▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:10.1038/s41467-020-15712-z
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
能耐极寒和酷热的新型锂离子电池开发成功
能耐极寒和酷热的新型锂离子电池开发成功,美国加州大学圣地亚哥分校工程师开发了一种锂离子电池,该电池在极寒和酷热的温度下表现良好,能耐极寒和酷热的新型锂离子电池开发成功。
近期,加州大学圣地亚哥分校(UCSD)的工程师们开发出了一种新型锂离子电池,据称这种电池在极冷和高温下都能表现良好,同时仍能储存大量能量。
根据研究人员的说法,这一“壮举”是通过开发一种新型电解质实现的。这种电解质不仅可以在较宽的温度范围内坚挺耐用,而且可以与高能阳极和阴极兼容。上述研究成果已于近期发表在了《美国国家科学院院刊》(PNAS)上。
UCSD雅各布斯工程学院纳米工程学教授、该研究的资深作者Zheng Chen表示,基于这项技术开发的车用电池,即使在寒冷气候下也能让电动汽车行驶更远。此外,它们还可以减少对冷却系统的需求,以防止车辆的电池组在炎热气候下过热。
Chen 解释说:“高温对于汽车电池来说是一个重大挑战。在电动汽车中,电池组通常位于底盘,更靠近炎热的道路。此外,电池在运行过程中会因电流通过而升温。如果电池不能承受这种高温,它们的性能将迅速下降”。
在测试中,该电池在-40°C和50°C下分别保留了87.5%和115.9%的能量容量。在这些温度下,它们还分别具有98.2%和98.7%的高库伦效率,这意味着电池在停止工作之前可以进行更多的充放电循环。
上述优异的性能都要归功于Chen和同事们开发的独特电解质。它由二丁醚与锂盐混合而成的液体溶液制成。二丁醚的一个特点是其分子与锂离子的结合较弱。换句话说,当电池运行时,电解质分子很容易释放锂离子。
研究人员在之前的一项研究中发现,这种微弱的分子相互作用可以提高电池在零下温度下的性能。另外,二丁醚很容易吸收热量,因为它在高温下保持液态(沸点为141°C)。
附加优势
此外,这种电解质的另一个特别之处在于它与锂硫电池兼容,锂硫电池是一种可充电电池,其阳极由锂金属制成,阴极由硫制成。锂硫电池是下一代电池技术的重要组成部分,因为它拥有更高的能量密度和更低的成本。
据了解,锂硫电池每公斤存储的能量是当今锂离子电池的两倍,这可以使电动汽车的续航里程增加一倍,而不会增加电池组的重量。此外,与传统锂离子电池阴极中使用的钴相比,硫的储量更为丰富。
但锂硫电池也存在问题。阴极和阳极都是超活性的。硫阴极非常活泼,在电池运行过程中会溶解;在高温下,这个问题会变得更严重。锂金属阳极容易长出枝晶,会导致电池短路,甚至有起火风险。因此,锂硫电池最多只能循环使用几十次。
“如果你想要一个高能量密度的电池,你通常需要使用非常苛刻、复杂的化学物质,”Chen说,“高能量意味着更多的反应发生,这意味着更少的稳定性,更多的降解。制造一种稳定的高能电池本身就是一项艰巨的任务,试图在更大的温度范围内做到这一点更具挑战性。”
UCSD研究团队开发的二丁醚电解质可以防止这些问题。即使在极端温度下,他们测试的电池也比典型的锂硫电池有更长的循环寿命。Chen说,“我们的电解液有助于改善阴极侧和阳极侧,同时提供高导电性和稳定性”。
美国加州大学圣地亚哥分校工程师开发了一种锂离子电池,该电池在极寒和酷热的温度下表现良好,同时还能储存大量电能。本周发表在《美国国家科学院院刊》上的一篇论文描述了这种耐温度变化的电池。
加州大学圣地亚哥分校雅各布斯工程学院纳米工程教授、该研究的资深作者陈政说,这种电池可让寒冷气候下的电动汽车一次充电就能行驶更远;还可减少对冷却系统的.需求,以防止车辆的电池组在炎热气候下过热。
研究人员在冰点以下温度测试电池。图片来源:David Baillot/加州大学圣地亚哥分校
在测试中,概念验证电池在-40℃和50℃下分别保留了87.5%和115.9%的电能容量。在这些温度下,它们还分别具有98.2%和98.7%的高库仑效率,这意味着电池在停止工作之前可进行更多的充电和放电循环。
研究人员此次开发了一种更好的电解质,这种电解质既耐寒又耐热,而且与高能阳极和阴极兼容。电解质由二丁醚与锂盐混合而成的溶液制成。二丁基醚的一个特点是其分子与锂离子的结合较弱,当电池运行时,电解质分子很容易释放锂离子。
这种电解质的另一个特别之处在于它与锂硫电池兼容。锂硫电池是下一代电池技术的重要组成部分,因为它们有望实现更高的能量密度和更低的成本。但锂硫电池的阴极和阳极都具有超强反应性。在高温下,锂金属阳极容易形成称为枝晶的针状结构,可刺穿电池的某些部分,导致电池短路。结果,锂硫电池只能持续数十次循环。
二丁基醚电解质可防止这些问题,即使在高温和低温下也是如此。他们测试的电池比典型的锂硫电池具有更长的循环寿命。研究团队还通过将硫阴极接枝到聚合物上来设计更稳定的硫阴极。这可以防止更多的硫溶解到电解液中。
团队表示,下一步研究工作将包括扩大电池化学成分、优化电池以使其在更高的温度下工作以及进一步延长循环寿命。
一种新型锂离子电池既可以在零下 40°C 的低温下工作,也可以在 50°C 的高温下工作。这种新型电池阴极使用硫制作,电池可以储存更多的能量。这是来自加州大学圣地亚哥分校(UCSD)的一项新研究。
这种电池可以增加电动汽车在寒冷温度下的行驶里程。此外,它们还可以用于卫星、航天器、高空无人机和潜艇。UCSD 纳米工程教授陈政(Zheng Chen)表示:通过大幅扩展锂电池的可操作窗口,我们可以为电动汽车之外的应用提供更强大的电化学物质。
目前来看,电池用石墨阳极和锂金属氧化物阴极,这种组合不能很好地处理极端温度。高温会加剧电池内部本已高度活跃的化学环境,引发分解电解质和其他电池材料的副反应,导致不可逆转的损害。与此同时,低温会使液体电解质变稠,所以锂离子在其中缓慢移动,导致电能损耗和充电缓慢。
对电池进行绝缘或从内部加热的方法有助于解决低温问题。研究人员之前还对电解质进行设计以扩大电池温度范围,但这可以提高低温或高温下的性能,而不是同时提高性能。
陈政教授团队的研究《Solvent selection criteria for temperature-resilient lithium–sulfur batteries》刊登在了 7 月 5 日的《美国国家科学院院刊》(PNAS)上,他们表示新型耐极端温度电池的核心是找到一种新电解质。
他们通过将锂盐溶解在二丁醚溶剂中来制造电解质。与现有的用于电池的碳酸乙烯溶剂不同,新材料在零下 100°C 的温度下不会结冰,也不容易蒸发。此外,其溶剂分子与锂离子结合较弱,所以锂离子在其中移动更自由,即使在冰点温度下。
UCSD 团队通过将硫附着在塑料基材上来解决硫阴极降解问题。同时,新的电解质允许锂离子的均匀传输,因此它们没有机会粘在一起并形成枝晶。
在团队测试中,原型电池持续了 200 次循环,并在 -40°C 下还能保持超过 87% 的原始容量。在 50°C 时,电池的容量增加了 15%,陈政教授表示,因为更高的温度会增加电荷转移和锂离子通过电解质并扩散到电极上,因而推动了电池容量和能量极限 。
该研究的第一作者、UCSD 纳米工程博士后研究员 Guorui Cai 准备了一个电池袋电池(battery pouch cell),用于在低于冰点的温度下进行测试。
这种电解质的另一个特别之处在于它与锂硫电池兼容,锂硫电池是一种可充电电池,其阳极由锂金属制成,阴极由硫制成。锂硫电池是下一代电池技术的重要组成部分,因为这种电池具有更高的能量密度和更低的成本。
它们每公斤存储的能量是当今锂离子电池的两倍——这可以使电动汽车的续航里程增加一倍,而不会增加电池组的重量。此外,与传统锂离子电池阴极中使用的钴相比,硫的来源更丰富且问题更少。
但锂硫电池存在另一些问题——其阴极和阳极都过于活跃。硫正极非常活泼,以至于它们在电池运行期间会溶解。这个问题在高温下会变得更糟。锂金属阳极容易形成称为枝晶的针状结构,可以刺穿电池的某些部分,导致电池短路。因此,锂硫电池只能持续数十次循环。
「如果你想要一个能量密度高的电池,你通常需要使用非常精确、复杂的化学物质,」陈政说道。「高能量意味着更多的反应正在发生,这意味着稳定性更低,降解更多。制造稳定的高能电池本身就是一项艰巨的任务——试图在很宽的温度范围内做到这一点更具挑战性。」
UCSD 研究小组开发的二丁醚电解质可以防止这些问题,即使在高温和低温下也是如此。他们测试的电池比典型的锂硫电池具有更长的循环寿命。「我们的电解质有助于改善阴极和阳极侧,同时提供高导电性和界面稳定性,」陈政介绍说。
该团队还通过将硫阴极接枝到聚合物上来设计更稳定的硫阴极。这可以防止更多的硫溶解到电解液中。
接下来的步骤包括扩大电池化学成分,优化它以在更高的温度下工作,并进一步延长循环寿命。
UCSD 纳米工程教授陈政。
容量的增加不一定是一件好事,因为这同时也会使电池负担过重。为了解决这个问题,研究人员必须进一步改进电池的化学成分,以便它能够维持更多的充电周期。他们还计划通过更多的细胞工程来提高能量密度。目前,新电池的密度仅比今天的锂离子电池略高一点,与锂硫理论上的承诺相差无几。「我们至少可以将能量密度提高 50%,」陈政表示。「这就是希望,这就是承诺。」
那这个就多了。目前锂离子电池的文章主要发表在电化学、材料、化学领域的期刊,关于计算的会发表在物理、物理化学方面的期刊上面。做产品的也会发表在一些工程类的期刊上。锂电池文章比较多的期刊有:Elsevier旗下的,Journal of Power Sources,Electrochimica Acta,Electrochemistry Communications,Nano Energy,Solid State IonicsJournal of The Electrochemical SocietyWiley旗下的 Advanced Energy MaterialsRSC的 Energy & Environmental ScienceNature 子刊 Nature Energy这些期刊里面都会有大量锂电池的文章。其他化学、材料、纳米类的期刊,比如 JACS,Angewandte Chemie,Nature Materials,Nature Chemistry, Advanced Materials, Nano letters, ACS Nano 等也会有锂电池方面的杂质,所占比例要比电化学类的期刊要少。建议少看低水平文章,误国误民。
▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:10.1038/s41467-020-15712-z
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
尖晶石型锰酸锂正极材料的合成及电化学性能研究 在线阅读 整本下载 分章下载 分页下载 【英文题名】 The Study of Electrochemistry Performance for Synthesize Spinel Li-Mn-O Materials on the Lithium-ion Battery 【作者】 卢星河; 【导师】 唐致远; 【学位授予单位】 天津大学; 【学科专业名称】 应用化学 【学位年度】 2005 【论文级别】 博士 【网络出版投稿人】 天津大学 【网络出版投稿时间】 2007-07-10 【关键词】 锂离子电池; 正极材料; 尖晶石型锰酸锂; 阴阳离子复合掺杂; 包覆改性; 电化学性能; 高温性能; 【英文关键词】 lithium-ion battery; cathode material; spinel LiMn_2O_4; doping; surface modification; electrochemical performance; elevated temperature performance; 【中文摘要】 锂离子电池因质量比容量大、平均开路电压高和循环寿命长等优点已广泛应用于移动、便携式电器。目前锂离子电池的正极材料主要采用层状钴酸锂。由于钴资源的短缺、大电流充放电和高温环境使用的不安全因素,研究开发新一代高性能正极材料成为一项重要课题。尖晶石型LiMn_2O_4材料具有原料资源丰富、易制备和环境友好等优点,特别是因为充放电电压高、循环性能好、比容量高和使用安全等优良的电化学性能,该材料成为本研究的重点: 本研究首先对尖晶石型锰酸锂正极材料的研究现状、存在问题和解决方案等进行了较系统的探讨,先后制定了多项改善和提高尖晶石型锰酸锂电化学性能的措施。合成研究了分别和同时掺杂阴、阳离子正极材料Li_(1.02)M_xMn_(2-x)Q_yO_(4-y)的充放电比容量、循环性能、高温(55℃)性能和大电流充放电性能等,表征了合成材料的晶体结构、表观形态、粒径及粒径分布规律,进一步探讨了表面包覆(修饰)改性和电解液及其组成对锰酸锂正极材料的作用和影响。 以实验室合成的尖晶石型锰酸锂LiCo_xCr_yMn_(2-x-y)O_4材料为母体材料,以SiO_2... 【英文摘要】 The lithium-ion batteries have been widely used in portable electronic products such as, cell phones, notebook computers and cameras because of its high-capacity (2.5 times as large as the Ni-Cd batteries and 1.5 times as large as the Ni-MH batteries) and high average open voltage, that is, 3.7 V in contrast with the 1.2V of Ni-MH batteries. In the near future, the lithium-ion battery will used in the motive-batteries. As key parts of the battery,the anode and cathode have become one of the hott... 【DOI】 CNKI:CDMD:1.2007.078634 【更新日期】 2007-07-25 【相同导师文献】 导师:唐致远 导师单位:天津大学 学位授予单位:天津大学[1] 高飞.锂离子电池正极材料LiFePO_4的合成与电化学性能研究[D]. 中国博士学位论文全文数据库,2008,(08)[2] 黄娟.循环冷却水新型加酸工艺配方的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[3] 常林荣.铝轻型板栅在铅酸电池中的应用及聚苯胺的电化学合成[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[4] 穆雪梅.新型高效氧电极催化剂的研究与评价[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[5] 邱瑞玲.固相法合成LiFePO_4及其改性研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[6] 王倩.柔性纸质电池的研制[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[7] 赵松鹤.锂离子电池负极材料钛酸锂的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[8] 张联忠.两种锂离子电池负极材料的研究[D]. 中国优秀硕士学位论文全文数据库,2006,(08)[9] 肖成伟.车用锂离子动力电池循环性能的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)[10] 樊勇利.锂离子电池正极材料氧化镍钴锰锂的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)
喜欢就 关注我们吧,订阅更多最新消息
全文速览
针对锂金属不均匀沉积造成的锂枝晶生长以及死锂疯狂聚集等问题,本工作利用平行排列的具有多孔结构的轻质碳骨架,在电镀过程中为锂沉积提供足够的空间和连续的导电网络,从而来均匀化锂离子分布,使电极/电解液的界面处的电流密度分布均匀,达到抑制锂枝晶生长以及缓解金属锂循环过程中的体积膨胀的目的。作者对其复合金属负极进行了一系列电化学性能的测试,所测结果表明该复合锂金属负极所组成的对称电池在4.0 mAh cc,2.0 mAh cm -2 的条件下可稳定循环4800 h而没有明显的电压滞后现象。此外,以该复合锂电极为负极,NCM811为正极所组装的全电池也展现出了优异的循环稳定性以及高的倍率性能。更重要的是,低温性能测试结果表明,该复合金属锂负极在低温下依然具有优异的可逆性以及循环稳定性。在此基础上,作者还通过理论计算很好地验证了实验结果,进一步证明了该平行排列的多孔结构有利于促进锂离子的均匀沉积,实现锂金属负极的稳定循环
背景介绍
金属锂表现出的高理论比容量(3860 mAh g -1 )和超低电化学电势(-3.04 V),一直是二次电池领域人们为之神往的圣杯。然而,锂金属负极中的枝晶生长以及固态电解质界面的不稳定性成为它趋向完美的严重阻碍。锂枝晶的生长以及界面的不稳定会造成金属锂的可持续利用率降低,甚至会刺穿隔膜造成电池爆炸等安全性问题。因此,控制金属锂的均匀沉积是实现锂电池实际应用的重要途径之一。目前,已经有许多策略致力于稳定锂金属负极,其中一个重要的方向就是通过构建合适的功能性的3D集流体框架,促进锂离子的均匀沉积,实现无枝晶的锂金属负极。相比3D的金属集流体,碳集流体以其优异的的化学稳定性、柔韧性及可延展性而被广泛研究,但是其本身的疏锂性以及有限的比表面积阻止了其进一步的发展。因此,本工作从这两个方面出发设计了平行排列且具有多孔结构的碳骨架(PAPCFs)来稳定锂金属负极。
图文解析
图1展示了PAPCFs和CCFs上的结构和初始锂沉积的特性。(a-b) SEM 图像和 (c) 通过使用 PAPCFs 的 DFT 模型计算的 N2 吸附-解吸等温线和累积孔体积 (0.5-50 nm); (d-e) 在 PAPCFs 和 CCFs 电极上镀有 0.5 mA h cm -2 锂时的SEM 图,PAPCFs在镀锂后仍然显现出平整光滑的表面,而普通的CCFs则出现了疏松的锂枝晶,表明了PAPCFs对调控锂沉积有重要的意义。 PAPCFs 和 CCFs 电极界面信息的有限元模拟。(g) 分别用于 PAPCFs 和 CCFs 电极的 18 24 µm 2 半电池电沉积系统下具有恒定反应电流和电极表面的电流密度矢量分布,轮廓中的箭头代表锂离子的运动。 (h) 分别具有多孔结构和不具有多孔结构的 PAPCFs 电极在 18 24 µm 2 半电池电沉积系统下的平衡的锂离子浓度分布。在相同几何尺寸下,高比表面积将降低电极表面上的局部电流密度。因此,多孔电极上的电流密度设置为无孔电极上的一半。 (f) 多孔和非多孔电极中沿 Y 方向的一维横截面的锂离子浓度分布。 Y 方向表示垂直于电极。 (i) PAPCFs 在初始状态调节低浓度梯度和均匀的 Li + 通量分布,实现均匀的锂沉积的示意图。
Fig. 1 The structure and initial Li deposition characteristic on PAPCFs and contrastive CCFs. (a-b) SEM images and (c) N2 adsorption-desorption isotherm and cumulative pore volume (0.5-50 nm) calculated by the use of DFT-model of PAPCFs. (d, e) SEM images for Li deposition morphology with 0.5 mA h cm-2 of Li plated on PAPCFs and CCFs electrode. Finite element simulation for the interface information of PAPCFs and CCFs electrodes. (g) Current density vector profiles with constant-reaction-current electrode surfaces at 18 24 µm2 half cell electrodeposition system for PAPCFs and CCFs electrode, respectively. The arrows in the profiles stand for the movement of Li-ion. (h) Equilibrium Li-ion concentration profiles at 18 24 µm2 half cell electrodeposition system for PAPCFs electrode with and without porous structure, respectively. The high surface area will reduce the local current density on the electrode surface under the same geometry dimensions. Therefore, the current density on the porous electrode is set as a half of that on the non-porous electrode. (f) 1D cross-sectional Li-ion concentration profiles along Y direction in porous and non-porous electrodes. The Y direction is perpendicular to the electrode. (i) Schematic diagrams of PAPCFs to regulate low concentration gradient and even Li+ flux distribution for uniform Li deposition at initial state.
图2 展示了Li@PAPCFs复合负极的镀锂/脱锂稳定性与循环过程中的形貌演变。(a) 三种对称电池(Li@PAPCFs、Li@CCFs 和 Li 箔)在 1 mA cm -2 和 2 mA h cm -2 下的时间-电压曲线。(b-d) Li@PAPCFs 和 (e-g) Li@CCFs 在 200 次循环后的 SEM 图以及截面图(状态 A)。Li@PAPCFs 对称电池 (h) 在 4 mA cm -2 的电流密度下和 2 mA h cm -2 的容量下和 (i) 在 2 mA cm -2 的电流密度下和 4 mA h cm -2 的容量下的时间-电压图。 从所有的时间-电压曲线可知,该PAPCFs在不同的电流密度以及不同的容量下始终表现出最小的极化,说明具有平行排列且具有丰富孔结构的PAPCFs在重复的镀锂/脱锂循环过程中保持了优异的结构稳定性并始终维持着稳定的固体电解质膜。此外,其高的表面积很好地均匀了锂离子流,抑制了枝晶的生长。
Fig. 2 The Li plating/stripping stability and morphology evolution of Li@PAPCFs. (a) Voltage profiles in three types of symmetrical cells (Li@PAPCFs, Li@CCFs, and Li foil) at 1 mA cm-2 and 2 mA h cm-2. Insert: Magnified voltage profiles at the 100th, 200th, and 500th cycle, respectively. Top view and cross section of SEM images of (b-d) Li@PAPCFs and (e-g) Li@CCFs after 200 cycles (state A). Voltage profiles of Li@PAPCFs symmetrical cell (h) at 4 mA cm-2 and 2 mA h cm-2 and (i) at 2 mA cm-2 and 4 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles.
图3展示了NMC111-Li@PAPCFs、NMC111-Li@CCFs和NMC111-Li全电池的电化学性能。(a) 在电流密度为 1 C时,第 1 次和第 10 次循环的比容量-电压曲线。(b)GITT测试,从图中可以明显地看出NMC111-Li@PAPCFs的平均 D app, Li在相同的测试环境下最高,表明Li@PAPCFs具有更好的Li + /电子传导性以及更好的界面稳定性;(c)不同倍率下的电化学性能。 (d) 1 C下的长循环稳定性。
Fig. 3 The electrochemical performance of NMC111-Li@PAPCFs, NMC111-Li@CCFs, and NMC111-Li full cells. (a) Voltage profiles at 1 C for the 1st and 10th cycle. (b) GITT tests of the D app, Li along with the galvanostatic charge-discharge process of 4th cycle at 0.5 C. (c) Rate performance at the different rates. (d) Long-term cycle stability at 1 C.
图4是 Li@PAPCFs 和其对应的全电池的低温性能。 Li@PAPCFs 对称电池在(a)1 mA cm -2 和 2 mA h cm -2 下0 的时间-电压曲线,(b)0.25 mA cm -2 和 1 mA h cm -2 下-15 的时间-电压曲线。 PAPCFs 在预先镀有10 mA h cm -2 后(Li@PAPCFs)(c-e) 和在 0 电镀/剥离循环后的SEM图和截面图(f-h)。NMC111-Li@PAPCFs 在(i)不同倍率和温度下的容量保持率,(j) 0.5 C不同温度下的充放电曲线。(k) NMC111-Li@CCFs 与 NMC111-Li@PAPCFs 在不同倍率和温度下的容量保持率。 NMC111-Li@PAPCFs 在电流密度为1 C时,温度为 (l) 0 和 (m) -15 时的长循环稳定性。
Fig. 4 LT tolerance of Li@PAPCFs and the corresponding full cell. Voltage profiles of Li@PAPCFs symmetrical cell (a) for 0 at 1 mA cm-2 and 2 mA h cm-2 and (b) for -15 at 0.25 mA cm-2 and 1 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles. Top view and cross section of SEM images of Li@PAPCFs (c-e) after the initial Li plating of 10 mA h cm-2 and (f-h) after the plating/stripping cycles at 0 . (i) Capacity retention ( C r) of NMC111-Li@PAPCFs at different rates and temperatures vs. 25 . (j) Charge-discharge profiles at 0.5 C for different temperatures. (k) C r of NMC111-Li@CCFs vs. NMC111-Li@PAPCFs at different rates and temperatures. Long-term cycle stability of NMC111-Li@PAPCFs at (l) 0 for 1 C and (m) -15 for 0.1 C.
总结与展望
从商业无纺布中提取的可再生、可伸缩的3D轻质碳骨架可以很好地实现Li的均匀成核和沉积,使HLCA在长期循环甚至低温条件下依然能够实现保持完整的结构,同时也能维持稳定的电极/电解液界面。其中,碳骨架的平行排列可以均匀化Li + 分布;其大的比表面积可以大大降低有效电流密度,缓解电极界面的浓度梯度,从而形成稳定的富含LiF的 SEI 层。其对称电池和全电池的循环稳定性优于目前所报道的亲碳或亲锂修饰的碳宿主,表明HLCA的内在排列模式和微观结构对实现具有高稳定性以及高安全性的锂金属负极的重要性。本工作从实用角度出发,为一系列可充电金属电池提供了一种很有前途的碳主体材料。
作者介绍
吴兴隆 ,东北师范大学教授,教育部“青年长江学者”,课题组的研究领域包括纳米能源材料(用于锂离子电池、钠离子电池和电化学电容器等)、新型电化学储能器件、锂离子电池回收与再利用。已在《Adv. Mater.》(5篇)、《Energy Environ. Sci.》、《Sci. Bull.》、《Adv. Energy Mater.》(5篇)、《Adv. Funct. Mater.》、《Energy Storage Mater.》(2篇)、《Nano Energy》、《Small》(3篇)和《J. Mater. Chem. A》(12篇)等学术期刊发表通讯/第一作者论文110余篇。14篇论文被评选为ESI高引论文,文章被引用超过11000次,H指数为57;已获授权发明专利17项;负责了锂离子电池正极材料从实验室到中试,再到小规模工业化生产定型,开发了多款高性能锂离子电池产品。主持了国家自然科学基金委重大研究计划和吉林省省 科技 厅等十余项研究课题。曾获得教育部自然科学研究成果一等奖和中国科学院 科技 成果转化二等奖等 科技 奖励。
参考文献
Chao-Ying Fan, Dan Xie, Xiao-Hua Zhang, Wan-Yue Diao, Ru Jiang, Xing-Long Wu, Homogeneous Li + Flux Distribution Enables Highly Stable and Temperature-Tolerant Lithium Anode. Adv. Funct. Mater. 2021, 2102158.
新能源车到底与普通汽车版汽车到底差别在哪里?绝对不仅仅是“血液”的问题。更多的结构性的变化也尽在其中。以下对新能源的技术做细节的比对,新能源车的心脏到底有何不同?它们都有着什么样的技术,它们对节能环保都起到了哪些作用,是什么样的工作原理在支持……才能描绘出令人惊赞的低碳节能的工作成绩。弱混与强混的油电混合技术在北京车展上,大家可以看到的混合动力车型主要有“弱混”、“强混”和“双模”三种技术类型。其中,“弱混”车型的工作状态是车辆在启动时电动机开始工作,汽油发动机并没有点火工作,所有的设备工作都是依靠动动机来提供动力。当你松开制动踏板踩下油门起步时,汽油发动机才会启动工作。当用户深踩油门加速时,汽油发动机和电动机将同时协同工作,让提速变的更加明显。当车辆在高速行驶时动力则完全来自汽油发动机,也就是说电动机只是在汽车加速时介入。如果当前方遇到红灯用户踩下刹车减速时,车辆的动能并不是像普通车辆那样转化为制动系统的热能而被白白浪费掉,此时电动机将变身为发电机,它回收损失掉的动能,并以电能的形式存于蓄电池中。这种刹车就会给电池充电相当于“免费加油”的畅快感觉正是混合动力车的魅力所在,是普通车辆所无法给予的。在车辆停稳怠速时,汽油发动机将会关闭,此时只有电动机工作,这就避免了怠速时所产生的高油耗,同时也实现了零油耗和零排放,之后车辆起步时又会重复上面的工作流程。从上述的工作状态我们可以看出“弱混”车型主要节油环节在于点火时发动机并不启动,怠速时发动机也是关闭的,起步和加速时电动机可以提供动力辅助,刹车时可以把损失的动能转化为电能,高速行驶时多余的能量还能被转化为电能储存在蓄电池中,这就降低了燃油释放能量的损失,提升了燃油的利用效率。同时还有一点值得读者注意的就是,混合动力车型由于加速过程中有电动机提供动力辅助,因此其一般都采用的是小排量汽油发动机,就可以达到大排量发动机的动力感受(有点类似增压发动机的味道),这在一定程度上也节约了燃油。“弱混”技术的优势就是制造成本相对低廉,能很好平衡技术与售价的关系,电动系统体积相对小巧不会占用过多空间。和“弱混”相对的技术就是“强混”,其特点是动力系统以电动机为基础动力,汽油发动机为辅助动力。与“弱混”不同的是“强混”电动机的功率更为强大,完全可以满足车辆在起步和低速时的动力要求。因此“强混”车型无论是在起步还是低速行驶状态下都不需要启动发动机,仅依靠电动机都可以完全胜任,在低速状态下完全就是一款“电动车”的姿态。当踩下油门加速时,随着速度的提升汽油发动机就会启动和电动机通过智能系统来协同高效的工作。当车速达到汽油发动机的经济时速时,汽油发动机的优势得以全面发挥,并成为车辆的主要动力来源,同时汽油发动机产生多余的能量会用来带动发电机为电池充电。在急加速和全速运行状态下车辆需要极大的驱动力,因此电动机也会全速运行协同高速运转的汽油发动机同时发挥两者的最大性能,进而达到1 1的效果。当用户遇到状况刹车时,汽油发动机和电动机就会立即停止动力供应,达到节约燃油和电能的目的,同时利用车辆动能带动发电机为电池充电。从上述的工作状态我们可以看出“强混”车型主要节油环节除了拥有“弱混”特点之外,其还具有在车辆起步和低速行驶时完全依赖电动机驱动的能力,很好的解决了城市行车中起步、停车、再起步时的油耗很高的问题,因此“强混”可以说是“弱混”的进化版本,克服了“弱混”需要频繁启动汽油发动机的问题,从而进一步的降低了油耗。“强混”可以说是一种比较优秀的解决方案,非常适合拥堵的城市中需要频繁起步停车的行驶状态。在这样的拥堵的行驶状态下可以实现零油耗零排放。当然要享受这些好处的前提就是要付出比“弱混”更高的价钱和为性能更强大的电动机和电池组牺牲些空间。除了“弱混”和“强混”之外还有一类比较特殊的混合动力车型在国内销售,那就是中国第一款完全自主技术的比亚迪F3DM双模电动车。所谓“双模”就是在电动车系统(EV)的基础上又加入了一个混合动力系统(HEV),“双模”可以说是“强混”的升级加强版。目前市售的“双模”车型只有比亚迪F3DM一款。自然能源转换电动车技术这项技术集光电转换、风电转换和二氧化碳吸附转换等自然能源转换技术概念于一身,属于新能源车技术中的未来流派。上汽集团在世博会及北京车展上发布的“叶子”概念车就运用了这一技术。当然,“叶子”这项新能源车技术展示还是以理念为主。“叶子”在设计中以电能为主要动力来源,其技术核心是自然能源转换技术。车顶的一片巨型叶子是一部高效的光电转换器,可吸收太阳能转化为电能;而阳光追踪系统,则可以使叶片上的太阳能晶体片可随太阳照射方向而转动,提高光能吸收效率。其四个车轮就是四个风力发电机,通过捕捉散逸的风能,将风能转变成电能,充入自身电池储存能源,形成辅助电驱动系统,最大限度拓展利用新能源。其体采用可吸附二氧化碳的有机金属结构(MOFs),能模拟绿色植物从空气中捕获二氧化碳和水分子,在微生物的作用下释放出电子,形成电流。生物燃料电池再将产生的电能给锂电池充电,由电机驱动汽车。同时,它还能将光电转换中排放的高浓度二氧化碳通过激光发生器转化为电能为车内照明,或转化为车内空调制冷剂,不仅仅是“零排放”,更是“负排放”的实现,净化空气。增程型电动车技术增程型电动车技术,也是目前新能源车技术的一大流派,这一技术流派的特点是电力驱动车辆行驶的主要能源,而汽油则是它的备用能源。例如,通用雪佛兰Volt就运用了这样的技术。与传统意义上的混合动力汽车相比,增程型电动汽车有着非常明显的不同之处。在一辆增程型电动汽车上,车辆是全程由电动系统来驱动的,而在传统混合动力汽车上,车辆是通过电动机或燃油发动机来驱动,或是两者共同工作来驱动的。在行驶距离较短的情况下,增程型电动汽车的行驶完全仅仅依靠车载电池组提供的电力来完成,而在相对较长的行驶距离情况下,可以由内燃机或者燃料电池提供额外的电能来驱动车辆。电池组和动力推进系统经过精准的设置,可以使车辆在由电池组提供足够的电能的时候,不需要发动机或者燃料电池进行工作来产生额外的电力。在纯电力驾驶过程中,电池组的电能完全可以保证仅需要使用电力就能够保证车辆顺利实现加速、高速行驶,以及爬坡等各种性能。以下以雪佛兰Volt为例,详细解析增程型电动车技术。具体来说,Volt首先依靠电池所储存的电力行驶,然后依靠汽油发动发电机产生的电力继续驱动。假设你的Volt电池已充满电,那么Volt可以依靠电池中储存的电力行驶达最多64公里(40英里),期间可以完全实现“零油耗、零排放”。随着电池电力即将耗尽,增程型汽油发动发电机将自动起动,开始提供为电池提供电力。这样Volt就能继续行驶数百公里,直至有条件再次充电或加油。Volt推进系统全程采用纯电力驱动。当电池的电量快耗尽时,它的车载发动发电机会通过燃烧少量汽油来为车辆供电,足以保证Volt继续行驶数百公里。一般来说,混合动力汽车可依靠3.8升(1加仑)汽油行驶64到96公里(40到60英里)。与电动车不同的是,当今的混合动力汽车不需要通过连接电源进行充电,而是通过收集刹车时产生的能量以及借助发电机来补充电力。在低速行驶时,某些混合动力车型可以依靠电力驱动,并在高速行驶时切换到汽油发动机驱动。混合动力汽车的效率一般赶不上电动汽车,同时环保表现也不如后者。增程型电动车的优点是能够在零油耗和零排放的情况下,行驶64公里(40英里)。即使在电池电量快耗尽时,增程型电动车也仅仅是使用汽油以供增程型发动发电机发电,提供汽车行驶所需的电力。增程型电动车可以在电池电量耗尽后继续行驶,因为增程型汽油发电机会实现无间断启动,提供电力驱动汽车。增程型电动车能够自行产生续航所需电力,而不必停车寻找充电的地方。氢燃料电池车技术氢燃料电池车技术,则是目前新能源车技术的较高级流派,这一技术流派的特点是通过电气化学反应,将氢和氧化合成水,从而直接将化学能转化为电能,电池组通过像这样大量串联的燃料电池,就可以产生足够的电能来驱动汽车。奔驰F800 Style、奥迪Q5HFC和雪佛兰Equinox等都是包含了这项技术的新能源车。以下详细解析氢燃料电池车技术。氢燃料电池车的燃料电池组位于车辆的中心部位。它通过电气化学反应,将氢和氧化合成水,从而直接将化学能转化为电能,在这一过程中并不产生任何实质性的燃烧。具体反应过程为:电池阳极上的氢在催化剂作用下分解为质子和电子,带阳电荷的质子穿过隔膜到达阴极,带阴电荷的电子则在外部电路运行,从而产生电能。在阴极上的氧离子在催化剂作用下和电子、质子化合反应成水。电池组通过像这样大量串联的燃料电池,就可以产生足够的电能来驱动汽车。这类氢燃料电池车通常设置四个座位,空间宽大舒适,并且拥有和传统汽车相比毫不逊色的高安全性能。它配备了司机及前排乘客安全气囊、侧面安全气囊、防抱死刹车系统(ABS)、牵引力控制系统(TCS)以及电子稳定装置(ESP)。与此同时,它的氢燃料存贮装置也十分先进,该装置由三个700巴(1巴=0.987个标准大气压)的高压储氢罐组成,罐体采用碳纤维复合材料,最大氢燃料存储量为4.2千克,这些燃料足以支持最长320公里的行驶里程。氢燃料电池车的设计使用寿命为2年或8万公里,通过在热绝缘以及运行方案等方面进行的一系列改进,新型氢燃料电池车可以在低于零度的气候条件下正常启动及运行,这也是它相比前一代车型的显著进步之一,而在技术上做到这一点对于燃料电池车的推广使用至关重要。以Equinox为例,其燃料电池组由440块串联电池组成,电力输出可达93千瓦,在车载73千瓦(100马力)同步电动机的共同驱动下,0-100公里/小时的加速只要12秒,而这款前驱车型的最高时速可达每小时160公里。车联网电动车技术这一技术流派地融合了电气化和车联网两大技术,几乎可以说是对未来城市个人交通的最新解决方案。同样将展示于世博园区及北京车展的通用EN-V概念车就运用了这项技术。车联网技术,即通过整合全球定位系统导航技术、车对车交流技术、无线通信及远程感应技术奠定了新的汽车技术发展方向,实现了手动驾驶和自动驾驶的兼容。这类电动车体积小巧、移动便利。以EN-V为例,整车重量仅400多公斤,长约1.5米。而目前传统汽车重量超过1500公斤,长度更是EN-V长度的三倍。时下一个传统汽车的停车位可以容纳五辆EN-V,这将极大地提高城市停车面积的利用率。这类电动车的左右两侧车轮分别由各自的电动马达驱动,马达动力由锂电池提供,可通过普通家庭电源进行充电,每次充满电后可行驶40公里,完全实现零排放。同时,可与电网进行信息互换,选择最佳充电时间,充分提高公用电力基础设施的使用效率。这一新汽车技术的重大突破,还在于自动驾驶方面,如变道警告、盲区探测及适应性巡航控制等技术均得到了变革性的运用。至于您说的行业标准和国家法规~一时半会是改不了的 这中间当然需要很多部门的努力 许多环节的进行 以及各界人士的共同努力相互促进相互协调 车展只能说是新科技新发明的展示而已 对于新标准新法规应该也有一定促进作用吧~~!
摘要:随着我国汽车保有量的持续增长,汽车排放污染跟能源问题将会越来越严峻。现在我们国家提 摘要 倡低碳生活和可持续发展,为了响应国家的政策。我们必须寻找一种对环境零污染或低污染的汽车,而目 前公认最为理想可行的就是纯电动汽车了。而作为内燃机跟纯电动汽车的过渡产物就是混合动力汽车,混 合动力汽车已经不是什么新鲜的产物了,目前已经有很多车企生产了。在近两年,我国的车企对纯电动汽 车的热情很高,可惜都只是雷声大雨点小。大都只是处于概念车的阶段。发动纯电动汽车还有一段很曲折 艰辛的路要走。 关键词:内燃机:混合动力: 电动汽车:汽车: 关键词 内燃机 像我们这代人,对于汽车并不会感到很陌生.特别是近几年中国车市出现井喷的现象,据保 守的估计,中国现在的机动车保有量已经超过两亿.而且还保持上升的趋势,去年的产销量达 1360 万辆,首次超过美国而位居世界第一.今年 1 到 9 月份的产销已经达到去年全年的水平了, 保守估计今年的产销量将达 1700 万辆.而且在接下来的几年会稳居榜首,产销量持续增长.在 这数据中,又有多少是属于电动汽车的呢?统计数据显示是非常非常的少,几乎可以被忽视. 汽车的产销量不断的增长,这也将引起一系列的问题.内燃机技术发展到今天已经可说是 炉火纯青的地步了,想到再进一步改善是非常的困难了.我们都是知道无论是汽油机还是柴油 机,都会排放一些对大气有害的气体,如:CO HC Nox 等.虽然说排放标准不断的在提高,但是污 染还是存在的.这将跟我们提倡的低碳生活有点格格不入,因此我们就必须找出其它代替品. 就目前而言,就有新燃料发动机,如:醇燃料 氢燃料 石油气燃料 天然气燃料 太阳能燃料混合动力汽车 电动车等等.在这些新能源汽车中,纯电动汽车将是我们发展的趋势.因为其它 的,不是技术太难攻关,就是使用经济性和燃料来源困难等等.电动汽车的优点是零排放 零污 染 燃料来源方便 动力性良好等.但就目前的现状而言,电动汽车的缺点也是显而易见的, 目 前电动汽车尚不如内燃机汽车技术完善,尤其是动力电源(电池)的寿命短,使用成本高。 电池的储能量小,一次充电后行驶里程不理想,电动车的价格较贵。但从发展的角度看,随 着科技的进步,投入相应的人力物力,电动汽车的问题会逐步得到解决。扬长避短,电动汽 车会逐渐普及, 其价格和使用成本必然会降低。 现在处于内燃机跟纯电动汽车的过渡产物是HEV 混合动力汽车, 混合动力汽车的种类目前主要有 3 种。一种是以发动机为主动力,电 动马达作为辅 串联混合动力电动汽车原理。 另外一种是, 在低速时只靠电动马达驱动行驶, 速度提高时发动机和电动马达相配合驱动的“串联、并联方式” 。还有一种是只用电动马达 驱动行驶的电动汽车“串联方式” ,发动机只作为动力源,汽车只靠电动马达驱动行驶,驱 动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。 现在车市的混合动力车主要有,PRIUS 思域 凯美瑞 凯越 LS600H S400 SMART F3DM 等等. 由于我们国家提倡低碳生活,国家的政策便大力的支持发展纯电动汽车.目前几乎所有的车企都积极的响应国家的号召,如:比亚迪的 E6 奇瑞 S18 众泰 2008EV 长安奔奔 MINI 日 产的 LEAF 通用的 VOLT 等等.虽然推出的车型很多,但也只是雷声大雨点小.技术都不啥的, 而且销量也是少之又少. 电动汽车并不是现代才有的产物, 早在 19 世纪后半叶的 1873 年,英国人罗伯特·戴维 森 (Robert Davidsson) 制作了世界上最初的可供实用的电动汽车。 这比德国人戴姆勒 (Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了 10 年以上。戴维森发明的电动汽车 是一辆载货车,长 4800mm,宽 1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。 其后,从 1880 年开始,应用了可以充放电的二次电池。从一次电子表池发展到二次电池, 这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。在 19 世纪下半叶成为交通运输的重要产品,写下了电动汽车需求量有了很大提高。在 19 世纪 下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890 年法 国和英伦敦的街道上行驶着电动大客车,当时电动汽车生产的车用内燃机技术还相当落后, 行驶里程短,故障多,维修困难,而电动汽车却维修方便. 电池是电动汽车发展的首要关键,汽车动力电池难在 “低成本要求”“高容量要求”及 、 “高安全要求”等三个要求上。要想在较大范围内应用电动汽车,要依靠先进的蓄电池经过 10 多年的筛选,现在普遍看好的氢镍电池,铁电池,锂离子和锂聚合物电池。氢镍电池单 位重量储存能量比铅酸电池多一倍, 其它性能也都优于铅酸电池。 但目前价格为铅酸电池的 4-5 倍,正在大力攻关让它降下来。铁电池采用的是资源丰富、价格低廉的铁元素材料,成 本得到大幅度降低,也有厂家采用。锂是最轻、化学特性十分活泼的金属,锂离子电池单位 重量储能为铅酸电池的 3 倍,锂聚合物电池为 4 倍,而且锂资源较丰富,价格也不很贵,是 很有希望的电池。 我国在镍氢电池和锂离子电池的产业化开发方面均取得了快速的发展。 电 动汽车其他有关的技术,近年都有巨大的进步,如:交流感应电机及其控制,稀土永磁无刷 电机及其控制,电池和整车能量管理系统,智能及快速充电技术,低阻力轮胎,轻量和低风 阻车身,制动能量回收等等,这些技术的进步使电动汽车日见完善和走向实用化。我国大城 市的大气污染已不能忽视,汽车排放是主要污染源之一,我国已有 16 个城市被列入全球大 气污染最严重的 20 个城市之中。我国现今人均汽车是每 1000 人平均 10 辆汽车,但石油资 源不足,每年已进口几千万吨石油,随着经济的发展,假如中国人均汽车持有量达到现在全 球水平---每 1000 人有 110 辆汽车, 我国汽车持有量将成 10 倍地增加, 石油进口就成为大问 题。因此在我国研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略 考虑。 下面是一些专家对我国发展电动汽车的看法: 锂电池大规模用于电动车还需一定时间 河南环宇集团锂电池产业技术副总工程师邓伦浩 目前国内锂电池的研究工作和国外相比,差距主要体现在电池的控制系统和电源 管理系统上。邓伦浩对记者说,现在国内对锂电池的研究处于各自开发的状态。目前,有的公司已经能 够为电 动汽车提供相应 的锂电 池配套产品,配 套的锂 电池一般能跑 200~500 公里左右。 邓伦浩告诉记者,现在国内锂电池的价格太高,电源管理系统的问题还没得到很 好地解决。电动汽车还面临充电的问题。目前,家里的一般线路不能为电动汽车锂电 池充电,必须配一个小型的专用充电器,而且充电的时间很长,很麻烦。在国外,为 了解决这一问题,一般都把充电站和加油站放在一起。现在国内的充电站还没有大规 模地建立起来。 国内锂电池研究存在三大问题 中国汽车工程学会电动汽车分会主任陈全世 陈全世告诉记者,目前国内锂电池研究存在三大问题。首先是制造的一致性问题。 由于在锂电池的制造工艺和设备上存在差距,使得国内锂电池的生产工艺参差不齐, 制造标准还达不到一致性。电动汽车所用的锂电池都是串联或并联在一起,如果一致 性问题解决不好,那么所生产的锂电池也就无法大规模应用于电动汽车。 其次是知识产权问题。目前国内在磷酸铁锂电池的研究上已经取得突破,但是由 于美国在这方面有专利,所以虽然我们在一些环节上能够自主研发,但是在知识产权 问题上,还不知如何应对。 第三是原材料的筛选问题。现在用于锂电池生产的原材料不可能全部进口,主要 还是取自国内, 但是国内的原材料要通过国际认证, 生产出的锂电池才能被国际认可, 所以在原材料认证环节上目前还存在一些问题。 大力发展电动汽车将增加能源供需紧张形势 中国国际经济合作学会经济合作部副主任杨金贵 目前中国 80%的二氧化碳排放来自燃煤,超过 50%的煤炭消费用于火力发电,而同时, 火力发电量占到总发电量的 70%以上。加之目前我国煤炭发电平均效率只有 35%,在这样 的情况下,发展电动汽车,无异于增加电力消耗,同时也就意味着增加碳排放量。随着我国 城镇化、工业化步伐的加快,电力资法律论文 源将更为紧张。而在风能、核能发电尚在发展阶段的我 国而言,大力发展电动汽车,势必将增加能源供需紧张形势,相反不利于低碳产业的发展布 局。对于政府来说,在不遗余力地支持电动汽车发展、支持相关企业开发新产品的同时,更 需要解决源头问题。以电动汽车为例,用煤炭替换石油的作为并不可取,电动汽车成为低碳 经济时代先锋的前提是解决电力资源问题,否则,前景并不乐观。 从以上各个专家的看法,可以看出我国要发展电动汽车是非常艰辛的和曲折的。但这并 不代表不可能, 只是时间问题, 只要我们攻关了那些技术难题, 电动汽车将会造福我们国民, 甚至全人类。因此,发展纯电动汽车势不可挡。
给楼主一个专业的网址做参考。到(西部石化网)看看吧。挺不错的专业平台。
兄弟那还不简单,现在网上有许多网站有代写论文功能,你试试有个叫鱼跃期刊的网站价格还可以接受。
太阳能充电器的设计摘要:设计了基于LP3947的太阳能充电电路,通过脉宽调制对锂电池充电进行智能控制,从而提高太阳能电池输出功率及锂电池的使用效率,达到延长电池使用寿命和时间的目的。关键词:太阳能;LP3947;锂电池1.引言 太阳能作为一种新型的资源越来越多地被人们关注,它所带来的一系列的产业也逐渐成为目前非常具有开发潜力的产业。太阳能光伏发电是太阳能应用的主要产业之一。在我国太阳能资源极其丰富,陆地每年接受的太阳辐射能相当惊人。如果将这些太阳能充分加以利用,不仅有可能节省大量常规能源,而且可以有效地减少常规能源所带来的环境污染。 目前光伏发电在小型电器电路上的运用也逐渐的成熟,随着人们生活中越来越多的离不开手机、mp3、数码相机等一系列的数码产品,它们的充电问题成为了使用者极其关心的问题之一。设计一个利用光伏充电原理的充电器来为这些数码产品进行充电可以在很多方面解决各种问题。太阳能充电器具有携带方便、外型美观时尚,甚至可以在没有电源的情况下为手机等一系列的数码产品进行充电。2.太阳能电池板种类及工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置,目前处于主流的是应用光电效应原理工作的太阳能电池,其基本原料为以半导体.当P-N 结受光照时,样品对光子的本征吸收和非本征吸收都将产生光生载流子,即引起光伏效应,产生一与P-N 结内建电场方向相反的光生电场,其方向由P 区指向N区.此电场使势垒降低,其减小量即为光生电势差,P 端正,N 端负,由此生产的结电流由P 区流向N 区,形成单向导电,发挥出与电池一样的功能。由于太阳电池板输出电压不稳定,故增加了稳压电路,通过稳压电路、充电电路为负载电池充电,同时还可以为内部蓄电池充电以备应急之用;光照条件较差时,太阳电池板输出电压较低,达不到充电电路的工作电压,因此增加了升压、稳压电路,以便为充电电路提供较稳定的工作电压.阴天、夜间等光照条件极差的情况下,可利用系统内部的蓄电池,通过升压电路为后续设备充电。另外,充电器还设计有照明灯,当夜间光线较暗时,通过蓄电池为照明灯供电,可供应急使用。3.充电器设计3.1电池充电原理 锂离子电池在充电或放电过程中若发生过充、过放或过流时,会造成电池的损坏或降低使用寿命,图3为锂电池的充电曲线,共分三个阶段:预充状态、恒流充电和恒压充电阶段。以800 mAh 容量的电池为例,其终止充电电压为4.2V。用1/10C(约80 mA)的电池进行恒流预充,当电池端电压达到低压门限V(min)后,以800 mA(充电率为1C)恒流充电,开始时电池电压以较大的斜率升压,当电池电压接近4.2 V 时,改成4.2V恒压充电,电流渐降,电压变化不大,到充电电流降为1/10C(约80 mA)时,认为接近充满,可以终止充电。 手机电池充电曲线3.2充电器设计思想 太阳能手机充电控制电路的设计思想,从手机锂离子二次电池的恒流/恒压充电控制出发,同时配有锂离子蓄电池.当在户外无220V 交流电时,采用太阳能对手机锂离子直接充电,同时对锂离子蓄电池充电;当阴雨天天气或夜晚等阳光不足时,采用配置的锂离子蓄电池对手机锂离子充电,以保证任何情况下不间断.即:系统的设计以太阳能充电为主,在有足够的阳光且蓄电池又有足够供电能力的情况下,系统能够以太阳能充电为主给手机充电,蓄电池给手机补电;在无阳光或阳光弱时,以蓄电池充电为主给手机充电,太阳能为手机补电。3.3充电控制电路设计3.3.1升压电路设计由于在不同的时间、地点太阳光照强度不同,太阳电池板输出电能不稳定,需加人相应的升压、稳压等控制环节。直流升压就是将电池提供的较低的直流电压提升到需要的电压值。3.3.2稳压电路设计稳压电路的设计以三端集成稳压器W7800为核心,它属于串联稳压电路,其工作原理与分立元件的串联稳压电源相同。由启动电路、取样电路、比较放大电路、基准环节、调整环节和过流保护环节等组成,此外还有过热和过压保护电路,因此,其稳压性能要优于分立元件的串联型稳压电路。而且三端集成稳压器设置的启动电路,在稳压电源启动后处于正常状态下,启动电路与稳压电源内部其他电路脱离联系,这样输入电压变化不直接影响基准电路和恒流源电路,保持输出电压的稳定。3.3.3充电电路设计 锂电池以体积小、容量大、重量轻、无记忆效应、无污染、电池循环充放电次数多(寿命长)等优点,广泛地被使用在许多数码产品中。但锂电池对使用条件要求较严格,如充电控制要求精度高,对过充电的承受能力差等。因此,为了保护锂电他,该充电电路包括电池充电控制电路与电池电量检测控制电路两部分。电池充电控制电路,用来控制升压或稳压电路对锉电池进行充电,同时也是锂电池的充电电路。电池电量检测电路,用以检测充电电量的多少,当电池充满电时,充满指示灯亮,逻辑电路控制充电电路断开,停止充电。4结束语 随着现代的科技发展电子产品几乎可以普及,但电子产品的电池却一直困扰这我们。我着次的研究的目的不是让电池的容量增大,而是把太阳能充电器安装在电子产品表面上这样就可以大量增加电池的使用时间。
呵呵,锂电池产业不错。锂点产业主要的发展在电动汽车上。对中国赶超国外的汽车产业是一个很好的机会。
起到取代黑色能源的作用,更加环保,更加清洁,节约社会成本。
提供一些电子信息工程专科毕业论文的题目,供参考。精密检波器的设计简易电子血压计的设计电子听诊器的设计简易数码相机的设计直流电机转动的单片机控制高频功率合成网络的研究多功能气体探测器车用无线遥控系统家用门窗报警器智能型全自动充电器医用病房多路呼叫系统多功能数字钟数字电压表的设计与仿真虹膜识别技术的认识及其在电子学科的发展探讨基于Orcad的电子线路特性分析及优化设计恒温热熔胶枪的设计步进电机的数字控制器设计虹膜图像的预处理(算法分析及探讨)四位密码电子锁的设计旋转LED屏的制作基于PC机的LCD实时显示控制系统设计(pc机部份)基于PC机的LCD实时显示控制系统设计(单片机部份)ICL7135的串行采集方式在单片机电压表中的应用用89C51和8254-2实现步进式PWM输出桌面行走智能小车双音频电话信息传输系统车库控制管理系统(基于PC机)车库控制系统车位识别(基于PC机)数控音频功率放大电路刚体转动实验平台的改进设计谐振频率测试仪高频宽带放大器的制作高频窄带放大器的设计宽带功率放大器的设计程控滤波器的设计高频电压测试棒的制作基于TMS320VC5402的DSP创新试验系统U-BOOT在ARM9(AT91RM9200)上的移植ARM9(AT91RM9200)启动过程的研究与启动代码的设计基于ARM9(AT91RM9200)的嵌入式Linux移植调试环境的研究与建立嵌入式Linux在ARM9(AT91RM9200)上的移植ARM9(AT91RM9200)简易JTAG仿真器设计基于单片机的电动机测速系统基于单片机的单元楼门铃及对讲系统基于单片机的自来水管的恒流控制基于单片机的电子脉搏测量仪基于单片机的自来水水塔控制系统洗衣机控制系统设计基于力敏传感器的压力检测湿敏传感器应用电路系统设计基于气敏传感器的大气环境测量系统设计基于光敏传感器的机器人控制电路设计基于温敏传感器的应用电路设计基于磁敏传感器的检测电路设计超声波传感器在倒车雷达系统中的应用温度传感器在现代汽车中的应用电子秤中的应变片传感器光电开关在自动检测的应用热释电传感器的应用浅谈各种接近开关基于单片机的自行车码表设计基于单片机的图形温度显示系统基于单片机的自动打铃器设计基于EDA技术的自动打铃器设计通用示波器字符(图案)显示电路设计基于EDA技术的时钟设计用matlab实现数字电子技术数据传输电路设计在matlab环境下实现同步计数器电路仿真锂电池充电器的设计与实现脉冲调宽(PWM)稳压电源作光源的设计与实现压电式传感器的应用矩形脉冲信号发生器的设计可编程交通控制系统设计多功能数字钟实用电子称多点温度检测系统可编程微波炉控制器系统设计智能型充电器显示的设计电子显示屏电源逆变器数字温度计简易数字电压表声光双控延迟照明灯可遥控电源开关无刷直流电机控制装置整流电路的设计PLC控制系统与智能化中央空调PLC在电梯变频调速中的应用PLC在输电线路自动重合闸的应用异步电机变频调速系统的设计电机故障诊断系统的设计数控稳压源4-20mA电流环设计单总线多点温度检测系统单片机控制的手机短信发送设备简易恒温浸焊槽设计单片机控制的手机短信发送设备基于MATLAB的IIR数字滤波器设计与仿真基于MATLAB的FIR数字滤波器设计与仿真平稳随机信号功率谱估计及在MATLAB中的实现智能红外遥控电风扇的设计单片机控制的消毒柜数字秒表的设计基于VGA显示的频谱分析仪设计基于FPGA红外收发器设计基于FPGA 的FSK调制器设计基于FPGA的多频电疗仪的设计基于FPGA幅度调制信号发生器设计基于FPGA全数字锁相环设计单片机之间的串口数据通信微机与单片机间的串口数据通信模型自适应系统控制器设计神经网络PID控制器设计带误差补偿环节的PID控制系统具有模糊系统控制的PID控制系统限电自动控制器单片机实现三位电子秒表开关稳压电源设计新型锂电池充电器自制温度检测报警器限流直流稳压电源设计微波测速计自由落体实验仪风力发电机转速控制风力发电电池组运行状态检测光伏电能的储存及合理应用控制装置车库门自动开闭小功率风力发电机研制利用车内电源(12V)给笔记本电脑供电电源(19V)基于PWM控制的七彩灯设计红外遥控电风扇基于串口通信的GPS定位系统数控电压源20mA电流环模块设计基于GSM的汽车防盗系统的设计
手机锂电池正确使用方法介绍:一、不要进行超过12小时的超长充电。对于锂电池的“激活”问题,众多的说法是:充电时间一定要超过12小时,反复做三次,以便激活电池。这种“前三次充电要充12小时以上”的说法,明显是从镍电池(如镍镉和镍氢)延续下来的说法,所以这种说法,可以说一开始就是误传。充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。二、将锂电池置于阴凉处。高充电状态和增加的温度会加快电池容量的下降,如果可能的话,尽量将电池充到40%放置于阴凉地方,这样可以在长时间的保存期内使电池自身的保护电路运作。如果充满电后将电池置于高温下,这样会对电池造成极大的损害。(因此当我们使用固定电源的时候,此时电池处于满充状态,温度一般是在25-30°C之间,这样就会损害电池,引起其容量下降)。不要将电池暴露在高温或严寒下,像三伏天时,不应把手机放在太阳底下,经受烈日的曝晒;或拿到空调房中,放在冷气直吹的地方。三、避免电池电量全部用完后再充电。电池的寿命决定于反复充放电次数,锂电池大约可以连续充放电500次左右,之后电池的性能会大大减弱,应尽量避免把电池内余电全部放完再充电,否则随着充电次数的增加,电池性能会慢慢减弱,电池的待机时间也就很难不下降了。四、使用专用充电器。锂离子电池必须选用专用充电器,否则可能会达不到饱和状态,影响其性能发挥。充电完毕后,应避免放置在充电器上超过12小时以上,长期不用时应使电池和手机分离,最好使用原厂或声誉较好的品牌充电器。
怎么延长手机电池的使用寿命?1.锂电池日常使用保护事项由于没有记忆效应,所以锂离子电池可以随时充电,对寿命的影响有限。这里有个电池循环寿命的概念,电池经过N次充放电后,容量下降到70%,N为循环寿命。国标规定寿命不得小于300次,实际容量降到70%电池还是可以用的。而且循环寿命是指全充全放次数,部分充放电可理解为几分之一次寿命。2.充满后继续充电的坏处充满后继续充电对电池伤害很大。电池内保护电路是针对电池安全性的保护,对未达到危险界限的轻微过压、过流、长时间充电引起的过充完全不起作用。满后继续充电,电池内部将产生副反应,活性物质减少,垃圾物质增多,容量下降,内阻增大,严重过充直接破坏电池结构,导致电池报废。最好能养成习惯:白天到单位、晚上到家,开始充电,充满或睡觉前拔掉电源,特别要避免深夜充电(电网电压偏高)。3.电池安全性就目前而言,手机电池主要为LION电池(锂离子电池),包裹液态锂离子电池LIB、聚合物锂离子电池LPB。首先聚合物电池是安全电池,由于没有坚硬的金属外壳封包,所以即便发生异常情况,都不会爆炸。可能爆炸的是主要是金属封包的液态锂离子电池。一般来说,只要符合国家标准,具有国家生产许可的正规厂家的产品,都不会发生爆炸。理由如下:①符合国家标准的电池,均要求采用双管以上(过压、过流、欠压等)全保护电路及安全电芯。电池电极即便短路也会被保护电路自动断开,输出电压为零,不会爆炸。②即便把保护电路去掉,也就是即便保护电路失效,直接短路电芯,符合国家标准的正规电池,都是铝壳安全电芯,短路、穿刺引起的激烈释气反应导致电池内部压力提高到一定程度,排气阀门打开排气,也就不会爆炸。③就算排气阀也失效了,柔软的铝壳也会因内部压力鼓胀,达到一定程度出现破裂口、发生泻气,也就不会发生爆炸。4.新电池说明新的锂离子电池都是有电的:锂离子电池要求半荷电以上状态运输及存储,电压过低会影响其活性、甚至引起保护电路关闭输出导致无法充电。如果收到的锂离子电池电量很低甚至没电,则说明电池存放时间较长或自放电过大。新电池中的电在工厂用高倍率电流充进,极化严重,电能效果不好,所以锂离子电池的头三次应在手机用到自然关机(关机后勿反复强行开机,可能会引发手机或电池保护,切断输出无法充电),然后用手机接原配直充或原厂智能座充充电(建议勿用非原厂普通座充),充满后保持充电大约1-2小时。锂电池和镍电池的充放电特性有非常大的区别,所有正式技术资料都强调过充和过放电会对锂电池、特别是液体 锂离子电池造成巨大的伤害。因而充电最好按照标准时间和标准方法充电,特别是不要进行超过12个小时的超长充电。通常,手机说明书上介绍的充电方法,就是适合该手机的标准充电方法。事实上,浅放浅充对于锂电更有益处,只有在产品的电源模块为锂电做校准时,才有深放深充的必要。所以,使用锂电供电的产品不必拘泥于过程,一切以方便为先,随时充电,不必担心影响寿命另外,少数的比如诺基亚官方在产品说明书上公布要求前三次电池充电12-14小时,确实如官方所说此类充电时可行,不过可以尝试看,新电池充电5小时与12小时无多大差异,并且切记不可养成每次充电超过10小时的情况,对锂电池来说是很大的损害。