环系统。测量方式可分为直接测量和间接测量:直接测量就是对机床的直线位移采用直线型检测元件测量,直接测量常用的检测元件一般包括:直线感应同步器、计量光栅、磁尺激光干涉仪。间接测量就是对机床的直线位移采用回转型检测元件测量,间接测量常用的检测元件一般包括:脉冲编码器、旋转变压器、圆感应同步器、圆光栅和圆磁栅。当机床出现如下故障现象时,应考虑是否是由检测元件的故障引起的:1.机械振荡(加/减速时):(1)脉冲编码器出现故障,此时检查速度单元上的反馈线端子电压是否在某几点电压下降,如有下降表明脉冲编码器不良,更换编码器。(2)脉冲编码器十字联轴节可能损坏,导致轴转速与检测到的速度不同步,更换联轴节。(3)测速发电机出现故障,修复,更换测速机。2.机械暴走(飞车):在检查位置控制单元和速度控制单元的情况下,应检查:(1)脉冲编码器接线是否错误,检查编码器接线是否为正反馈,A相和B相是否接反。(2)脉冲编码器联轴节是否损坏,更换联轴节。(3)检查测速发电机端子是否接反和励磁信号线是否接错。3.主轴不能定向或定向不到位:在检查定向控制电路设置和调整,检查定向板,主轴控制印刷电路板调整的同时,应检查位置检测器(编码器)是否不良,此时测编码器输出波形。4.坐标轴振动进给:在检查电动机线圈是否短路,机械进给丝杠同电机的连接是否良好,检查整个伺服系统是否稳定的情况下,检查脉冲编码是否良好、联轴节联接是否平稳可靠、测速机是否可靠。检测元件是一种极其精密和容易受损的器件,一定要从下面几个方面注意,进行正确的使用和维护保养。1.不能受到强烈振动和摩擦以免损伤代码板,不能受到灰尘油污的污染,以免影响正常信号的输出。2.工作环境周围温度不能超标,额定电源电压一定要满足,以便于集成电路片子的正常工作。3.要保证反馈线电阻,电容的正常,保证正常信号的传输。4.防止外部电源、噪声干扰,要保证屏蔽良好,以免影响反馈信号。5.安装方式要正确,如编码器联接轴要同心对正,防止轴超出允许的载重量,以保证其性能的正常。总之,在数控设备的故障中,检测元件的故障比例是比较高的,只要正确的使用并加强维护保养,对出现的问题进行深入分析,就一定能降低故障率,并能迅速解决故障,保证设备的正常运行。3.4 数控机床加工精度异常故障及维修生产中经常会遇到数控机床加工精度异常的故障。此类故障隐蔽性强、诊断难度大。导致此类故障的原因主要有五个方面:(1)机床进给单位被改动或变化。(2)机床各轴的零点偏置(NULL OFFSET)异常。(3)轴向的反向间隙(BACKLASH)异常。(4)电机运行状态异常,即电气及控制部分故障。(5)机械故障,如丝杆、轴承、轴联器等部件。此外,加工程序的编制、刀具的选择及人为因素,也可能导致加工精度异常。1.系统参数发生变化或改动系统参数主要包括机床进给单位、零点偏置、反向间隙等等。例如SIEMENS、FANUC数控系统,其进给单位有公制和英制两种。机床修理过程中某些处理,常常影响到零点偏置和间隙的变化,故障处理完毕应作适时地调整和修改;另一方面,由于机械磨损严重或连结松动也可能造成参数实测值的变化,需对参数做相应的修改才能满足机床加工精度的要求。2.机械故障导致的加工精度异常一台THM6350卧式加工中心,采用FANUC 0i-MA数控系统。一次在铣削汽轮机叶片的过程中,突然发现Z轴进给异常,造成至少1mm的切削误差量(Z向过切)。调查中了解到:故障是突然发生的。机床在点动、MDI操作方式下各轴运行正常,且回参考点正常;无任何报警提示,电气控制部分硬故障的可能性排除。分析认为,主要应对以下几方面逐一进行检查。(1)检查机床精度异常时正运行的加工程序段,特别是刀具长度补偿、加工坐标系(G54~G59)的校对及计算。(2)在点动方式下,反复运动Z轴,经过视、触、听对其运动状态诊断,发现Z向运动声音异常,特别是快速点动,噪声更加明显。由此判断,机械方面可能存在隐患。(3)检查机床Z轴精度。用手脉发生器移动Z轴,(将手脉倍率定为1×100的挡位,即每变化一步,电机进给0.1mm),配合百分表观察Z轴的运动情况。在单向运动精度保持正常后作为起始点的正向运动,手脉每变化一步,机床Z轴运动的实际距离d=d1=d2=d3…=0.1mm,说明电机运行良好,定位精度良好。而返回机床实际运动位移的变化上,可以分为四个阶段:①机床运动距离d1>d=0.1mm(斜率大于1);②表现出为d=0.1mm>d2>d3(斜率小于1);③机床机构实际未移动,表现出最标准的反向间隙;④机床运动距离与手脉给定值相等(斜率等于1),恢复到机床的正常运动。无论怎样对反向间隙(参数1851)进行补偿,其表现出的特征是:除第③阶段能够补偿外,其他各段变化仍然存在,特别是第①阶段严重影响到机床的加工精度。补偿中发现,间隙补偿越大,第①段的移动距离也越大。分析上述检查认为存在几点可能原因:一是电机有异常;二是机械方面有故障;三是存在一定的间隙。为了进一步诊断故障,将电机和丝杠完全脱开,分别对电机和机械部分进行检查。电机运行正常;在对机械部分诊断中发现,用手盘动丝杠时,返回运动初始有非常明显的空缺感。而正常情况下,应能感觉到轴承有序而平滑的移动。经拆检发现其轴承确已受损,且有一颗滚珠脱落。更换后机床恢复正常。3.机床电气参数未优化电机运行异常一台数控立式铣床,配置FANUC 0-MJ数控系统。在加工过程中,发现X轴精度异常。检查发现X轴存在一定间隙,且电机启动时存在不稳定现象。用手触摸X轴电机时感觉电机抖动比较严重,启停时不太明显,JOG方式下较明显。分析认为,故障原因有两点,一是机械反向间隙较大;二是X轴电机工作异常。利用FANUC系统的参数功能,对电机进行调试。首先对存在的间隙进行了补偿;调整伺服增益参数及N脉冲抑制功能参数,X轴电机的抖动消除,机床加工精度恢复正常。4.机床位置环异常或控制逻辑不妥一台TH61140镗铣床加工中心,数控系统为FANUC 18i,全闭环控制方式。加工过程中,发现该机床Y轴精度异常,精度误差最小在0.006mm左右,最大误差可达到1.400mm。检查中,机床已经按照要求设置了G54工件坐标系。在MDI方式下,以G54坐标系运行一段程序即“G90 G54 Y80 F100;M30;”,待机床运行结束后显示器上显示的机械坐标值为“-1046.605”,记录下该值。然后在手动方式下,将机床Y轴点动到其他任意位置,再次在MDI方式下执行上面的语句,待机床停止后,发现此时机床机械坐标数显值为“-1046.992”,同第一次执行后的数显示值相比相差了0.387mm。按照同样的方法,将Y轴点动到不同的位置,反复执行该语句,数显的示值不定。用百分表对Y轴进行检测,发现机械位置实际误差同数显显示出的误差基本一致,从而认为故障原因为Y轴重复定位误差过大。对Y轴的反向间隙及定位精度进行仔细检查,重新作补偿,均无效果。因此怀疑光栅尺及系统参数等有问题,但为什么产生如此大的误差,却未出现相应的报警信息呢?进一步检查发现,该轴为垂直方向的轴,当 Y轴松开时,主轴箱向下掉,造成了超差。对机床的PLC逻辑控制程序做了修改,即在Y轴松开时,先把Y轴使能加载,再把Y轴松开;而在夹紧时,先把轴夹紧后,再把Y轴使能去掉。调整后机床故障得以解决。四 数控机床的维护数控系统是数控机床的核心部件,因此,数控机床的维护主要是数控系统的维护。数控系统经过一段较长时间的使用,电子元器件性能要老化甚至损坏,有些机械部件更是如此,为了尽量地延长元器件的寿命和零部件的磨损周期,防止各种故障,特别是恶性事故的发生,就必须对数控系统进行日常的维护。概括起来,要注意以下几个方面。(1)制订数控系统日常维护的规章制度根据各种部件特点,确定各自保养条例。如明文规定哪些地方需要天天清理(如CNC系统的输入/输出单元——光电阅读机的清洁,检查机械结构部分是否润滑良好等),哪些部件要定期检查或更换(如直流伺服电动机电刷和换向器应每月检查一次)。(2)应尽量少开数控柜和强电柜的门因为在机加工车间的空气中一般都含有油雾、灰尘甚至金属粉末。一旦它们落在数控系统内的印制线路或电器件上,容易引起元器件间绝缘电阻下降,甚至导致元器件及印制线路的损坏。有的用户在夏天为了使数控系统超负荷长期工作,打开数控柜的门来散热,这是种绝不可取的方法,最终会导致数控系统的加速损坏。正确的方法是降低数控系统的外部环境温度。因此,应该有一种严格的规定,除非进行必要的调整和维修,不允许随便开启柜门,更不允许在使用时敞开柜门。(3)定时清扫数控柜的散热通风系统应每天检查数控系统柜上各个冷却风扇工作是否正常,应视工作环境状况,每半年或每季度检查一次风道过滤器是否有堵塞现象。如果过滤网上灰尘积聚过多,需及时清理,否则将会引起数控系统柜内温度高(一般不允许超过55℃),造成过热报警或数控系统工作不可靠。(4)经常监视数控系统用的电网电压FANUC公司生产的数控系统,允许电网电压在额定值的85%~110%的范围内波动。如果超出此范围,就会造成系统不能正常工作,甚至会引起数控系统内部电子部件损坏。(5)定期更换存储器用电池FANUC公司所生产的数控系统内的存储器有两种:(a)不需电池保持的磁泡存储器。(b)需要用电池保持的CMOS RAM器件,为了在数控系统不通电期间能保持存储的内容,内部设有可充电电池维持电路,在数控系统通电时,由+5V电源经一个二极管向CMOS RAM供电,并对可充电电池进行充电;当数控系统切断电源时,则改为由电池供电来维持CMOS RAM内的信息,在一般情况下,即使电池尚未失效,也应每年更换一次电池,以便确保系统能正常工作。另外,一定要注意,电池的更换应在数控系统供电状态下进行。6. 数控系统长期不用时的维护为提高数控系统的利用率和减少数控系统的故障,数控机床应满负荷使用,而不要长期闲置不用,由于某种原因,造成数控系统长期闲置不用时,为了避免数控系统损坏,需注意以下两点:(1)要经常给数控系统通电,特别是在环境湿度较大的梅雨季节更应如此,在机床锁住不动的情况下(即伺服电动机不转时),让数控系统空运行。利用电器元件本身的发热来驱散数控系统内的潮气,保证电子器件性能稳定可靠,实践证明,在空气湿度较大的地区,经常通电是降低故障率的一个有效措施。(2)数控机床采用直流进给伺服驱动和直流主轴伺服驱动的,应将电刷从直流电动机中取出,以免由于化学腐蚀作用,使换向器表面腐蚀,造成换向性能变坏,甚至使整台电动机损坏。参 考 文 献【1】 张超英,谢富春编. 数控编程技术. 北京:化学工业出版社,2004【2】 张超英,罗学科编. 数控加工技术综合实训. 北京:机械工业出版社,2003【3】 数控技术培训系列教程. 世纪星数控系统编程\操作说明书. 华中数控.2001【4】 全国数控培训网络天津分中心编. 数控编程. 北京:机械工业出版社,1997致谢四年的读书生活在这个季节即将划上一个句号,而于我的人生却只是一个逗号,我将面对又一次征程的开始。四、亲友的大力支持下,走得辛苦却也收获满囊,在论文即将付梓之际,思绪万千,心情久久不能平静。 伟人、名人为我所崇拜,可是我更急切地要把我的敬意和赞美献给一位平凡的人,我的导师。我不是您最出色的学生,而您却是我最尊敬的老师。您治学严谨,学识渊博,思想深邃,视野雄阔,为我营造了一种良好的精神氛围。授人以鱼不如授人以渔,置身其间,耳濡目染,潜移默化,使我不仅接受了全新的思想观念,树立了宏伟的学术目标,领会了基本的思考方式,从论文题目的选定到论文写作的指导,经由您悉心的点拨,再经思考后的领悟,常常让我有“山重水复疑无路,柳暗花明又一村”。感谢我的爸爸妈妈,焉得谖草,言树之背,养育之恩,无以回报,你们永远健康快乐是我最大的心愿。在论文即将完成之际,我的心情无法平静,从开始进入课题到论文的顺利完成,有多少可敬的师长、同学、朋友给了我无言的帮助,在这里请接受我诚挚谢意!同时也感谢学院为我提供良好的做毕业设计的环境。最后再一次感谢所有在毕业设计中曾经帮助过我的良师益友和同学,以及在设计中被我引用或参考的论著的作者。

有的,这课题有阿

、 [通信工程]手持蓝牙心肺音采集设备研发 摘 要本毕业设计主要设计开发可分离心、肺音的多功能无线可视化电子听诊器。以分离体内各器官所发出的讯号及降低前端仪器的杂音,并将分离后的心、肺音两种生理讯号在电脑上记录并且存储、回放。本系统的软件... 类别:毕业论文 大小:291 KB 日期:2008-07-09 3、 [通信工程]综合业务数字宽带网 [摘要]综合业务数字宽带网(BISDN)是一项充满活力、对高速发展的信息产业有极强适应能力的技术。随着数字化浪潮步伐的加快、万维网的发展、多媒体应用的普及,BISDN必将得到更广泛的应用。在现代的通讯... 类别:毕业论文 大小:167 KB 日期:2008-07-08 4、 [通信工程]智能程控打铃器 摘 要提示作息时间的打铃器在各学校等单位经常被使用,其中智能程控打铃器应运最广泛。智能程控打铃器不但解除了作息管理的麻烦,而且改变了人工打铃、人工控制电器等落后现象,它可以使电器自动的周期性工作。在这... 类别:毕业论文 大小:556 KB 日期:2008-07-03 5、 [通信工程]WebSpeed 程序设计 【摘要】 网络上散布着庞大的信息,而且它们分散的组织形式使得信息的发布和查找效果都不尽人意。在这种情况下,信息的发布者不能及时将更新的信息主动提供给最需要的用户;同时,对信息的使用者而言,也很难获得急... 类别:毕业论文 大小:742 KB 日期:2008-06-27 6、 [通信工程]数控直流电源设计 摘要:随着时代的发展,数字电子技术已经普及到我们生活中的各个领域,本文将介绍一种数控直流稳压电源,本电源由模拟电源、显示电路、控制电路、数模转换电路、放大电路五部分组成。准确说就是模拟电源提供各个芯片... 类别:毕业论文 大小:1.13 MB 日期:2008-06-12 7、 [通信工程]数码相机的镜头控制模块设计 摘要镜头的控制模块是数码相机的一个重要部分,其功能直接影响数码相机成像的质量。本文阐述了数码相机镜头控制模块主要功能的算法设计;着重介绍了镜头变焦和对焦的原理和实现,以及镜头变焦与对焦的调整。然后讨论... 类别:毕业论文 大小:260 KB 日期:2008-06-06 8、 [通信工程]基于单片机的自动音乐播放器的设计 摘 要为方便人们的日常生活,优化学校、机关等单位的计时系统,采用以单片机为基础设计了一种的自动音乐播放器。本设计利用单片机89C58RD+的定时和计数功能,来完成时间的显示和定时功能。并且,通过... 类别:毕业论文 大小:94 KB 日期:2008-06-06 10、 [通信工程]一种P2P内容下载缓存系统设计和下载软件开发 摘 要随着BitTorrent(以下简称BT)等一系列P2P应用的兴起,网络流量犹如洪水到来,互联网服务提供商(Internet Service Provider,以下简称ISP)正在面临巨大的... 类别:毕业论文 大小:264 KB 日期:2008-06-06 11、 [通信工程]家庭智能紧急呼救系统的设计 摘 要本文主要介绍了一种以单片机STC89C52RC和DTMF编码集成电路MT8888CE为核心,基于单片机控制的电话自动拨号呼救系统。平时系统处于等待状态,在经按键触发后,调用存储在单片机里的电话... 类别:毕业论文 大小:669 KB 日期:2008-06-06 12、 [通信工程]基于小波分析的图象处理方法研究 2005-06-25 21:46 89,088 PPT.ppt2005-06-23 21:58 24,576 1扉页.doc2005-06-23 20... 类别:毕业论文 大小:1.61 MB 日期:2008-06-03 13、 [通信工程]非对称业务的信道分配策略 2005-06-25 22:04 182,784 演示文稿.ppt2005-06-25 22:04 24,576 扉页.doc2005-06-25 22... 类别:毕业论文 大小:595 KB 日期:2008-06-03 14、 [通信工程]基于小波分析的图像识别 2004-06-27 14:22 651,776 程序及结果.doc2004-06-27 14:14 52,224 任务书摘要前言目录.doc2004-0... 类别:毕业论文 大小:1.66 MB 日期:2008-06-03 15、 [通信工程]基于小波分析的图象去噪 2004-06-25 09:07 35,840 中文摘要.doc2004-06-25 09:30 44,032 任务书.DOC2004-06-23 1... 类别:毕业论文 大小:1.53 MB 日期:2008-06-03 16、 [通信工程]单片机最小系统设计 摘 要近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知... 类别:毕业论文 大小:377 KB 日期:2008-05-27 17、 [通信工程]MCS-51 单片机温度控制系统 摘 要单片机在检测和控制系统中得到了广泛的应用,温度是一个系统经常需要测量、控制和保持的量,而温度是一个模拟量,不能直接与单片机交换信息,采用适当的技术将模拟的温度量转化为数字量在原理上虽然不困难... 类别:毕业论文 大小:258 KB 日期:2008-05-23

直流稳压电源,是没有问题的,帮你好的了。

直流稳压电源毕业论文设计

去"幸福校园"网站看看,那的论文很多引言:直流稳压电源一般分为线性和开关电源两类。对于单片机数字控制的电路系统,通常采用基于PWM控制的开关电源。而对于放大器的模拟放大系统,采用线性稳压电源则更具有优势,线性直流稳压电源具有稳压和滤波的双重作用,产生的干扰很小,随着集成电路技术的发展,较高输出电流和数值可调的集成稳压器相继出现,由此而构成的线性直流稳压电源结构简单,维修方便,功率200W以下时,整机的体积也不大。一般来讲,线性直流稳压电源的纹波抑制比,电压调整率和噪声抑制等性能比开关直流稳压电源要好,更重要的是工作可靠,故障率低,更适合于放大器的模拟控制系统。因此,针对电荷放大器的需要,本文提出了一种基于集成稳压器的多输出线性直流稳压电源的设计。方案设计:一 (1)总体方案:直流稳压电源一般是由电源变压器T,整流滤波电路和稳压电路所组成,一般原理如下面的框图所示: 根据功能的要求,总体设计方案如下:

直流稳压电源的毕业论文不算太难,去那个591论文网找几篇现成的拼凑一下就行。我论文就这么来的,然后还真就过了。。O(∩_∩)O~

这不是毕业论文嘛,才给这么点分!

稳压电源:能为负载提供稳定的交流电或直流电的电子装置

  • 索引序列
  • 直流稳压电路毕业论文参考文献
  • 直流稳压电源论文参考文献
  • 稳压电路论文参考文献
  • 数控稳压直流电源毕业论文
  • 直流稳压电源毕业论文设计
  • 返回顶部