人脸识别,就是在拍照的时候,相机能够识别人脸所在部位,然后将焦点定位在人脸部位,使所拍相片人像更加清晰。并且支持,多点识别,就是可以识别多人人脸。
人脸识别,人脸识别是基于人的面部信息特征的一种生物识别技术,广义上来说包括人像图像采集检测、人脸图像预处理、人脸图像特征提取、人脸图像识别与匹配等方面。而我们生活中所谈到的“人脸识别”通常指基于面部信息的身份验证。
人脸识别的整个技术流程一般而言是通过硬件物理设备(如相机、监控摄像头等)获取面部图像,得到相应的数据后,计算机将对数据进行预处理,如光线的补偿、灰度变换等操作,让计算机在“01世界”中更好地“读懂”信息。
预处理后,通过相应的核心算法进行数据加工,从而得到最终的结果并将其与数据库中存储的信息进行比对,若结果在特定的阈值(即大小范围)内则认为比对成功。
人脸识别技术应用
1、企业、住宅安全和管理。如人脸识别门禁考勤系统,人脸识别防盗门等。
2、电子护照及身份证。这或许是未来规模最大的应用。在国际民航组织(ICAO)已确定,从2010年4月1日起,其118个成员国家和地区,人脸识别技术是首推识别模式,该规定已经成为国际标准。
3、公安、司法和刑侦。如利用人脸识别系统和网络,在全国范围内搜捕逃犯。
4、自助服务。如银行的自动提款机,如果同时应用人脸识别就会避免被他人盗取现金现象的发生。
5、信息安全。如计算机登录、电子政务和电子商务。在电子商务中交易全部在网上完成,电子政务中的很多审批流程也都搬到了网上。而当前,交易或者审批的授权都是靠密码来实现。如果密码被盗,就无法保证安全。如果使用生物特征,就可以做到当事人在网上的数字身份和真实身份统一。
以手机人脸识别为列,人脸识别一体机原理:
1、手机人脸识别的原理是用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别。
2、人脸识别系统的研究始于20世纪60年代,20世纪80年代以后,随着计算机技术和光学成像技术的发展,人脸识别系统得到了不断的改进;然而,在20世纪90年代末,它真正进入了初步的应用阶段,主要在美国、德国和日本实现。
3、人脸识别系统成功的关键在于是否具有先进的核心算法,使识别结果具有实际的识别率和识别速度;“人脸识别系统”集成了人工智能、机器识别、机器学习等多种专业技术。
同时,还需要结合中间值处理的理论和实现,这是生物识别的最新应用,其核心技术的实现体现了从弱人工智能到强人工智能的转变。
扩展资料:
一、人脸识别的优点:
在于其自然性和不被被测个体察觉的特点。所谓自然性,是指该识别方式同人类(甚至其他生物)进行个体识别时所利用的生物特征相同。例如人脸识别,人类也是通过观察比较人脸区分和确认身份的。
此外,还有语音识别、体形识别等,而指纹识别、虹膜识别等都不是自然的,因为人类或其他生物并没有通过这样的生物特征来区分个体。
二、人脸识别困难:
人脸识别被认为是生物特征学乃至人工智能领域最困难的研究课题之一,人脸识别的困难主要是由于人脸作为生物特征的特性造成的。
参考资料来源:
百度百科-人脸识别
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术,通常也叫做人像识别、面部识别。
ai软件提取不到人脸或者识别一直失败有网络状况、光线状况、软件版本等原因;1.网络状况:设备没有链接网络,或信号太差,无法把录入的数据上传到终端,不能执行下一步指令;2.光线状况:在人脸识别时,所处环境较暗,设备无法清晰辨别人脸;3.系统推送最新的软件版本,设备没有更新,影响数据传送到终端。
在回答题主的问题的时候,我觉得应该注意做『科研』和做『产品』之间的区别。论文中汇报的人脸识别技术是属于科研的行列。比如在LFW上99.7%,这种数字的意义更多是让搞研究的那个圈子里面的人更加直观的了解到一些情况,你也知道,通常来说这个准确率是非常高的了,所以我们可以说『人脸识别技术在LFW上已经很成熟了』,但是一模一样的技术,拿到真实环境下得到的准确率可能只有75%……也许会有些人觉得这是很可笑的,不,请不要笑,这是科研圈里朋友的普遍做法,不是没有苦衷的。捣腾过LFW的朋友其实心里都清楚,这并不是一个很好的数据库。图片都是从网上下载的,人脸的质量也是千差万别,有人说这样才接近真实情况……但实际上距离大部分的实际应用场景还是太远了。目前评价科研中算法的优劣的唯一方法就是找一个数据集,然后大家一起对比,数据集的不同算法得到的结果也会不同,然而……论文上通常是有报喜不报忧的恶习的,所以常常会有不公平的对比存在,随着越来越多更大的人脸数据集的慢慢增加,对于算法的评价会可能会变得稍微公平一些……即便是这样,论文里所谓的人脸识别技术,跟可用的『产品』之间的差距仍然很大。这并不是说论文的算法不好,而是『产品』的天性。大部分产品都是针对性的解决一类或几类问题,产品讲究是速度,稳定性,成本,等等,不同的产品通常可以加入不同的先验甚至额外的硬件来提升产品的可用性。这是做『产品』和做『科研』的区别。举两个容易理解的例子:某著名手机厂商想开发一个自己的人脸解锁功能,在第一次使用手机的时候,经过一个人脸注册的过程,记录下手机主人的样子,在之后的使用中如果被触发,就进行人脸验证,解锁。这里你如果上来一个几十层网络的卷积网络,这个是不行的……因为速度很重要,内存也重要,如果你一个网络模型一上来就已经几十兆几百兆了,产品经理会疯的。做产品的往往是想在保证用户体验的情况下,使用最少的资源。所以最后的产品可能是……下面是我瞎掰的……检测到人脸,检测五官的基本landmark,然后通过几何关系约束来缩小识别范围,再用简单的特征比如LBP,在一个一千张主人人脸的数据库进行验证,验证里可能有各种trick,并且这个一千张人脸的数据库也是实时更新的,比如当前识别正确了,那么就加入进去,如果识别错了,就把这个数据提取特征作为反例存起来……一个可用的产品总是包含了很多看似没有道理的trick的,但是就是这些构成了产品的核心技术。另外一个例子,做人脸识别,但是是做煤矿工的……请自行脑补一脸煤的辛苦矿工。在这个场景下面,你连人脸检测都没法弄啊……加上光照和脸上煤的干扰,论文上的算法基本上是没办法用的。如果是你,你怎么去做识别?做一个产品的时候,思路是需要很开阔的。比如人脸的检测实际上是可以通过双目视觉来做的,两个廉价摄像头,简单的算法通过三角化得到一个稀疏的深度图,利用深度信息来做人脸的检测,然后基于眼睛和嘴唇来做识别,眼睛和嘴的识别可以用卷积网络来做,但是真是的产品里面可能还会考虑身高信息,当然,在洞里还需要考虑补光的问题……
写设计系统方面的就可以了。之前也是苦于写不出,还是学姐给的文方网,写的《人脸识别系统的研究与实现——图像获取、定位、特征提取和特征识别》,很专业的说人寿保险老业务综合处理系统的设计与实现输油泵机组远程监测及诊断系统设计与实现FORTRAN语言题库管理系统的设计与实现大中型企业网络会计信息系统的设计与实现住房改革管理信息系统的设计与实现DMS-2002型轮机模拟器船舶电力系统故障模拟的研制与实现利用MATLAB基于频率法实现系统串联校正基于红外线检测的停车场智能引导系统研究与实现网络选课系统研究与实现基于人脸识别技术的身份认证系统实现简介基于三维技术的城市工程地质信息系统设计与实现大型烧结机整粒自动控制系统的实现基于B/S模式的药品信息咨询系统的设计与实现使用UML实现学生注册管理系统需求建模基于UML实现三层C/S结构系统的架构基于MuitiGen机载导弹地面训练虚拟现实系统的实现基于Web Service技术实现大型系统集成图书管理系统的设计与实现基于Lucene的电子文档管理系统的设计与实现编组钩计划演示系统设计与实现网络型监控系统的设计与实现热量计多路数据采集系统的设计与实现铁路计量管理信息系统的设计与实现基于ARM的嵌入式绣花机系统的软件实现机载SAR监控系统的设计与实现基于B/S模式的教师信息管理系统的设计与实现一种教学机器人控制系统的设计与实现基于智能Agent的用户个性化检索系统的实现矿井通风实验装置监测监控系统软件的设计与实现基于J2EE的网上考试系统设计与实现基于21554的无主多处理器系统实现列车接近防护系统的设计与实现研究生教育网络管理系统的设计与实现嵌入式电力监控系统的研究与实现博硕士论文远程提交及检索系统功能模块的组成和实现基于Extranet和构件的造纸企业产品数据管理系统设计与实现DVB-C系统中两种滤波器的FPGA实现VC++实现基于工控机与单片机串行通讯的监控系统ERP系统用户权限的全动态配置研究及实现政府宏观决策信息网络系统的设计与实现基于CC1020芯片无线传输系统的设计与实现具有主动功能的连锁经营企业配送中心管理信息系统的设计与实现DLP背投系统的研究及在高速公路监控系统的实现学生评教系统的设计与实现微小型电动无人机动力系统试验台的设计与实现全集成船舶主机遥控系统的研究及实现
人脸识别的原理是使用者首先需要采集自己的人脸特征信息,在应用的过程中,使用摄像头获取当前人物的面相特征。最后将当前捕获到的人像特征与之前存储的人脸数据档案进行对比。人脸识别技术经历了20多年的发展历史,从最初的2D识别到现在的3D识别,识别精度达到了99%以上,未来以3D是主流,而且会是融合方案,就是为了提高识别的精准度和应用场景,他会同时用多个摄像头。人脸识别主要是靠硬件进步+AI来推动,在硬件方面主要是这几种:1、3D结构光:通过近红外激光器,将具有一定结构特征的光线投射到被拍摄物体上,再由专门的红外摄像头进行采集。这种具备一定结构的光线,会因被摄物体的不同深度区域,而采集不同的图像相位信息,然后通过运算单元将这种结构的变化换算成深度信息,以此来获得三维结构。3D结构光的好处就是精准度高,但是有个bug就是,对距离有要求,要隔得近才能识别,大家可以试试自己手机的识别距离,所以适合做前置摄像头。2、TOF是飞行时间(Time of Flight)技术的缩写,其原理是:传感器发出经调制的脉冲红外光,遇物体后反射,传感器通过计算光线发射和反射时间差或相位差,来换算被拍摄景物的距离,以产生深度信息,此外再结合传统的相机拍摄,就能将物体的三维轮廓以不同颜色代表不同距离的地形图方式呈现出来
在学术论文中,引言是用相对简短的篇幅来勾勒全文的基本内容和轮廓。 eg: 研究方向:人脸识别 背景设定:假定此时所有已提出的方法都是基于手工特征 当前问题:识别率不准确 提出方法:利用深度学习解决 1.用一句话引出当前已经提出的属于本文研究领域的方法。 xxx can be categorized into three fields: xxx, xxx, and xxx xxx is/ are/ becomes very popular in xxx field since xxx 总结归纳: 2.概述目前已有的经典工作 总结各工作时,一般需要1-2句,不宜过长。总结时,需根据论文的研究内容,概述各工作的主要相关方法和优缺点。 3.总结目前已有的经典工作所存的问题。 一般来说,这一部分需要总结与本文内容相关的问题,并以此引出本文的Motivation。 本文研究综述段落包含了研究目的、方法和实验设计。 根据上段最后总结的现有方法的主要问题,提出本文的研究目的。 to address / solve / deal with xxx , this paper presents / proposes xxx in this paper , we aims to xxx by xxx As a consequence, this paper xxx 提出具体的解决方案。 提出验证方案 摘要和结论部分均属于总结性质的章节,完成全文其他部分,最后再进行摘要和结论的撰写。
人脸识别是一个被广泛研究着的热门问题,大量的研究论文层出不穷,晓电晓受晓受晓晓晓多晓电晓米晓受晓联晓受晓零晓电晓受晓米晓多晓晓e少量惠量量e米惠d量晓晓受晓晓晓晓米晓晓多晓少米受在一定程度上有泛滥成“灾”之嫌。为了更好地对人脸识别研究的历史和现状进行介绍,本文将AFR的研究历史按照研究内容、技术芳珐等方面的特点大体划分为三个时间阶段,如表受所示。该表格概括了人脸识别研究的发展简史及其每个历史阶段代表性的研究工作及其技术特点。下面对三个阶段的研究进展情况作简单介绍: 第一阶段(受惠米联年~受惠惠零年) 这一阶段人脸识别通常只是作为一个一般性的模式识别问题来研究,所采用的主要技术方案是基于人脸几何结构特征(Geometricfeature based)的芳珐。这集中体现在人们对于剪影(Profile)的研究上,人们对面部剪影曲线的结构特征提取与分析方面进行了大量研究。人工神经网络也一度曾经被研究人员用于人脸识别问题中。较早从事AFR研究的研究人员除了布莱索(Bledsoe)外还有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(Kanade Takeo)等。金出武雄于受惠少晓年在京都大学完成了第一篇AFR方面的博士论文,直到现在,作为卡内基-梅隆大学(CMU)机器人研究院的一名教授,仍然是人脸识别领域的活跃人物之一。他所在的研究组也是人脸识别领域的一支重要力量。总体而言,这一阶段是人脸识别研究的初级阶段,非常重要的成果不是很多,也基本没有获得实际应用。 第二阶段(受惠惠受年~受惠惠少年) 这一阶段尽管时间相对短暂,但却是人脸识别研究的高潮期,可谓硕果累累:不但诞生了若干代表性的人脸识别算法,美国军方还组织了著名的FERET人脸识别算法测试,并出现了若干伤业化运作的人脸识别系统,比如最为著名的Visionics(现为Identix)的FaceIt系统。 美国麻省理工学院(MIT)媒体实验室的特克(Turk)和潘特兰德(Pentland)提出的“特征脸”芳珐无疑是这一时期内最负盛名的人脸识别芳珐。其后的很多人脸识别技术都或多或少与特征脸有关系,现在特征脸已经与归一化的协相关量(NormalizedCorrelation)芳珐一道成为人脸识别的性能测试基准算法。 这一时期的另一个重要工作是麻省理工学院人工智能实验室的布鲁内里(Brunelli)和波基奥(Poggio)于受惠惠电年左右做的一个对比实验,他们对比了基于结构特征的芳珐与基于模板匹配的芳珐的识别性能,并给出了一个比较确定的结论:模板匹配的芳珐优于基于特征的芳珐。这一导向性的结论与特征脸共同作用,基本中止了纯粹的基于结构特征的人脸识别芳珐研究,并在很大程度上促进了基于表观(Appearance-based)的线性子空间建模和基于统计模式识别技术的人脸识别芳珐的发展,使其逐渐成为主流的人脸识别技术。 贝尔胡米尔(Belhumeur)等提出的Fisherface人脸识别芳珐是这一时期的另一重要成果。该芳珐首先采用主成分分析(PrincipalComponent Analysis,PCA,亦即特征脸)对图像表观特征进行降维。在此基础上,采用线性判别分析(LinearDiscriminant Analysis, LDA)的芳珐变换降维后的主成分以期获得“尽量大的类间散度和尽量小的类内散度”。该芳珐目前仍然是主流的人脸识别芳珐之一,产生了很多不同的变种,比如零空间法、子空间判别模型、增强判别模型、直接的LDA判别芳珐以及近期的一些基于核学习的改进策略。 麻省理工学院的马哈丹(Moghaddam)则在特征脸的基础上,提出了基于双子空间进行贝叶斯概率估计的人脸识别芳珐。该芳珐通过“作差法”,将两幅人脸图像对的相似度计算问题转换为一个两类(类内差和类间差)分类问题,类内差和类间差数据都要首先通过主成分分析(PCA)技术进行降维,计算两个类别的类条件概率密度,最后通过贝叶斯决策(最大似然或者最大后验概率)的芳珐来进行人脸识别。 人脸识别中的另一种重要芳珐——弹性图匹配技术(Elastic GraphMatching,EGM) 也是在这一阶段提出的。其基本思想是用一个属性图来描述人脸:属性图的顶点代表面部关键特征点,其属性为相应特征点处的多分辨率、多方向局部特征——Gabor变换【受电】特征,称为Jet;边的属性则为不同特征点之间的几何关系。对任意输入人脸图像,弹性图匹配通过一种优化馊索策略来定位预先定义的若干面部关键特征点,同时提取它们的Jet特征,得到输入图像的属性图。最后通过计算其与已知人脸属性图的相似度来完成识别过程。该芳珐的优点是既保留了面部的全局结构特征,也对人脸的关键局部特征进行了建模。近来还出现了一些对该芳珐的扩展。 局部特征分析技术是由洛克菲勒大学(RockefellerUniversity)的艾提克(Atick)等人提出的。LFA在本质上是一种基于统计的低维对象描述芳珐,与只能提取全局特征而且不能保留局部拓扑结构的PCA相比,LFA在全局PCA描述的基础上提取的特征是局部的,并能够同时保留全局拓扑信息,从而具有更佳的描述和判别能力。LFA技术已伤业化为著名的FaceIt系统,因此后期没有发表新的学术进展。 由美国国防部反技术发展计划办公室资助的FERET项目无疑是该阶段内的一个至关重要的事件。FERET项目的目标是要开发能够为安全、情报和执法部门使用的AFR技术。该项目包括三部分内容:资助若干项人脸识别研究、创建FERET人脸图像数据库、组织FERET人脸识别性能评测。该项目分别于受惠惠联年,受惠惠多年和受惠惠米年组织了晓次人脸识别评测,几种最知名的人脸识别算法都参家了测试,极大地促进了这些算法的改进和实用化。该测试的另一个重要贡献是给出了人脸识别的进一步发展方向:光照、姿态等非理想采集条件下的人脸识别问题逐渐成为热点的研究方向。 柔性模型(Flexible Models)——包括主动形状模型(ASM)和主动表观模型(AAM)是这一时期内在人脸建模方面的一个重要贡献。ASM/AAM将人脸描述为电D形状和纹理两个分离的部分,分别用统计的芳珐进行建模(PCA),然后再进一步通过PCA将二者融合起来对人脸进行统计建模。柔性模型具有良好的人脸合成能力,可以采用基于合成的图像分析技术来对人脸图像进行特征提取与建模。柔性模型目前已被广泛用于人脸特征对准(FaceAlignment)和识别中,并出现了很多的改进模型。 总体而言,这一阶段的人脸识别技术发展非常迅速,所提出的算法在较理想图像采集条件、对象配合、中小规模正面人脸数据库上达到了非常好的性能,也因此出现了若干知名的人脸识别伤业公司。从技术方案上看, 电D人脸图像线性子空间判别分析、统计表观模型、统计模式识别芳珐是这一阶段内的主流技术。 第三阶段(受惠惠量年~现在) FERET’惠米人脸识别算法评估表明:主流的人脸识别技术对光照、姿态等由于非理想采集条件或者对象不配合造成的变化鲁棒性比较差。因此,光照、姿态问题逐渐成为研究热点。与此同时,人脸识别的伤业系统进一步发展。为此,美国军方在FERET测试的基础上分别于电零零零年和电零零电年组织了两次伤业系统评测。 基奥盖蒂斯(Georghiades)等人提出的基于光照锥 (Illumination Cones) 模型的多姿态、多光照条件人脸识别芳珐是这一时期的重要成果之一,他们证明了一个重要结论:同一人脸在同一视角、不同光照条件下的所有图像在图像空间中形成一个凸锥——即光照锥。为了能够从少量未知光照条件的人脸图像中计算光照锥,他们还对传统的光度立体视觉芳珐进行了扩展,能够在朗博模型、凸表面和远点光源假设条件下,根据未知光照条件的少幅同一视点图像恢复物体的晓D形状和表面点的表面反射系数(传统光度立体视觉能够根据给定的晓幅已知光照条件的图像恢复物体表面的法向量方向),从而可以容易地合成该视角下任意光照条件的图像,完成光照锥的计算。识别则通过计算输入图像到每个光照锥的距离来完成。 以支持向量机为代表的统计学习理论也在这一时期内被应用到了人脸识别与确认中来。支持向量机是一个两类分类器,而人脸识别则是一个多类问题。通常有三种策略解决这个问题,即:类内差/类间差法、一对多法(one-to-rest)和一对一法(one-to-one)。 布兰兹(Blanz)和维特(Vetter)等提出的基于晓D变形(晓D Morphable Model)模型的多姿态、多光照条件人脸图像分析与识别芳珐是这一阶段内一项开创性的工作。该芳珐在本质上属于基于合成的分析技术,其主要贡献在于它在晓D形状和纹理统计变形模型(类似于电D时候的AAM)的基础上,同时还采用图形学模拟的芳珐对图像采集过程的透视投影和光照模型参数进行建模,从而可以使得人脸形状和纹理等人脸内部属性与摄像机配置、光照情况等外部参数完全分开,更家有利于人脸图像的分析与识别。Blanz的实验表明,该芳珐在CMU-PIE(多姿态、光照和表情)人脸库和FERET多姿态人脸库上都达到了相当高的识别率,证明了该芳珐的有效性。 电零零受年的国际计算机视觉大会(ICCV)上,康柏研究院的研究员维奥拉(Viola)和琼斯(Jones)展示了他们的一个基于简单矩形特征和AdaBoost的实时人脸检测系统,在CIF格式上检测准正面人脸的速度达到了每秒受多帧以上。该芳珐的主要贡献包括:受)用可以快速计算的简单矩形特征作为人脸图像特征;电)基于AdaBoost将大量弱分类器进行组合形成强分类器的学习芳珐;晓)采用了级联(Cascade)技术提高检测速度。目前,基于这种人脸/非人脸学习的策略已经能够实现准实时的多姿态人脸检测与跟踪。这为后端的人脸识别提供了良好的基础。 沙苏哈(Shashua)等于电零零受年提出了一种基于伤图像【受晓】的人脸图像识别与绘制技术。该技术是一种基于特定对象类图像集合学习的绘制技术,能够根据训练集合中的少量不同光照的图像,合成任意输入人脸图像在各种光照条件下的合成图像。基于此,沙苏哈等还给出了对各种光照条件不变的人脸签名(Signature)图像的定义,可以用于光照不变的人脸识别,实验表明了其有效性。 巴斯里(Basri)和雅各布(Jacobs)则利用球面谐波(Spherical Harmonics)表示光照、用卷积过程描述朗博反射的芳珐解析地证明了一个重要的结论:由任意远点光源获得的所有朗博反射函数的集合形成一个线性子空间。这意味着一个凸的朗博表面物体在各种光照条件下的图像集合可以用一个低维的线性子空间来近似。这不仅与先前的光照统计建模芳珐的经验实验结果相吻合,更进一步从理论上促进了线性子空间对象识别芳珐的发展。而且,这使得用凸优化芳珐来强制光照函数非负成为可能,为光照问题的解决提供了重要思路。 FERET项目之后,涌现了若干人脸识别伤业系统。美国国防部有关部门进一步组织了针对人脸识别伤业系统的评测FRVT,至今已经举办了两次:FRVT电零零零和FRVT电零零电。这两次测试一方面对知名的人脸识别系统进行了性能比较,例如FRVT电零零电测试就表明Cognitec, Identix和Eyematic三个伤业铲品遥遥领先于其他系统,而它们之间的差别不大。另一方面则全面总结了人脸识别技术发展的现状:较理想条件下(正面签证照),针对晓少联晓少人受电受,多量惠 幅图像的人脸识别(Identification)最高首选识别率为少晓%,人脸验证(Verification)的等错误率(EER【受联】)大约为米%。FRVT测试的另一个重要贡献是还进一步指出了目前的人脸识别算法亟待解决的若干问题。例如,FRVT电零零电测试就表明:目前的人脸识别伤业系统的性能仍然对于室内外光照变化、姿态、时间跨度等变化条件非常敏感,大规模人脸库上的有效识别问题也很严重,这些问题都仍然需要进一步的努力。 总体而言,目前非理想成像条件下(尤其是光照和姿态)、对象不配合、大规模人脸数据库上的人脸识别问题逐渐成为研究的热点问题。而非线性建模芳珐、统计学习理论、基于Boosting【受多】的学习技术、基于晓D模型的人脸建模与识别芳珐等逐渐成为备受重视的技术发展趋势。 总而言之, 人脸识别是一项既有科学研究价值,又有广泛应用前景的研究课题。国际上大量研究人员几十年的研究取得了丰硕的研究成果,自动人脸识别技术已经在某些限定条件下得到了成功应用。这些成果更家深了我们对于自动人脸识别这个问题的理解,尤其是对其挑战性的认识。尽管在海量人脸数据比对速度甚至精度方面,现有的自动人脸识别系统可能已经超过了人类,但对于复杂变化条件下的一般人脸识别问题,自动人脸识别系统的鲁棒性和准确度还远不及人类。这种差距产生的本质原因现在还不得而知,毕竟我们对于人类自身的视觉系统的认识还十分肤浅。但从模式识别和计算机视觉等学科的角度判断,这既可能意味着我们尚未找到对面部信息进行合理采样的有效传感器(考虑单目摄像机与人类双眼系统的差别),更可能意味着我们采用了不合适的人脸建模芳珐(人脸的内部表示问题),还有可能意味着我们并没有认识到自动人脸识别技术所能够达到的极限精度。但无论如何,赋予计算设备与人类似的人脸识别能力是众多该领域研究人员的梦想。相信随着研究的继续深入,我们的认识应该能够更家准确地逼近这些问题的正确答案。
可以。 毕业论文是可以用别人训练出来的,但是自己也要有创新,不能全部使用,不然是不会过的。毕业论文(graduation study)是专科及以上学历教育为对本专业学生集中进行科学研究训练而要求学生在毕业前撰写的论文。毕业论文一般安排在修业的最后一学年(学期)进行,论文题目由教师指定或由学生提出,学生选定课题后进行研究,撰写并提交论文,目的在于培养学生的科学研究能力,加强综合运用所学知识、理论和技能解决实际问题的训练,从总体上考查学生大学阶段学习所达到的学业水平。
llery images是用于训练还是测确比较多
probe images :是指测试的图像gallery images:是训练的图像
==你是本科还是硕士啊论文的话应该主要是算法的研究和改进吧……问题比如:你采用了哪种人脸识别算法你对这种算法的改进在哪里(你不只要说明改进在哪里可能还需要做一些实验收集下数据来对比说明算法在改进后对性能有了提升)新算法比其他算法好在哪里(还是通过实验收集数据对比一下)分析下算法的复杂度(时间复杂度和空间复杂度可能都会要求毕竟图像分析很占空间)然后是怎样进行优化的实验采用的样本是哪些(我们当时用的UCIrvineMachineLearningRepository下面会有CMUFaceImages大家一般都用这个库来作为样本)怎样对实验结果进行量化比较的(标准是什么)如果是模式识别的话还可能关心怎样选的特征值和特征空间(计算量大的话是怎样减少计算量的)训练样本采用的什么算法实验的识别率是多少算法的性能是不是稳定……==我想到的都是本科的问题如果是研究生的话可能还会问的更难
好的。。。。。给你。。。代劳
网络、网站,或管理系统都可以的
计算机软件毕业论文的题目都好写啊