数据挖掘的算法及技术的应用的研究论文
摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。
关键词: 数据挖掘; 技术; 应用;
引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。
一、数据挖掘概述
数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。
二、数据挖掘的基本过程
(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。
三、数据挖掘方法
1、聚集发现。
聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。
2、决策树。
这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。
四、数据挖掘的应用领域
4.1市场营销
市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。
4.2金融投资
典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。
结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。
参考文献
[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.
[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.
关于决策树算法,我打算分两篇来讲,一篇讲思想原理,另一篇直接撸码来分析算法。本篇为原理篇。 通过阅读这篇文章,你可以学到: 1、决策树的本质 2、决策树的构造过程 3、决策树的优化方向
决策树根据使用目的分为:分类树和回归树,其本质上是一样的。本文只讲分类树。
决策树,根据名字来解释就是,使用树型结构来模拟决策。 用图形表示就是下面这样。
其中椭圆形代表:特征或属性。长方形代表:类别结果。 面对一堆数据(含有特征和类别),决策树就是根据这些特征(椭圆形)来给数据归类(长方形) 例如,信用贷款问题,我根据《神奇动物在哪里》的剧情给银行造了个决策树模型,如下图:
然而,决定是否贷款可以根据很多特征,然麻鸡银行选择了:(1)是否房产价值>100w;(2)是否有其他值钱的抵押物;(3)月收入>10k;(4)是否结婚;这四个特征,来决定是否给予贷款。 先不管是否合理,但可以肯定的是,决策树做了特征选择工作,即选择出类别区分度高的特征。
由此可见, 决策树其实是一种特征选择方法。 (特征选择有多种,决策树属于嵌入型特征选择,以后或许会讲到,先给个图)即选择区分度高的特征子集。
那么, 从特征选择角度来看决策树,决策树就是嵌入型特征选择技术
同时,决策树也是机器学习中经典分类器算法,通过决策路径,最终能确定实例属于哪一类别。 那么, 从分类器角度来看决策树,决策树就是树型结构的分类模型
从人工智能知识表示法角度来看,决策树类似于if-then的产生式表示法。 那么, 从知识表示角度来看决策树,决策树就是if-then规则的集合
由上面的例子可知,麻鸡银行通过决策树模型来决定给哪些人贷款,这样决定贷款的流程就是固定的,而不由人的主观情感来决定。 那么, 从使用者角度来看决策树,决策树就是规范流程的方法
最后我们再来看看决策树的本质是什么已经不重要了。 决策树好像是一种思想,而通过应用在分类任务中从而成就了“决策树算法”。
下面内容还是继续讲解用于分类的“决策树算法”。
前面讲了决策树是一种 特征选择技术 。
既然决策树就是一种特征选择的方法,那么经典决策树算法其实就是使用了不同的特征选择方案。 如: (1)ID3:使用信息增益作为特征选择 (2)C4.5:使用信息增益率作为特征选择 (3)CART:使用GINI系数作为特征选择 具体选择的方法网上一大把,在这里我提供几个链接,不细讲。
但,不仅仅如此。 决策树作为嵌入型特征选择技术结合了特征选择和分类算法,根据特征选择如何生成分类模型也是决策树的一部分。 其生成过程基本如下:
根据这三个步骤,可以确定决策树由:(1)特征选择;(2)生成方法;(3)剪枝,组成。 决策树中学习算法与特征选择的关系如下图所示:
原始特征集合T:就是包含收集到的原始数据所有的特征,例如:麻瓜银行收集到与是否具有偿还能力的所有特征,如:是否结婚、是否拥有100w的房产、是否拥有汽车、是否有小孩、月收入是否>10k等等。 中间的虚线框就是特征选择过程,例如:ID3使用信息增益、C4.5使用信息增益率、CART使用GINI系数。 其中评价指标(如:信息增益)就是对特征的要求,特征需要满足这种条件(一般是某个阈值),才能被选择,而这一选择过程嵌入在学习算法中,最终被选择的特征子集也归到学习算法中去。 这就是抽象的决策树生成过程,不论哪种算法都是将这一抽象过程的具体化。 其具体算法我将留在下一篇文章来讲解。
而决策树的剪枝,其实用得不是很多,因为很多情况下随机森林能解决决策树带来的过拟合问题,因此在这里也不讲了。
决策树的优化主要也是围绕决策树生成过程的三个步骤来进行优化的。 树型结构,可想而知,算法效率决定于树的深度,优化这方面主要从特征选择方向上优化。 提高分类性能是最重要的优化目标,其主要也是特征选择。 面对过拟合问题,一般使用剪枝来优化,如:李国和基于决策树生成及剪枝的数据集优化及其应用。 同时,决策树有很多不足,如:多值偏向、计算效率低下、对数据空缺较为敏感等,这方面的优化也有很多,大部分也是特征选择方向,如:陈沛玲使用粗糙集进行特征降维。 由此,决策树的优化方向大多都是特征选择方向,像ID3、C4.5、CART都是基于特征选择进行优化。
参考文献 统计学习方法-李航 特征选择方法综述-李郅琴 决策树分类算法优化研究_陈沛玲 基于决策树生成及剪枝的数据集优化及其应用-李国和
关于决策树算法,我打算分两篇来讲,一篇讲思想原理,另一篇直接撸码来分析算法。本篇为原理篇。 通过阅读这篇文章,你可以学到: 1、决策树的本质 2、决策树的构造过程 3、决策树的优化方向
决策树根据使用目的分为:分类树和回归树,其本质上是一样的。本文只讲分类树。
决策树,根据名字来解释就是,使用树型结构来模拟决策。 用图形表示就是下面这样。
其中椭圆形代表:特征或属性。长方形代表:类别结果。 面对一堆数据(含有特征和类别),决策树就是根据这些特征(椭圆形)来给数据归类(长方形) 例如,信用贷款问题,我根据《神奇动物在哪里》的剧情给银行造了个决策树模型,如下图:
然而,决定是否贷款可以根据很多特征,然麻鸡银行选择了:(1)是否房产价值>100w;(2)是否有其他值钱的抵押物;(3)月收入>10k;(4)是否结婚;这四个特征,来决定是否给予贷款。 先不管是否合理,但可以肯定的是,决策树做了特征选择工作,即选择出类别区分度高的特征。
由此可见, 决策树其实是一种特征选择方法。 (特征选择有多种,决策树属于嵌入型特征选择,以后或许会讲到,先给个图)即选择区分度高的特征子集。
那么, 从特征选择角度来看决策树,决策树就是嵌入型特征选择技术
同时,决策树也是机器学习中经典分类器算法,通过决策路径,最终能确定实例属于哪一类别。 那么, 从分类器角度来看决策树,决策树就是树型结构的分类模型
从人工智能知识表示法角度来看,决策树类似于if-then的产生式表示法。 那么, 从知识表示角度来看决策树,决策树就是if-then规则的集合
由上面的例子可知,麻鸡银行通过决策树模型来决定给哪些人贷款,这样决定贷款的流程就是固定的,而不由人的主观情感来决定。 那么, 从使用者角度来看决策树,决策树就是规范流程的方法
最后我们再来看看决策树的本质是什么已经不重要了。 决策树好像是一种思想,而通过应用在分类任务中从而成就了“决策树算法”。
下面内容还是继续讲解用于分类的“决策树算法”。
前面讲了决策树是一种 特征选择技术 。
既然决策树就是一种特征选择的方法,那么经典决策树算法其实就是使用了不同的特征选择方案。 如: (1)ID3:使用信息增益作为特征选择 (2)C4.5:使用信息增益率作为特征选择 (3)CART:使用GINI系数作为特征选择 具体选择的方法网上一大把,在这里我提供几个链接,不细讲。
但,不仅仅如此。 决策树作为嵌入型特征选择技术结合了特征选择和分类算法,根据特征选择如何生成分类模型也是决策树的一部分。 其生成过程基本如下:
根据这三个步骤,可以确定决策树由:(1)特征选择;(2)生成方法;(3)剪枝,组成。 决策树中学习算法与特征选择的关系如下图所示:
原始特征集合T:就是包含收集到的原始数据所有的特征,例如:麻瓜银行收集到与是否具有偿还能力的所有特征,如:是否结婚、是否拥有100w的房产、是否拥有汽车、是否有小孩、月收入是否>10k等等。 中间的虚线框就是特征选择过程,例如:ID3使用信息增益、C4.5使用信息增益率、CART使用GINI系数。 其中评价指标(如:信息增益)就是对特征的要求,特征需要满足这种条件(一般是某个阈值),才能被选择,而这一选择过程嵌入在学习算法中,最终被选择的特征子集也归到学习算法中去。 这就是抽象的决策树生成过程,不论哪种算法都是将这一抽象过程的具体化。 其具体算法我将留在下一篇文章来讲解。
而决策树的剪枝,其实用得不是很多,因为很多情况下随机森林能解决决策树带来的过拟合问题,因此在这里也不讲了。
决策树的优化主要也是围绕决策树生成过程的三个步骤来进行优化的。 树型结构,可想而知,算法效率决定于树的深度,优化这方面主要从特征选择方向上优化。 提高分类性能是最重要的优化目标,其主要也是特征选择。 面对过拟合问题,一般使用剪枝来优化,如:李国和基于决策树生成及剪枝的数据集优化及其应用。 同时,决策树有很多不足,如:多值偏向、计算效率低下、对数据空缺较为敏感等,这方面的优化也有很多,大部分也是特征选择方向,如:陈沛玲使用粗糙集进行特征降维。 由此,决策树的优化方向大多都是特征选择方向,像ID3、C4.5、CART都是基于特征选择进行优化。
参考文献 统计学习方法-李航 特征选择方法综述-李郅琴 决策树分类算法优化研究_陈沛玲 基于决策树生成及剪枝的数据集优化及其应用-李国和
决策树算法有很多种,比喻有ID3(利用信息增益来选择决策变量),C4.5(利用信息增益率来选择决策变量),CART,chain以及quest等,不同的决策树适用情况也不一样,有机会可以多多交流。。
只用决策树一个模型写论文不可以。决策树是一个树结构。其非叶节点表示的是一个特征属性的测试,而每个分支代表了其父节点的特征属性在某个值域的输出。
基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件基于C++的即时通信软件设计 毕业论文+项目源码
你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向? 老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!学校的格式要求、写作规范要注意,否则很可能发回来重新改,你要还有什么不明白或不懂可以问我,希望你能够顺利毕业,迈向新的人生。 (一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法: 一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行: 第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。 第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。 第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。
计算机毕业设计 基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码 基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据 基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件 基于C++的即时通信软件设计 毕业论文+项目源码 基于JavaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件 基于Android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码 基于JSP+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件 基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件 基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码 基于QT的教务选课管理系统设计与实现 毕业论文+项目源码 基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码 基于Vue.js+Go的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据 基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件 基于Vue.js+SpringBoot+MyBatis+MySQL的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频 基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书 基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码 基于Python的电影数据可视化分析系统 设计报告+答辩PPT+项目源码 基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码 高校成绩管理数据库系统的设计与实现 毕业论文+项目源码 基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件 基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件 基于Python的语音词频提取云平台 设计报告+设计源码 在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码 基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件 基于Python的卷积神经网络的猫狗图像识别系统 课程报告+项目源码 基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码 基于JavaSSM的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件 基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件 基于Python_Django的社会实践活动管理系统设计与实现 毕业论文 基于Servlet WebSocket MySQL实现的网络在线考试系统 毕业论文+项目源码 基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件 基于SpringBoot+Vue和MySQL+Redis的网络课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码 基于Java的毕业设计题目收集系统 课程报告+项目源码 基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码 基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件 基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件 基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件 基于Java的长整数加减法算法设计 毕业论文+项目源码 基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码 基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码 基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码 基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件
摘要:运用决策树的方法,通过对企业物流方式的阐述,说明了企业物流自营与外包问题的决策分析过程。首先论述了企业物流自营和外包各自的优势;给出了物流外包决策的三个基本准则;并对企业物流外包进行决策分析;研究了安治化工实施物流外包的实际案例,详细地分析了物流外包的动因及产生的经济效益。最后,进行了总结。关键词:物流自营;物流外包;决策分析目前国内外关于自营与外包的研究绝大多数采用定性分析的方法,这种方法比较直观,但缺乏系统性和精确性,特别是对于比较复杂的决策问题,其决策的科学性受到质疑,决策结果的使用性较差。本文采用决策树的方法对物流自营与外包进行详尽分析,这种方法能够更加准确揭示企业物流运营模式内在机理,给出的企业物流自营与外包问题的决策分析过程更加接近实际,并还以安治化工为例进行了实证研究。1.企业物流外包决策分析物流外包决策是一个复杂的过程,决定是否将企业的物流业务外包,哪些项目外包,采取多大程度的外包?都是企业进行物流外包决策所面临的问题。1.1企业物流外包决策影响因素分析在供应链构建中,具体企业应根据企业的实际情况来确定是否将物流业务外包。笔者认为从分析每一项物流功能的战略性、企业针对此项物流功能的运作水平、运作能力这三个因素来分析是比较合理的。具体因素的意义如下:(1)系统战略性。即判断物流功能是否构成了企业的核心竞争力,对整个企业来说是否具有战略意义。(2)物流运作水平。主要指企业物流运作能力和管理控制能力,即是否具有成熟的物流经验,能否提高服务水平、降低物流成本。(3)企业物流能力。主要指企业开展物流业务的硬件能力,即是否具有设施、资金和人才能力。1.2企业物流外包决策树依据以上三个决策准则,画出物流外包的决策树,如图1所示。其决策结果如表1所示。(1)当物流子功能具有战略重要性,对企业的重要程度大时,一般将采取物流自营;而当物流子功能不具有战略重要性,对企业的重要程度不大时,一般考虑外包,使用第三方物流。针对自身的弱点,寻找合适的合作伙伴,提升竞争力。(2)物流子功能不具有战略重要性,对企业构筑核心竞争力的作用不大,且企业缺乏开展此项物流业务的设施、资金、人力,也没有相关运作经验,运作水平比较低时,就应该选择此项物流功能完全外包,这将有助于企业培养自身的竞争优势,提高客户服务水平。(3)当物流子功能具有战略重要性,对企业构筑核心竞争力的作用很大,且企业具有开展此项物流业务的实施、资金、人力,而且具有成熟的物流运作经验,能够实现成本领先时,就应该自营物流。1.3 物流外包的实施策略分析随着外部环境和企业自身资源条件的发展变化,物流地位和物流能力等因素发生变化后,企业的物流策略也会发生相应的改变,但通常情况下将不会构成企业核心竞争力。对企业重要性低且企业本身缺乏物流合作的资金、设施和物流运作能力的物流功能,选择优先外包。随着控制物流外包风险的能力和管理控制第三方物流的水平提高后,逐步扩大外包的程度(如图2);随着供应链管理的完善,第三方物流服务水平的进一步提高,实践中越来越多的企业使用单一的第三方物流公司提供全方位的系统化物流服务和物流解决方案,一方面便于双方的信息沟通和加强双方的合作关系,另一方面第三方物流服务绩效的评价、监控,能够更加有效地改进合作关系,提高服务水平,供应链管理下的企业物流战略将有新的发展。2.安治化工物流决策分析2.1安治化工简介安治化工NCH CHEMICAL是1919年成立的全球性跨国企业,总部设于美国,于1981年进入中国,总部设在上海。到现在为止,销售服务已遍布全国各大城市。近几年迅速扩张,业务量以每年30%的速度增长,以至于原来的物流体系已经远远跟不上发展的需要,物流运作的瓶颈凸现出来。因此优化价值链、提升企业物流运作水平成为安治化工的战略性选择。2.2安治化工物流外包决策过程2.2.1原有物流系统运营模式存在的问题及其原因(1)物流活动自营比重大,分散了企业核心业务的精力。从生产厂转运至各办事处及办事处直接发往客户的货物都是由办事处自备车辆完成,因而车辆空返率极高。各办事处为了完成各自的收、发货等服务职能,皆配备有18~20名工作人员,在当地自建或租赁仓库。大量的自备运力和仓储增大了企业物流费用。 (2)运输费用没有得到有效控制。由于管理缺乏力度,各办事处有独立的运输成本核算方法,一味的追求及时送货,因此不能做到批量送货,形成没有必要的迂回,造成不必要的浪费。而且由于部分员工乘送货之机办私事也影响了工作效率,增加了运输费用。(3)存在负利润物流。各办事处的销售量各不相同,大的业务量上千万,小的业务量只有几十万。而各办事处物流费用却相差无几,以至于有的办事处物流费用大于其销售收入,形成负利润物流。(4)顾客服务的满意度低。由于办事处过于分散,顾客订单满足率非常低,造成客户流失率升高。因为当同样的库存满足同样的市场需求的时候,库存越集中其满足度就越高。(5)为了提高客户满意度,整个系统库存过高。随着销售额的扩大,各地仓库的要货量也在上升,为了防止大面积缺货,并维持各个仓库的安全库存,从而保证客户满意度,各办事处向总部订货的数量更被放大,这就导致了牛鞭效应———分公司仓库的库存额大幅度增加,因此也就要求租用更大的仓库。(6)物流管理系统不完备。虽然上海总部有订单处理及库存管理系统,但各办事处的电脑、网络与软件基本上处于初级应用阶段,经常帐实不符。有时由于销售员在没有订单的前提下直接私自提货或由于库管人员疏于管理,导致与总部帐实不符情况频繁出现。上述物流活动问题的存在,分散了企业的总体精力,增加了物流费用,降低了生产利润率,严重阻碍了公司的发展。因此,该公司要重新进行物流系统规划,考虑是否将物流业务外包出去,并且如何进行外包。2.2.2利用决策树进行物流外包决策分析根据前面给出的三个决策准则来判断安治化工究竟要采取哪种决策路径来解决上面出现的种种问题,分析具体情况如表2所示。从表2可以看出,物流子系统对企业发展具有战略重要性,且企业既不具有物流运作水平,又没有物流运作的硬件设施,那么企业就应该寻找强有力的合作伙伴,通过建立战略联盟的伙伴关系来共担风险,共享收益,即选择决策路径4。针对目前物流工作中存在的问题,2006年开始,公司决定将运输和部分仓储外包于宅急送。2.2.3安治化工问题解决方案安治化工进行了以下几方面的改革,逐步解决以上一系列问题。(1)物流系统重构,建立直达配送体系;(2)实行商物分离,办事处只负责市场推广,取消各自的小仓库;(3)全国设4个区域配送中心,分别设在北京、上海、深圳、武汉;(4)产品从上海工厂经干线运输直接运至4个配送中心,各配送中心只负责本区域的产品配送;(5)与宅急送结成战略联盟伙伴关系,由其负责对安治化工产品的全部配送服务;(6)偏远地区存在的库存盲点以及受季节性波动导致的仓库资源不足,由宅急送负责存储、配送,并且从生产厂下线后直接运到宅急送的仓库。2.2.4物流外包实效分析实践证明,宅急送在资源管理、生产保证、优化成本方面发挥了重要的作用。宅急送作为第三方物流合作伙伴,通过高水平服务,物流成本最低,生产不停产,满足了安治化工的发展需要,分析如下:(1)建立了高效的、以条形码为核心的物流系统。安治化工投入了近百万元购买了设备和软件系统,实现异地配送中心和总部物流系统形成点对点的对接。一方面是企业决策层可以随时了解总部物流中心和异地配送中心的实时库存,从而保证了库存的最小化,降低库存资金积压;另一方面最大程度缩短了信息交流时间,减少了信息交流成本。(2)物流效率提高。对所有客户基本可以实现自确认客户订单后2天内到货的承诺,部分客户甚至可以实现当天到货,这将大大有利于企业的销售,有利于缩短资金周转周期;同时,有效提高了对高频率、小批量的零散订单的履行能力。原来产品送货单是手工填写,容易出现错误,而且工作量大,现在采用电脑打单,统一了格式,容易跟踪、结算方便。(3)仓库成本下降。首先,由于配送中心减至4个,仓库租金可以大幅下降。再者,由于进出库作业都是在条形码管理基础上完成,所以工作量大幅下降,营运人员由原来全国超过400人,减至现在不足170人,随之产生的人事费用也有显著下降。仓库总成本一年可节约200万元。(4)运输成本总体下降。由于安治化工将配送统一外包给宅急送,一方面降低了企业的管理难度,有利于提高企业的核心竞争力,另一方面实现了规模经济,也降低了物流成本,仅运输成本每年可节约100万元左右。(5)加快建立现代企业制度和推行ISO9000族标准管理模式。打破旧的思维模式,输入强烈的市场经济观念,用现代企业管理制度代替旧的管理模式,规范每一个作业环节、程序和责任人。3.结束语企业物流的外包与自营并不是绝对对立的,两者可以优势互补,共同服务于企业的发展。另外,企业在选择物流方式的时候,应该从实际情况出发,结合自身企业的核心竞争力、现有物流状况和物流外包市场的成熟程度等内外部因素来确定物流外包的范围和程度。一定要视自身的具体情况而定,既不可盲目地仿效大企业投资于自身物流建设,也不可忽视自身物流管理经验的积累和物流人才的培养,以符合企业长远发展的要求。
小学数学计算教学策略论文
在日常学习和工作生活中,大家都经常接触到论文吧,通过论文写作可以培养我们独立思考和创新的能力。如何写一篇有思想、有文采的论文呢?下面是我帮大家整理的小学数学计算教学策略论文,欢迎阅读,希望大家能够喜欢。
针对小学生在数学计算中经常出现的题目,引导学生进行反复的练习,增强小学生对数学的计算能力,提高小学数学教学的整体效率,从而促进小学生整体数学成绩的提升,实现小学数学教学的主要目标。
摘要:
数与计算是人们生活、学习、科学研究和生产实践中应用最广泛的一种数学方法;数与计算是人们认识客观世界和周围事物的重要工具之一;数与计算的学习对学生思维能力的发展有重要影响;学习数与计算的过程是培养和发展学生逻辑思维能力的过程。因此,教师要注重对“计算教学”相关教学策略的研究和掌握。
关键词:
小学数学;计算教学;方法
小学数学教学过程中不断融入了计算机教学的方法,部分教师认为计算机属于机械方面的操作,教师在日常教学的过程中利用计算机只需要输入公式便能得到相应的计算结果。在实际教学过程中,教师容易产生对教学策略的忽视,形成小学数学教学“高投资低效能”的结果,学生对数学题目的计算速度较慢,且准确度也不高,小学生整体数学计算效率低下。因此,作为小学数学教师需要在日常教学过程中加强对数学策略的探索,不断提升小学生的数学计算能力,促进小学生全面发展。
一、依据小学生身心发展特点进行教学
在小学数学计算教学过程中,教师一直采用传统的教学方法,学生对教师的教学方式较为生疏,从而造成了学生对教师教学方式的不理解,小学生整体数学计算能力较为低下。这样的教学方式与小学生身心发展特点相违背,不利于小学生对教师教学方法的理解。因此,作为小学数学教师,需要依据小学生身心发展的特点进行教学,改变以往生疏的教学方式,采用学生较为熟悉的方法进行数学计算教学,不断提高小学生的整体教学能力。针对低年级的学生,教师可以借助相关的工具,让学生能够从实践中获得数学计算方法,从而提升小学生整体数学计算能力。此外教师可以采用归纳计算的方法对学生进行教学,培养小学生数学思维能力,营造一个良好的教学氛围,让学生能够在相对轻松的氛围中进行数学知识的学习,从而不断提升数学能力。
然而小学高年级学生在长期的基础知识学习过程中,有了一定程度的理解能力。作为小学数学教师在对高年级学生进行数学教学过程中,可以引导学生观察数学题目,在乘法的教学过程中教师可以指导学生进行小数点的转换,两个相乘的因素同时扩大倍数,去掉小数点,然后所获得的结果再去掉所扩大倍数的乘积即可。此外,针对不同学生需要采取不同的指导,要充分尊重学生的个体差异性,通过加强对学生的题目联系来提高小学生的数学计算能力。这样的教学方式学生在学习的过程中能够很容易理解,在不断归纳总结的过程中能够掌握数学计算的方法,从而提升小学生的整体数学计算能力。
二、引导学生进行估算训练
在实际生活中,人们对估算的计算方法运用得较多,然而在小学教学过程中,教师往往注重精确计算的教学,使学生在估算能力上非常薄弱,造成小学数学教学缺乏实践性。因此,作为小学数学教师,在日常教学过程中,适当地对学生进行估算知识的教学,让学生在生活中形成估算的习惯,采用多种教学方式培养学生的估算技能。教师在进行估算教学的过程中,针对学生的估算结果,可以引导学生再进行精细的计算,检验估算的数字与实际数值之间存在的差距,在此过程中不但能够提升小学生的估算能力,还能检验学生的精细计算技能,从而提升小学生数学计算能力。此外,在数学教学的过程中教师需要引导学生进行课堂交流,对自身的计算方法与同学进行讨论,相互学习,实现共同进步。
三、教师引导学生进行错题分析
学生在学习过程中其实是不断实践的过程,能够对自身的学习能力进行不断地检验,小学生在数学知识的学习过程中需要对诸多的题目进行计算,在整个计算的过程中出现错误在所难免。尤其是低年级的学生,学生身心都处于发展的阶段,在课堂中,教师所教授的内容在课后很容易遗忘。例如,在数学计算过程中经常涉及加减法计算,学生在进行计算的时候很容易出现多加少减的现象,或者是在计算的过程中某些数字忘了书写,从而造成计算中的错误。因此,作为小学数学教师,在日常教学过程中要加强对小学生错题的集中分析,掌握小学生在数学计算过程中常见的错误,从而针对这些错误总结出相应的解决办法,将方法教授给学生,使学生在数学计算的过程中避免出现错误。
此外,教师要端正学生的学习态度,规范小学生的计算书写形式,避免学生由于书写潦草而出现答案上的错误,从根本上提高小学生的数学成绩。综上所述,小学生在数学学习过程中出现错误在所难免,要想提高学生的数学成绩,首先,作为小学数学教师需要转变自身的教学方式,在日常教学过程中教授给学生正确的学习方法,减少学生在数学计算过程中出现错误。此外,针对小学生在数学计算中经常出现的题目,引导学生进行反复的练习,增强小学生对数学的计算能力,提高小学数学教学的整体效率,从而促进小学生整体数学成绩的提升,实现小学数学教学的主要目标。
参考文献:
[1]戴阳.试论小学数学生活化教学策略[J].数学教学,2012(15).
[2]武清芳.浅谈小学数学生活化教学策略[J].教育在线,2013(10).
摘要: 如何培养小学生高效准确的计算能力,是小学教师的重点工作之一。计算能力与我们的生活和学习息息相关,而小学阶段,正是我们培养计算能力的最佳时期,因此,现代小学数学教学提出了一些符合现代小学计算教学的有效策略,并以此来提高小学生普遍较差的数学计算能力。
关键词: 小学数学;计算;教学策略
现代小学教学中,培养和发展学生的综合素质和专业技能是十分重要的,而计算能力是学生必须培养的能力之一,同样也是小学教学的基础内容。尽管《义务教育数学课程标准》降低了对学生的计算能力的要求,但计算能力对学生所体现出的积极促进作用是无法被改变的。因此,不断提高小学数学计算教学的有效性成为小学老师的重点工作之一。基于此,本文针对小学数学计算教学,提出了有效的教学策略。
一、传统数学计算教学存在的问题
第一,计算教学与生活不够密切。题海战术和大量题库的机械练习让学生失去对计算的兴趣,很多教师只是通过重复练习来培养提高学生的计算能力,并没有将计算教学同生活中的例子联系起来,这无法解决学生计算能力较差的根本问题。第二,课堂讲解同练习相分离。传统小学数学计算教学通常缺乏合理性,前半节课运算法则的讲解加上后半节课学生自己做练习的单一模式无法提高学生的计算兴趣,很容易使学生产生抵触心理。第三,学生综合能力欠缺。现实教学在教学过程中重结果,轻过程,过分注重学生的应试能力,而忽略了学生个人的情感变化,没有注重提高学生的综合素质和专业技能,从而无法提高计算能力。第四,单一的`题海战术。受应试教育的影响,只注重计算结果而忽略过程的教学方法让学生对数学失去兴趣,这些都是目前亟待解决的问题。
二、提高小学数学计算的具体教学策略
1、教材内容是重点
教师必须深入分析教材内容,在深刻了解教材背后隐藏含义的基础上,积极展开教学活动。第一,了解教材知识体系,系统总结教材知识,完整构建知识网络。第二,合理分析教材中的重难点,选取与教学目标相匹配的教学内容。第三,根据现代教学新课改的要求,在教学过程中有针对性地进行预测、做出准备。例如,关于四则运算的教学过程中,教师应注重领导学生多做常见题型,并结合应用题型,以此来提高学生的综合能力及专业技巧。教师应以课本为主体,关注学生的心理状态和需求,加强与学生之间的交流,使学生主动接受教学内容,自主培养学习能力,通过计算练习培养学生灵活计算、举一反三的能力。
2、注意课堂中的情境教学模式
小学生很难在课堂上集中注意力,他们自制力差,好奇心重,因此,在进行教学时,教师要积极创造教学环境,不能直接运用传统的教学方法,让学生失去兴趣。在计算教学中,教师应该切合实际,将数学知识导入课堂,引起学生的兴趣和注意力。例如,在学习除法运算时,教师可以利用实物如苹果或者梨子来进行教学演示,请同学上台将9个苹果平均分成3份,得到9÷3=3的结果,实践中的学习能够巩固和加深学生对于计算的理解和记忆,这对提高学生计算能力有着十分重要的意义。生活化的情景教学模式能够逐步改变学生对计算的看法,让他们意识到计算在生活中的实际广泛应用,也能达到提高学生主动计算、积极计算的目的。首先,增强学生主动将实际生活与计算教学内容联系的意识。例如,教师可以在课堂设置以下教学场景:“假期某某学生计划与妈妈去看电影,儿童票半价,成人票售价35元一张,同时购买了一些零食,请同学计算此次看电影总共消费多少钱?”例如此类与生活息息相关的计算问题,能够让学生意识到计算能力在生活中的重要性与实用性,改变学生对计算的看法。
3、引导同学之间的计算交流
教师可以在教学过程中,充分利用学习小组提高和培养学生的计算能力和专业技巧。首先,布置一定复杂性的练习题,这就要求学生必须通过学习小组的交流合作共同完成作业,而教师需要做的就是提前按照一定条件合理分配好学习小组。其次,在学生自己完成计算习题时,教师应主动引导学生交流合作、提出意见、总结计算方法、得出正确结论。在此过程中,一方面,教师引导学生得出正确的答案,另一方面,也是最关键的,通过学习小组,学生能够主动发表意见和看法,并积极听取其他同学的理解和认识,既能利用自己掌握的计算技巧进行计算,又能吸取借鉴别人的计算技巧和思维方式,并最终将别人的高效学习技巧转变为自己的能力,最终达到培养计算能力的目的。
4、注重因材施教的教学方法
面对不同学生学习水平和理解能力的差异,应开展不同的教学形式,以下是具体的几种有利于提高小学生数学计算的具体方式:第一个,做游戏。通常情况下,儿童的专注力很难投入到课堂中去,他们的注意力很容易被周围环境所影响,而没有哪个儿童不喜欢做游戏,针对低年级的拼音教学,这种做游戏的形式能够让他们积极主动地参与到学习中。第二个,会表演。例如,在讲到龟兔赛跑这一课时,教师可以让同学们角色扮演,分别饰演文章中的小白兔和小乌龟,老师可以充当解说员,这样一来,台上表演的同学积极投入到课堂表演,而台下的同学也认真观看表演。在此基础上,学生们可以对教学内容有更深的理解和感悟。第三,比赛式,小学生争强好胜,在数学课堂中,可以根据教材特点,开展小型的学习比赛,这种比赛式的教学方法能够刺激学生的积极性。例如说具体奖励发纪念章或小红花,效果会更好。
5、重视巩固练习
通过练习,一方面,能够直接提高学生的计算能力,另一方面,能够在锻炼中培养学生的创造性思维能力,发展学生的自主学习意识,对于数学计算来说,这是强化学习效果的必要手段。而教师需要注意以下几点:第一,正确科学评估学生的易错点,通过练习题让学生掌握基本算法,并进行及时的练习检测,期间,教师应主动讲解做题思路和解题技巧。第二,课后练习题尤为重要,教师应根据学生的课堂表现和检测结果有针对地布置巩固练习习题。例如,如果学生对异分母分数的加减法中通分和约分认识的不够透彻,掌握的不够牢固,对此,教师可以进行相应的专项训练,以此来达到巩固练习的最终目的。
三、总结
总的来说,在新课改的大背景下,我国的教育体制对小学数学教学,更加注重综合素质的培养和专业技能的发展。小学教学内容和目标也相应地做出了调整,只有在发现和改善目前教学过程中存在问题的前提下,完善创新教材内容和教学方法、不断巩固练习,才能达到提高小学计算能力的目的。
作者:
李淑珍
单位:
宁夏西吉县将台乡将台小学
参考文献:
[1]倪品.小学数学计算教学策略的探究[J].考试周刊,2014,(12):78.
[2]孔祥红.也谈小学数学计算教学策略[J].关爱明天,2015,(7):379-379.
[3]王艳.浅谈小学数学计算教学策略思考[J].读与写(上,下旬),2015,(12):207-207.
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :