0引言脆性X综合征(fragile X syndrome, FXS)是一种最常见的遗传性智力发育不全综合征,有超过99%的FXS是由脆性X智障基因1(fragile X mental retardation, FMR1)中5′端非编码区CGG三核苷酸重复序列不稳定扩增及其CpG岛异常甲基化导致. FMR1基因的表达产物FMRP的缺乏导致FXS的发生[1-2]. 本实验对编码基因存在于3号染色体[3],能与FMR1 基因5′ d (CGG)n3′重复序列特异性结合的蛋白CGGBP1进行原核表达,并对其DNA结合活性进行研究.1材料和方法1.1材料大肠杆菌DH5α, BL21( DE3)和表达载体pRSET A均为本实验室保存. 质粒提取试剂盒购自Sigma公司; 限制性内切酶BamH I和KpnI购自宝生物工程公司;T4 DNA连接酶购自Promega公司; Ni2+NTA金属螯合蛋白质纯化系统购自Qiagen公司;链酶亲和素磁珠购自Dynal公司;低分子质量蛋白标准购自上海西巴斯生物技术有限公司. 1.2方法 1.2.1表达载体的构建根据CGGBP1基因起始密码子和终止子邻近序列设计PCR引物:CGGBP1F CGC GGA TCC GAG CGA TTG TAG TAA CAG CA,CGGBP1R GGG GTA CCT CAA CAA TCT TGT GAG TTG AG. 其上游及下游引物分别加入BamHI和KpnI酶切识别位点序列(引物序列下划线部分). PCR反应以人淋巴细胞cDNA文库为模板,扩增编码CGGBP1的基因序列. 设计PCR扩增体系25 μL,灭菌去离子水10 μL,10×反应缓冲液2.5 μL,25 mmol/L MgCl2 2.0 μL,DMSO 2.5 μL,4× dNTP混合物(每种2.5 mmol/L)2 μL,CGGBP1F和CGGBP1R各10 pmol,模板3.5 μL(50 ng/μL), Taq DNA(5 μ/μL)聚合酶0.5 μL. 扩增条件:95℃预变性5 min,再94℃ 30 s, 53℃ 1 min,72℃ 1 min循环40次,最后72℃终末延伸产物10 min. PCR产物经琼脂糖电泳分离,用胶回试剂盒回收目的基因. 用BamHI和KpnI酶切PCR产物和pRSET A,酶切产物电泳后回收,在T4连接酶作用下,目的片段定向克隆至pRSET A的BamHI和KpnI克隆位点. 将重组质粒转入大肠杆菌DH5α,接种到含氨苄青霉素的LB培养基平板并挑取单菌落.1.2.2融合蛋白的诱导表达将测序正确的重组质粒转入BL21( DE3). 挑取携带目标质粒的单菌落接种于含100 mg/L氨苄青霉素的LB培养基中, 37℃振荡培养12 h, 按10 mL/L比例转接于新鲜培养基,37℃振荡培养至对数生长期时,加入IPTG至终浓度1 mmol/L,32℃诱导振荡培养4 h,离心收集菌体,SDSPAGE分析重组蛋白的表达.1.2.3蛋白表达形式的分析取5 mL菌液离心,用500 μL的裂解液(10 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L磷酸二氢钠 pH 8.0)重悬,加溶菌酶至终浓度为1 mg/mL,冰浴30 min,超声波裂菌,离心后分别将上清和沉淀进行SDSPAGE分析.1.2.4融合蛋白的纯化将1 mL 500 mL/L Ni2+NTA悬液和4 mL细菌裂解上清液轻轻混匀4℃放置60 min,直接过柱. 过柱结束后,用4 mL漂洗液(20 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0),洗脱未和Ni珠结合的杂蛋白. 经过2次漂洗后再用0.5 mL洗脱液(250 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0) 3次洗脱特异结合的目的蛋白,分步收集. 取收集液,进行SDSPAGE分析.1.2.5CGGBP1与(CGG)29重复序列双链DNA结合实验取10 μL磁珠用1 mL的无RNA酶的三蒸水清洗磁珠2次,除去防腐剂. 1×生物素亲和素结合缓冲液(10 mmol/L TrisHCl,2 mol/L NaCl,1 mmol/L EDTA,1 g/L Tween 20)15 μL重悬磁珠,各5 μL分3组实验. 其中一组加入25 μL(100 ng/μL)生物素化的(CGG)29重复序列双链DNA,另外两组分别加入25 μL(100 ng/μL)非生物素化的(CGG)29重复序列双链DNA和25 μL三蒸水做对照;三组分别再加入2×生物素亲和素结合缓冲液30 μL,25℃轻摇1 h. 经磁力吸附后,弃上清. 重复上述步骤3次;加入纯化后CGGBP1(500 μg/mL)15 μL 和2×核酸蛋白结合缓冲液(20 mmol/L HEPES,100 mmol/L NaCl,0.5 mmol/L DTT,100 g/L甘油)20 μL,室温下静置30 min;经磁力吸附后,弃上清;用1×核酸蛋白结合缓冲液清洗磁珠2次;加三蒸水10 μL,沸水煮10 min,进行SDSPAGE分析.2结果2.1原核表达载体的构建及鉴定扩增产物在15 g/L的琼脂糖凝胶电泳,可观察到一条约504 bp的条带(图1); 重组质粒pRSET A/CGGBP1及质粒pRSET A分别用BamHI和KpnI酶切,pRSET A/CGGBP1分为两个片段,分别为2.9 ku和504 bp(图2),均与预计结果相同.2.2CGGBP1的表达用BamHI和KpnI双酶切pRSET A/CGGBP1表达质粒,筛选阳性重组质粒. 携带有pRSET A/CGGBP1质粒的E.coli BL21(DE3)菌株,经IPTG诱导后,在Mr 约25 000处出现1条表达条带;而未经IPTG诱导的菌体则无此条带. 诱导后的菌体经溶菌酶及超声波裂解,离心后分为上清和沉淀两部分. 经SDSPAGE分析表明,CGGBP1部分存在于细菌裂解液的上清中,为可溶性蛋白,上清液中的目标蛋白相对较少(图3). 2.3CGGBP1蛋白纯化在表达质粒pRSET A多克隆酶切位点的上游, 插入有连续6个组氨酸的序列 —(His )6 tag. 重组质粒经诱导表达后,(His )6 tag可以和外源插入片段共同表达. 利用(His )6 tag 和金属Ni2+的螯合所设计的固定化金属配体亲和柱层析方法,是纯化目的蛋白的一种高效而简单的方法. SDSPAGE显示,CGGBP1得到较高程度的纯化(图4).2.4CGGBP1与5′d(CGG)293′重复序列双链DNA结合实验生物素化的5′d(CGG)29 3′重复序列双链DNA被固定到链酶亲和素磁珠上,非生物素化的5′d(CGG)293′重复序列双链DNA因无法固定到链酶亲和素磁珠上而被洗脱掉. 同理,加入CGGBP1后,未和5′d (CGG)293′重复序列双链DNA结合的蛋白也被洗脱(图5).3讨论关于微卫星的产生机制,普遍认为是DNA复制过程中DNA聚合酶的滑动[4],或DNA复制和修复时滑动链与互补链碱基错配,导致一个或几个重复单位的插入或缺失. 已发现微卫星可能是一种非常活跃的碱基序列,通常各种简单的重复序列成簇地聚集在一个染色体区域,这个染色体区形成特异染色体结构的能力将会增强. 这些区域在核糖体RNA基因中非常复杂,同时这些重复序列所折叠形成的结构还能与特异的蛋白质相结合,成为“染色质折叠密码”[5-6],参与遗传物质的结构改变,基因调控及细胞分化等过程. 脆性X综合征是Igarashi等[7]研究报道的与三核苷酸重复片段扩增突变有关的7种神经变性疾病其中的一种. 该蛋白只和(CGG)n重复序列发生特异性结合,而与其它类型的三核苷酸重复序列不结合[8]. 因此,对该蛋白功能的研究具有重要的理论研究意义. 本实验成功地构建了含CGGBP1的重组质粒,以可溶性蛋白形式获得较高表达. 通过Ni2+NTA柱纯化,获得纯化的目标融合蛋白质,同时证明了该蛋白能和人FMR1基因5′d (CGG)293′重复序列双链DNA特异性结合. 这将为进一步开展真核生物蛋白CGGBP1功能的研究和阐释CGG三核苷酸动态突变的致病机理奠定基础.
学术堂整理了十个关于大肠杆菌的论文题目,供大家参考:1、大肠杆菌表达系统的研究进展2、重组大肠杆菌高密度发酵研究进展3、山东省鸡大肠杆菌的分离鉴定4、大肠杆菌mtID基因和gutD基因的克隆,全序列测定和高效表达5、我国部分地区禽病原性大肠杆菌的分离与鉴定6、中国不同地区家禽大肠杆菌血清型分布和耐药性比较研究7、大肠杆菌毒力因子研究概况8、致病性大肠杆菌的耐药性监测9、动物大肠杆菌耐药性的变化趋势10、纳米银对大肠杆菌的抗菌作用及其机制
环境工程专业的论文
导语:针对环境工程这一专业,大家会写出什么样的论文呢?下面是我收集整理的环境工程专业论文,供各位阅读和参考。
摘要:
磁性固化技术凭借自身的特点与优势在环境工程利用中得到了广泛地应用,并且从其应有效果来看,其具有不错的应用前景。该文在介绍磁性固化技术种类的基础上,对其在环境工程领域中的应用进行了介绍,仅供参考。
关键词:
磁性固化;环境工程;废气处理
磁性固化技术通过物理或化学方法将酶或微生物定位于磁性固化载体,待固化反应完后,通过外部磁场完成对其的分离处理,同时使酶或微生物能够保持活性,并且可以进行多次固化,具有不错的应用前景。
1磁性载体的固化分类
磁性纳米球是磁性固化过程中的常用载体,对其进行分类大体可以分为以下几种。
(1)吸附法,利用物理吸附方法,将酶固定在琼脂糖或多孔玻璃等载体上。该固定方法具有固定条件温和、工艺简单等诸多优点,同时其载体具有较为广泛的选择空间,既可以选择人工合成的高分子材料,也可以选择天然的高分子材料,在吸附过程中可以实现固定化和纯化,失活的酶能够再次活化,而应用的载体也能够实现再生。
(2)共价法,支持物反映基团和分子功能基形成共价键,粘合十分牢固,在应用过程中具有较高的稳定性,并且很少会发生酶脱落的情况。该方法在应用过程中的主要缺点是固化和载体活化起来相对比较复杂,并且反应发生所需要的环境也十分剧烈,因此要想获取活力较好的固定化酶,必须要对反应条件进行严格地控制。
(3)包埋法,在聚合物材料的微囊或格子结构中固定酶,通过这种方式有效地避免了酶蛋白释放,而在实际操作中,在微囊或格子中仍然可以有底物落入与酶发生接触。该方法的最大优点是操作起来相对比较容易,只是将酶分子包埋起来,不会对生物活性造成较为严重地破坏,但是该方法并不是适用于分子较大的底物。(4)交联法,对试剂进行应用,完成蛋白酶之间交联,从而使多功能试剂与酶分子之间形成共价键,最终形成三向交联网结构,酶分子不仅存在外交联,而且也存在内交联。在实际操作过程中添加材料上的差异会使产生的固化酶具有不同的物理性质。
2环境工程对磁性固化技术的应用
2.1环境检测
免疫磁性分离技术在生物学和医学中的应用已经十分成熟,近几年其也被应用到环境检测中。通过对免疫磁分离技术的应用可以从样品中将目标微生物分离,如果在检验过程中与荧光免疫分析、多聚酶链式反应等方法合理地结合在一起,可以提高检测极限和分离效率。在检测废水大肠杆菌的含量时,可以结合三磷酸腺苷为生活和免疫磁性分离技术相结合,实验结果显示,检测的整个环节时间低于60min,并且检测结果具有较高的精准度,因此是一种快速有效的检测方法。部分学者在研究过程中在分离金属离子过程中利用了一种表面被改性后的磁性纳米微生物球,实验结果显示,在浓度为10ng/ml,pH=4的溶液中,Cu、Co、Pb等离子能够依照顺序被提出,并且提取效率超过了90%,是一种不错的方法。
2.2废气处理
磁性固定化技术因为具有反应速度块、密度高、产物易分离、抗毒性较强等等优点,被广泛地应用到废气治理领域中。宣群等研究人员利用海藻酸钠进行固化实验,在对氧化亚硫酸铁的降解率超过了97%,得到不错的应用效果。马艳玲等研究人员利用海藻酸钙制定固定微生物颗粒实现对硫化氢等废气的净化,通过实验发现,硫化氢的排除率超过了90%,排除效果良好。此外,马艳玲通过对活性炭的应用,对假单胞菌进行吸附降解油烟废气,通过实验结果发现,当气流速低于8L/h,油烟浓度未超过100mg/L,容积负荷处于2.5~19.0g/m3h,油烟的滞留时间超过30s时,生活反应器对讲解油烟的效率超过了95%,降解效果十分明显,对油烟的处理效果明显,并且以活性炭为填充料的反应器具有较强的抗冲击能力,这也确保了其应用的合理性。
2.3废水处理
部分学者在尝试在污水处理过程中将磁性技术与固化技术结合,将磁性物质作为酶或微生物在固化过程中的载体,通过其具有的磁场和高效分离等特点对微生物和污水进行处理,这弥补了传统废水处理中难以对微生物进行处理,难以将水与微生物进行分离的弊端,探索出一条处理废水的新途径。在对磁性纳米球进行一系列地处理后,可以使其携带功能基团,这在一定程度上提高了载体对微生物的固载量。固定微生物附着在磁性载体上可以使其在废水处理上的效率、速度得到提高,同时在污水处理过程中还具备磁处理所具有的优势,也就是在存在外磁场的情况下,具有较强的磁响应,因此很容易从反应体系中将载体分离出来,具有良好的处理效果。
部分学者在磁性微球上固定辣根过氧化物酶,在固定酶过程中,酶最大固载量可以达到3.35mg/g,在反应器中利用其对废水(含有酚酞)进行处理,在实验过程中对废水的成分进行处理,通过测量,游离酶的动力学参数Km为224μmol/L,固定化酶动力学参数Vmax为371μmol/L;也有学者对磁活性污泥进行应用对奶厂生产过程中产生的废水进行处理,主要处理废水中的氨氮和有机物,相关实验表明,处理率分别可以达到98%和92%,并且随着科技的发展,处理率还会进一步提高,可见其是一种高效的处理方法;部分学者也针对功能化硅包覆介孔磁性载体固定细菌效果进行了研究,主要针对pH值、处理时间、处理温度等因素进行分析,同时在研究过程中需要将结果与其他载体固菌效果对比。实验结果显示在30℃环境中,摇床中的振动速度为200r/min,对固菌进行24h培养效果最佳,在城市污水处理过程中对固菌后载体进行应用,处理24h,主要处理过程中应当在pH=7,投加量为0.5g的最佳情况下开展,在该环境下,去除COD的量能够超过83%,利用pH=2的HCL溶液完成酸洗后的再生载体,将其应用到城市污水处理中,处理效果仍然可以超过76%。
将磁性载体固化酶放入磁场稳定流动床反应器中,可以简化整个体系在反应过程中的操作环节,比较适合规模化生产。通过对外部磁场的应用可以对磁性材料固定酶的运动方向和方式进行适当控制,通过该方式顶替传统机械搅拌的方式,可以使搅拌变得更加合理,使固定化酶的催化效率得到了进一步提高。
部分学者利用纳米磁粉磁化菌生物肥对屠宰场的废水进行处理,处理结果显示,通过对该工艺的应用,可以快速地分离磁性生物絮凝泥水混合液,在处理过程中仅需要15min便可以完成沉淀,磁粉和磁场能够促进微生物的新陈代谢,提高了污泥活性以及处理废水的效果,通过大量的实验结果进行统计分析,可以发现,利用其对屠宰场的废水处理,对SS、COD、NH3-N3种化学物质的.去除效率分别可以达到92%、96%、87%,通过处理后的排除的水的水质远高于排放标准,并且该工艺具有很强的抗冲击负荷能力,具有不错的应用前景。
3结语
磁性固化技术因为其自身具有的特点和优势,被广泛地应用到生物学、医学等多个领域中,并且对其的应用也已经逐渐趋于成熟,但是对其环境工程领域中的应用还处于发展阶段。因此,加强对磁性固化技术在环境工程领域中的应用的研究,扩大其应用范围,并且要将研究结果由实验阶段逐渐向应用阶段发展,进一步改善我国的环境。
化学污染与生态是研究生态环境中的污染物与周围的生态环境之间相互影响的规律的科学,是环境工程专业的一门重要的专业课。化学污染与生态课程是一门综合性课程,同时又具有较强的现实性和实践性特点。针对化学污染与生态课程教学,我们在多年课程教学改革和实践中进行了一些探索并形成了一些想法。
一、课程特点分析
化学污染与生态课程是为环境工程专业三年级学生开设的一门综合性专业课程,这门课程涉及内容和范围比较广泛,因此在学习本课程之前学生需要具备与该课程相关的基础知识,学生不但要对有机化学和无机化学具有较深的理解,而且还应当深入了解生态学和环境学等方面的知识。在这门课程的学习过程中,学生在以前所学的相关知识的基础上进一步掌握化学污染物与生态环境的相互作用规律,并且能够根据所学的知识对实际污染过程进行分析并提出具体的防治措施。在这门课程的学习过程中,学生不但要学习各种理论知识,还应当能够进行相关的验证性和设计性实验,达到理论与实践的结合。同时,通过对该课程的学习,可以激发学生们的学习兴趣并且扩展他们的视野,为进一步学习环境工程专业的其他课程打下一定的基础。
二、教学内容的设计
化学污染与生态课程的主要研究内容是化学污染物与生态环境之间的相互作用,对实际污染过程进行分析并提出具体的防治措施。该课程的一个重要特点是内容涉及多学科交叉,包括化学,环境学和生态学等学科的基本概念和基本原理。该课程涉及内容较多但课程学时数又有所限制,因此在课程教学内容的设计过程中要考虑到这些实际情况,防止该课程所讲述的内容与其他相关课程的内容产生重复现象,重点讲述本课程的核心内容。该课程的主要内容是以生态学的基本原理为基础,以化学和生态学理论相结合的观点探讨生态系统的结构和功能,详细研究非金属污染物,重金属污染物,有机污染物的来源,分布,循环,迁移转化规律以及对生态系统的作用和防治方法等。同时在教学过程中还要通过文字和影音图片资料介绍学科发展的前沿最新动态,让学生了解到最新的研究成果,这样可以使教学内容更丰富和充实。
三、教学过程中教学方法的运用
在这门课程讲授过程中发现完全的以教师讲授教学内容的方法,很难适应学生能力培养的要求。这种教学方法不利于发挥学生的主观能动性,也不利于培养学生的创新思维。因此教学改革中需要改善教学模式,在课程讲授过程中既能发挥教师的主导作用又能调动学生学习的积极性,从而提高教学效果。同时在教学过程中不同的章节其具体的内容也不一样,可以针对不同的内容采用不同的教学方法,提高教学效率。在化学污染与生态课程的教学过程中运用了如下所述的多种教学方法。第一种方法是讲授法,讲授法是教学过程中最基本的方法,这种方法主要用于基本原理和基本概念的讲述。讲授过程中教师除了讲授课程中的内容以外,还可以结合自己的科研过程,把一些相关的内容进行讲述,使学生能够更多地掌握本学科的知识。第二种方法是课堂提问法,课堂提问可以活跃课堂气氛,同时还可以调动学生对问题积极思考的能力,通过主动思考学生对课程重点和难点的认识得以强化,使分析问题的过程思路清晰并且条理化。同时通过对以前所学知识进行课堂提问也可以巩固学生对所学知识的掌握。第三种方法是课堂讨论,课堂讨论是一种较好的教学方法,随着素质教育的深入,课堂讨论也被越来越多地使用,这种方法可以活跃课堂气氛,充分调动学生的学习积极性,有利于培养学生学习过程中的主观能动性,学生可以在课堂讨论过程中发现问题,然后通过讨论解决问题,是一种合作学习的过程,通过这种分析归纳总结的思维过程,可以让学生体会自主探究的过程,充分展示学生的个性。采用课堂讨论的方法的过程中,为了达到较好的教学效果,学生需要对问题进行充分的思考,为了使学生有充分的独立思考的时间,可以提前介绍下节课的主要内容以及提出的问题,上课时在教师的指导下通过课堂讨论的方式进行课程内容的学习。第四种方法是案例教学法,教师在课程讲述过程中要注意运用案例进行教学,通过实际案例对一些环境污染问题和事件进行探讨,可以使学生学会应用基本原理对实际情况进行分析,加深对所学知识的理解和掌握,同时还可以使学生及时了解这方面的研究热点以及最新科研成果。
四、多媒体教学的应用
多媒体教学法是随着计算机多媒体技术的发展而产生的一种新的教学方法,是传统板书教学法的重要的辅助手段。多媒体教学法和板书教学法各有优点和缺点,根据环境污染与生态课程的特点,结合环境工程专业的特点,本课程采用多媒体教学法结合板书教学法进行课堂教学。在多媒体教学过程中,可以在很大程度上增加课堂教学的信息量,例如一些图表可以通过图片方式快速显示出来,这样就能把更多的时间放到对图表的分析上。同时,利用多媒体技术可以把一些抽象的理论和概念直观地显示出来,达到感性认识和理性认识的有机结合,例如可以通过动画讲述一些比较抽象的概念和过程。因此采用多媒体教学法可以提高学生学习这门课程的学习兴趣,有利于学生对课堂所学知识的理解和掌握,从而提高课堂教学的效果。当然,多媒体教学方法只是一种辅助教学手段,传统的板数教学方法仍有很强的灵活性和实用性,例如教师在黑板上对公式进行逐步推演要比多媒体教学法更符合学生的认知规律,在多媒体教学方法的应用过程中,要与传统的板书教学法相结合,这样才能达到更好的教学效果。
五、适当增加实践性内容
化学污染与生态课程具有很强的现实性和实践性,因此应当开展实践教学活动,首先学生应当能够进行验证性实验的操作,在教师的指导下应用实验设备进行独立的操作,在实验过程中通过观察各种实验现象从而进一步加深对所学理论知识的理解和掌握。此外还鼓励学生进行创新性和设计性实践项目,例如让学生从一些环境污染问题中提出研究题目,查阅国内外与此研究题目相关的文献资料,然后进行讨论确定研究方案,在教师的指导下进行实验,通过这种具体的科研实践活动可以提高学生理论联系实际的能力,同时也巩固了在课堂上所学的知识。
六、改变课程成绩评定方式
成绩的评定是化学污染与生态课程教学改革的一个重要方面,在成绩评定过程中需要要注重四个方面,第一个方面是对学生所学课程理论基础知识的成绩评定,这项评定通过笔试试卷考试的方式进行,考试过程采用教考分离的方法,防止任课教师试卷出题过程中的倾向性,这样能更客观地评价教学过程中教师的教学效果以及学生的学习成绩,同时试卷阅卷过程采用流水阅卷方式,在此过程中可以让每位教师对学生的答题情况进行分析,这样可以更客观地评估教学成效;第二个方面是对学生出勤和平时作业的成绩评定,第三个方面是学生在实践环节中的表现,最后是成绩评定过程中还要注重学生对化学污染与生态学科发展的认识,以及对所学的一些基本原理在自己专业领域中的应用的认识。
炎炎夏日时,游泳是个好选择,不过这个游泳池水够干净吗?有时水中会有大肠杆菌,大肠杆菌含量过高时甚至不得不把海滩关闭。至今为止,水质检测技术还不够快,也不能够检测所有水质。 加拿大麦克马斯特大学的研究人员发明了一种新型快速检测方法,使用一张简单的试纸,就可在短时间内检测出游泳池水大肠杆菌数量。该试纸表面覆盖有一种化学成分,会与大肠杆菌发生反应并变色。有了这样的快速检测试纸,便可在大肠杆菌爆发前检测出,从而改善公众安全。4月17日发表于《分析和生物分析化学》(Analytical and Bioanalytical Chemistry)的研究报告显示,如果水中大肠杆菌浓度达到有害程度,用该试纸可以快速简单地检测出来,准确性比目前手提式检测技术高很多。 论文的第一作者、麦克马斯特大学化学教授布雷兰(John Brennan)指出,一向以来,大肠杆菌群都是一大问题。目前检测大肠杆菌的方法都比较缓慢,而且不太可行,因为在检测前都要以在实验室先培育扩大为基础,这就导致反应措施会有延时。 生物活性试纸其实是旧瓶装新酒,早在20世纪50年代末,医生就开始使用生物活性纸检测尿液葡萄糖含量。在近几年,该领域才开始快速扩展,为了开发新应用,研究工作变得不断复杂化。 新型试纸表面覆盖有能与大肠杆菌反应的化学材料,并使用喷墨打印技术印刷出来,有点类似于桌面打印机。在30分钟内完成取样,试纸颜色若是发生改变,则说明有大肠杆菌存在,并通过颜色来显示大肠杆菌的不同形式和浓度。 将来,普通消费者也许就可以不需要其他附加设备、科学知识和长时间的等待,通过此方法简单可靠地检测水质。现在存在的一个问题是,没有又简易,又快速和便宜的方法检测游泳池水,当然,饮用水也是如此。
基本上所有的室内游泳池都是一年以上换一次水,有的甚至终身不换。使用的都是循环水,所以平常可以通过肉眼观察一下水池,如果清亮见底的话,水就比较干净,若是有很多的悬浮物就说明水脏了。
游泳池的水干不干净检查方法:1、用眼看,如果直接能看出来水很脏,那就不要去洗了。2、用手摸,凭感觉,如果感觉水质很“滑”,那么肯定不干净。3、测试,用消过毒的玻璃杯取游泳池的水20毫升,放入水螅五只,认真观察其生活状况,作好记录,如果一星期后水螅死亡,则水很干净,否则很脏。
学术堂整理了十个关于大肠杆菌的论文题目,供大家参考:1、大肠杆菌表达系统的研究进展2、重组大肠杆菌高密度发酵研究进展3、山东省鸡大肠杆菌的分离鉴定4、大肠杆菌mtID基因和gutD基因的克隆,全序列测定和高效表达5、我国部分地区禽病原性大肠杆菌的分离与鉴定6、中国不同地区家禽大肠杆菌血清型分布和耐药性比较研究7、大肠杆菌毒力因子研究概况8、致病性大肠杆菌的耐药性监测9、动物大肠杆菌耐药性的变化趋势10、纳米银对大肠杆菌的抗菌作用及其机制
修改:相关网站:我给你提供一些大肠杆菌的资料,比较乱,自己去整理.三凉食品这个术语没有听说过,如果可以解释一下,或许我会知道.大肠杆菌O157: H7实验诊断研究进展 大肠杆菌O157: H7感染临床表现出血性肠炎:鲜血样便,腹部痉挛性疼痛,低热或不发热。 溶血性尿毒综合征(HUS):主要发生在儿童,常出现在腹泻后数天或1-2周。病死率一般在10%,各别可高达50%。血栓性血小板减少性紫癜(TTP):主要发生在成年人,尤其老年人。病人主要表现为发热、血小板减少、溶血性贫血、肾功能异常等症状,病情发展迅速,病死率高,有时可出现70%的病人死亡。大肠杆菌O157: H7传染源和传播途经大肠杆菌O157: H7基本上是一种食源性病原菌,可通过食用大肠杆菌O157: H7污染的牛肉、牛奶、牛肉或制品、鸡肉、蔬菜、水果、饮料、水等感染,也可通过人与人、人与动物密切接触传播。在实验室,大肠杆菌O157: H7可以感染小鼠、鸡、兔、猪、牛等动物。大肠杆菌O157: H7的感染已成为世界性的问题我国情况也不容乐观一、细菌培养与鉴定 1.分离培养早期培养对确定病原有重要意义。 培养的对象首先是急性血性腹泻患者,其次是HUS、TTP等住院病人,再其次是高危接触者。培养基:山梨醇麦康凯琼脂、胰胨大豆琼脂改良的伊红美兰 、改良的SD-39(MSD)琼脂 添加了头孢克肟 和 亚碲酸钾的山梨醇麦康凯琼脂(TC-SMAC)添加了头孢克肟和鼠李糖(0.5%)的山梨醇麦康凯琼脂(CR-SMAC)“科玛嘉”大肠杆菌O157: H7显色培养基四溴荧光亚甲基兰琼脂H7抗血清—山梨醇发酵培养基 增菌液:含10mg/L 新生霉素的EB肉汤或肠道增菌液含10mg/L 新生霉素或10mg/L盐酸-吖啶黄的胰蛋白胨大豆肉汤新生霉素MEC肉汤月桂基胰蛋白胨肉汤加入下例任何一种抑制剂均可增加培养基的选择性头孢克肟 0.05mg/L 亚碲酸钾2.5mg/L 新生霉素10mg/L 万古霉素40mg/L2.免疫磁珠分离法免疫磁珠分离法是将特异性抗体吸附于一种能被吸附的磁性珠子上,然后利用抗原抗体反应特性将样品中的大肠杆菌O157: H7富集起来。方法:1.增菌;2.取样品1ml加大肠杆菌O157: H7免疫磁珠20ul;3.轻轻混合10分钟;4.将试管插入磁架上;5.吸取上清;6.加PBS,重复3-5过程;7.取管壁沉淀物,划线接种于CT-山梨醇麦康凯琼脂(C-头孢克肟,T-亚碲酸钾)等选择性培养基。37℃培养6-24小时,挑取可疑菌落进行鉴定。Chapman等 共检测大便标本690份, 免疫磁珠分离法检出25 。用免疫磁珠分离法分离的l2株大肠杆菌O157: H7中,直接培养阳性仅5株。Wright等将接种大肠杆菌O157: H7的碎牛肉标本置加有万古霉素和头孢克肟的缓冲蛋白胨水培养,然后直接或用大肠杆菌O157抗体包被的磁珠分离细菌后,接种于CT-SMAC,结果直接次培养检出量为200cfu/g,而免疫磁珠分离法仅需 2cfu/g 。Chapman等先用EC肉汤增菌,然后用免疫磁珠分离法富集牛粪便大肠杆菌O157: H7菌株,再用选择性培养基分离,并与CR-SMAC和CT-MAC直接培养作比较。用前者检测接种12株不同大肠杆菌O157: H7菌株的牛粪便悬液,其敏感性比在两种培养基上直接培养高100倍。 Cubbon等用免疫磁分离法(IMS)检测牛粪便和食品标本的大肠杆菌O157: H7。在一起经牛奶传播的大肠杆菌O157: H7爆发中,用IMS、粪便培养和多聚酶链反应(PCR)检测Vero毒素基因的携带,用三种方法对粪便大肠杆菌O157: H7的分离率作比较结果,在受检的142份粪便标本中,直接培养和IMS均阳性20 份,另13份仅IMS阳性。因此,IMS提高了大肠杆菌O157: H7感染病例的检出率,与PCR符合率高。目前,污染的肉、家畜,甚至饮用水均面临大肠杆菌O157: H7的卫生威胁。检测食品和水源中肠道病原体使用传统的培养法,结果不理想。IMS和其它检测的研究表明,对快速检测食品和环境标本似乎前景良好,Yu检等以IMS结合电化学发光检测法(ECL)检测食品和污染物中的大肠杆菌。结果显示,在原缓冲液检出大肠肠菌的范固为100-1000 cfu/lm,在食品检出的范围为1000-2000cfu/lm ,检测时间十分快,一般不到1小时。菌O157: H7菌株的牛粪便悬液,其敏感性比在两种培养基上直接培养高100倍。在监测牛群的4个月间,从牛采集1024份直肠标本,其中检出大肠杆菌O157: H784份(8.2%)84份中有23份(27.4%)由直接培养和IMS分离。23份中15份由两种培养基、5份仅由CT-SMAC、3份仅由CR-SMAC分离,其余61份(72.6%)仅IMS分离。用含吐温-20 的PBS洗涤磁珠可减少其它微生物与磁珠的非特异性结合。用无关的抗体包被磁,则大肠杆菌O157: H7不结合。IMS具有快速、操作简单、特异性高,在流行病学调查中有价值。 3.生化反应 目前许多国家使用的O157和 H7特异性抗体与极少数细菌具有不同程度交叉反应。因此用生化试验确定为大肠杆菌是必须的。典型大肠杆菌的主要生化反应结果如下:动力试验(+) 葡萄糖(+) 麦芽糖(+)甘露醇(+) 蔗糖(-/+) 硫化氢(-) 尿素(-) 靛基质(+) 甲基红(+) V-P试验(-)枸橼酸盐(-)苯丙氨酸脱羧酶(-)赖氨酸脱羧酶(+/-)鸟氨酸脱羧酶( +/ -)氧化酶(-)氰化钾(-)与O157有鉴别意义的生化反应见表1。MUG即4-甲基伞形化内酯-β-葡萄糖醛酸苷。大多数大肠杆菌具有葡萄糖醛酸酶,可水解MUG产生荧光, 但O157: H7中大多数菌株则不水解MUG。Thompson等建立了一种快速MUG试验,取 MUG试剂0.5ml置试管中,以无菌棉签挑取待检菌纯培养物混匀于其中,44.5℃置20min,暗室内高强度光源下观察结果,产生蓝色荧光者为阳性。 二.血清学检测1.玻片凝集试验2. 胶体金免疫技术3. ELISA 4.免疫荧光技术5.胶乳凝集 6. 间接血凝分析(IEHA)7. 全自动抗原抗体检测系统8. 免疫印记法1.玻片凝集试验玻片凝集试验是鉴定O抗原最经典的方法,实验中如果凝集反应不明确,但根据临床表现和生化反应等菌株高度可疑时,可100℃加热菌液30min再行玻片凝集试验。这样可去除K抗原的影响。为排除交叉反应引起的凝集造成假阳性,应继而做试管凝集反应,所测得的效价不应低于诊断血清原标定效价的一半。鉴定H抗原也应同时做玻片和试管凝集试验,并应先对待检菌做动力试验,在动力活泼时取培养物做H抗原鉴定。2. 胶体金免疫技术胶体金免疫技术特点是以胶体金作为标记物进行的抗原抗体反应。这一技术最初用于免疫电镜技术。至今,在免疫测定中,金标记常与膜载体配合,形成特定模式,典型的如斑点免疫渗滤试验和斑点免疫层析试验等,已是目前应用广泛的一种简便、快速的血清学检验方法。胶体金的制备多采用还原法,氯金酸是主要还原材料。金颗粒的大小取决于制备时加入的柠檬酸三钠的量。胶体金免疫层析试验时以硝酸纤维膜为载体,利用了微孔膜的毛细管作用,滴加在膜条一端的液体慢慢向另一端渗移,犹如层析一样。中国预防医学科学院微生物研究所利用胶体金技术、双抗体夹心法和显色反应等特点,研制了大肠杆菌O157: H7病原体快检金卡,通用于定性检测粪便、食品、水等样品中的O157: H7大肠杆菌。显色程度与样品中细菌含量成正比,最低测菌量为少于100个菌细胞,主要特点是敏感性高,可用于待检样品初筛,阳性样品可进行细菌分离,减少工作量。3. ELISA 大肠杆菌O157: H7的常用检测方法是粪便培养后作细菌分离,然后用生物化学和免疫学方法鉴定,一般需72 小时。Dylla等用一种快速ELISA直接检测粪便中大肠杆菌O157: H7,并与标准培养方法加以对照。结果显示,ELISA检测183份粪便标本,检出大肠杆菌O157: H7 9份。常规培养法阴性176份,而ELISA阴性174份。总特异性为98.9%。该法与其它非O157: H7大肠杆菌无交叉反应,是一种准确、敏感、特异、易观察结果的筛选方法,尤其适用于中、小实验室及大量粪便标本的流行病学调查。Padhye等用单克隆抗体进行直接ELISA反应检测O157: H7,除O26 :H11外,未发现与沙门氏菌、结肠炎耶氏森菌、志贺氏菌和肺炎克雷伯民菌等有交叉反应。单克隆抗体用于检测大肠杆菌O157: H7有明显特异性,可作为一种免疫试剂用于临床和食物标本的快速检测。Clark 等近一步对单克隆抗体的研究发现,此种单克隆抗体识别的物质是LPS,这种LPS抗原决定簇用全细胞ELISA同样可以在其它血清型大肠杆菌和产生或不产生Vero毒素的大肠杆菌中检测到, 而且易受到胆盐、吖啶黄和温度的影响,但可以通过结合免疫捕获的修饰方案来提高ELISA的特异性。4.免疫荧光技术 DEFT 与Ab-DEFT: 直接荧光技术(DEFT)与抗体定位荧光技术(Ab-DEFT)的主要特点是,显微镜下直接计数样品菌细胞。由于无需培养或分离过程,因此检测非常快速。DEFT的基本原理为:对样品进行过滤,用荧光染料(如吖啶橙)对留在滤膜上的菌细胞染色后,用荧光显微镜观察计数。但由于荧光染料的非特异染色,不但被检菌被染色,本底杂菌也可染色,从而影响了结果的精确性。Ab-DEFT则克服了这一缺点,过滤后的菌细胞与荧光标记的特异抗体作用,然后用荧光显微镜观察计数。 固相荧光毛细管免疫分析此方法高度敏感,具有快速、试剂用量少、易于操作等优点。Czajlu等用热杀死的O157: H7菌包被玻璃毛细管作固形支持物。 样品中加入结合了生物素的O157: H7多克隆抗体,作用一段时间,然后将此样品/抗体混合物与标记了Cy5 (一种荧光花青染料)的亲和素加入到毛细管,孵育2min,冲洗、吹干,由激光传感器系统发射650nm波长激发光激发花青染料,之后用光学传感器系统测定荧光发射密度。直接免疫荧光抗体染色 Park等对粪便样品进行离心后,用免疫荧光抗体对粪便涂片进行标记,可检测到所有培养法证实的菌株,检测时间<2h。5.胶乳凝集 该方法是以胶乳颗粒作载体,以O157: H7特异性抗体致敏,制成特异的胶乳试剂,将标本乳化于玻片或有色烧盘上,滴加胶乳试剂,呈明显凝集而对照胶乳不凝集时即为阳性。 6.间接血凝分析(IEHA)该法多用于对LPS、可溶性本体抗原、未加热抗原的抗体检测,对检测H抗原的抗体效果不佳。Morooka等检测了溶血性尿毒综合征(HUS)病人血清LPS抗体,虽然甲醛化羊红细胞(SRBC)有低水平非特异性吸附,但不影响该方法作为一种有效、快速(<3h)的诊断方法。因为感染病人血清的滴度明显高于非特异性吸附。7. 全自动抗原抗体检测系统VIDAS是一种全自动抗原抗体检测系统。可直接从感染性疾病患者标本中检测细菌、病毒、弓形虫、衣原体和螺旋体等微生物的抗原、抗体或毒素。基本原理:采用酶联免疫(夹心法)原理,并在底物中掺入荧光物质,最终产生荧光产物4-甲基-7-羟刀豆素,荧光强弱与标本中被测物浓度相关,经扫描样本读数与标准比较计算出标准值,并根据阴性和阳性临界值判定结果。 8.免疫印记法目的是检测大肠杆菌O157: H7感染者血清中的O157脂多糖和溶血素特异性 抗体。基本原理是将提纯的脂多糖或溶血素用SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)分离后,通过转移电泳转移到硝酸纤维膜上,然后用抗原抗体进行免疫检测。包括SDS-聚丙烯酰胺凝胶电泳、转移电泳、免疫检测三部分。特点是具有比较高的特异性和敏感性 。免疫检测 将封闭好的硝酸纤维素膜按梳子齿的宽度剪成每一个泳道一条,依次编号。1) 每条加入1毫升用PBS稀释的病人血清,室温震荡2小时,同时设阳性对照和阴性对照;2) 用2.5毫升/条PBST震荡洗涤3次,每次5分钟;3) 加入用1毫升用PBS稀释的II抗,室温震荡1小时;4) 用2.5毫升/条PBST震荡洗涤2次,每次5分钟,再用PBS洗涤一次; 5) 将膜放入12毫升显色液中显色,室温震荡15-30分钟,至阳性对照出现满意的蓝紫色 ;6) 将膜放入蒸馏水中终止显色反应,照相;7) 当显色的条带和溶血素的分子量或0157脂多糖的条谱一致时,结果判断为阳性。二.分子生物学检测 分子生物学的出现,为更快诊断微生物提供了许多分子学工具。 这一新的研究是用基因型而不是表型因子来鉴定特异性病原体。因此其特异性更好。加之 操作程序自动化使得DNA分析在实验室应用中已成为常规操作。自动化DNA提取仪,聚合酶链式反应仪(PCR仪),DNA序列分析仪,脉冲凝胶电泳仪(用于分离DNA大片段,如完整的染色体) 在疾病诊断中都是很有用的。 1.DNA探针探针(probe)标记:放射性核素 、非放射性物质标记 。探针的来源 :①克隆的基因组DNA探针;②cDNA探针;⑧RNA探针;④寡核苷酸探针。标本处理:根据标本来源和量的不同而处理不同 。杂交方法:斑点杂交 、southern印迹 、原位杂交 、Northern印迹 等。杂交信号检测 : (1)测量放射性核素射线脉冲数 (2)放射自显影 (3)显色法 (4)发光法。 O157: H7特异噬菌体上的sltⅠ、Ⅱ基因、大质粒溶血素基因及染色体上eae基因等都已制成了可杂交检测的特异探针。Beutin等曾用VT1(750bp,)、VT2(850bp)、溶血素(3.4kb)等探针进行流行病学调查。Thomas等用地高辛标记的VT2B亚单位基因、VT2C基因探针检测不同噬菌体型O157: H7菌。Huck等筛选了O157: H7大质粒上限制性片段,发展了一种2.0kb的Sma I片段探针,认为此探针对O157: H7血清型最为特异,可与所有O157: H7试验菌杂交。2. PCR技术 聚合酶链式反应技术(PCR)是一种选择性体外扩增DNA或RNA片段的方法。具有特异性强、敏感性高、快速、简便、可扩增RNA或cDNA、对起始材料质量要求低等优点。PCR技术扩增体系的基本成分引物: PCR产物的特异性主要取决于引物链的特异性。由于存在同源序列,随意设计的引物链,其PCR产物在电泳分析时可能出现多条链,因此在设计引物链时应充分考虑引物特异性。引物长度一般为15-30个碱基,G+C含量为40- 60%,浓度0.1-1umol/L 。TaqDNA聚合酶:浓度为1-4ul/100ul。TaqDNA聚合酶单位用量增长可能导致非特异DNA扩增 。模板DNA:应避免混有任何蛋白酶、核酸酶、DNA聚合酶抑制剂及能结合DNA的蛋白酶。DNA摸板的制备方法有加热法、冻溶法、超声波粉碎法、碱变性法、SDS裂解法等多种。 4×dNTPs : dNTP储存液pH应为7.0,在反应体系中,4种dNTP的浓度应相同,每种dNTP的浓度以50-200 umol/L为宜。缓冲液及其他成份:PCR反应体系中,一般采用Tris-HCl缓冲液。适宜的Mg2+浓度为高于dNTP总浓度0.2-2.5 mmol/L。 PCR技术循环参数PCR扩增是由变性、退火和延伸三个步骤反复循环而实现的。确定正确的循环参数是PCR成功的保证。循环参数1.变性温度和时间 模板DNA和PCR产物的变性不完全,是PCR反应失败最常见的一个原因,在变性步骤,使温度达到双链DNA完全分离的变性条件是95 ℃ ,30s。对GC含量高的靶DNA序列,宜用较高的变性温度。在解链温度下,DNA的变性仅需几秒。但是,使反应管内达到解链温度需要一定的时间。原则上变性步骤应高温、短时,即要保证变性充分,又要保持聚合酶在整个反应中的活性。循环参数2.引物退火 引物退火的温度和时间取决于引物的长度、碱基组成及其在反应体系中的浓度 。对GC含量约50%,长20个碱基的典型寡核苷酸引物而言,最佳的退火温度为55 ℃ 。在温度较高的条件下退火,可提高PCR的特异性。 循环参数3.引物延伸 :引物延伸是DNA聚合酶将脱氧单核苷酸逐一地加到引物的3’一OH末端,引物延伸温度取决于DNA聚合酶的最适温度。如用TaqDNA聚合酶,一般取70-75 ℃ ,常用72 ℃ 。 延伸步骤的时间则取决于目标序列的长度、浓度和延伸温度。目标序列越长、浓度越低、延伸温度越低,则所需的延伸时间越长;反之,目标序列越短、浓度越高、延伸温度越高,所需的延伸时间则越短 一般而言,每1000个碱基的序列,延伸时间1分钟便足够了。对于扩增100—300个碱基的短序列片段,可省去延伸温度这一步骤,而采用快速简便的变性、退火双温循环。这是因为TaqDNA聚合酶即使在退火温度下仍保持很强的活性,而延伸过程可在退火温度转变为变性温度的过程中完成。 循环参数扩增产物长度 100bp 500bp 1000bp 2000bp94℃变性时间(秒) 30 30 60 6055℃复性时间(秒) 30 30 60 6072℃延伸时间(秒) 30 38 120 180一般作25-30个循环即可,进行最后一次循环时间、延伸时间增加5分钟。PCR扩增产物的检测方法PCR反应混合物经过循环扩增后,所需做的工作就是检测反应液中是否存在预期扩增产物及产物的特异性。目前已经发展了许多检测分析PCR扩增产物的方法。包括凝胶电泳、高压液相色谱、核酸探针杂交、探针捕获酶免疫分析、酶切图谱分析、单链构型多态性分析、核酸序列分析。PCR技术类型 免疫PCR技术 原位PCR技术 不对称PCR技术 巢式PCR技术 反向PCR技术 逆转录PCR技术 复合PCR技术 彩色PCR技术 抗原捕获PCR技术增敏PCR技术 酶标PCR技术 二温式PCR技术 锚定PCR技术 定量PCR技术 毛细管PCR技术 多重PCR技术 巢式或套式PCR技术PCR技术在大肠杆菌O157: H7检测中的应用(1)简单PCR: Meng等以eae基因5′末端附近一段688bp DNA片段为基础设计了一对引物,扩增产物为633bp的DNA片段。其退火温度为60℃-63℃, 应用煮沸法与基因释放法,大肠杆菌O157: H7检出限分别为25与38CFU/ml,检测时间为3h。Thomas等用PCR扩增了slt基因片段。引物:正链5′-(TTTACGATAGACTTCTCGAC)-3',反链5′-(CACATATAAATTATTTCGCTC)-3’ 其PCR产物由凝胶电泳测定,检测时间为ld 。徐建国等根据O157: H7 特有的hlyA、B基因序列设计了PCR引物,产物为338bp。PCR技术在大肠杆菌O157: H7检测中的应用(2)多重PCR:由于鉴定O157: H7血清型不能仅仅依靠简单PCR,近年来国外学者对多重PCR方法在大肠杆菌O157: H7的诊断价值方面进行了研究。Meng等同时扩增了eae 上游基因片段、sitⅠ基因片段、sit Ⅱ基因片段,其长度分别为633、210、484bp。此引物设计可有效区别O157: H7血清型与O55: H7、O55: NM。Fratamico等在一个单一反应中同时扩增了eae基因、slt Ⅰ、Ⅱ的保守序列及60MDa质粒保守序列,其产物分别为1087、227、224、166bp。严笠选用针对大肠杆菌O157: H7志贺样毒素Ⅰ、Ⅱ(SLT-Ⅰ、SLT-Ⅱ)和溶血素(Hly)基因的三对引物,在同一扩增体系中进行PCR,检测12株不同来源的O157: H7大肠杆菌及其它致病性大肠杆菌及沙门菌、志贺菌15株。结果复合PCR方法较单一PCR方法具有较高的特异性,12株O157: H7取得了稳定、可靠的阳性结果。能迅速、有效地与其它致病性大肠杆菌及沙门氏菌、志贺菌相鉴别。PCR技术在大肠杆菌O157: H7检测中的应用(3)原位PCR:kurokawa等不用培养过程,直接用原位PCR技术结合落射显微镜,在单细胞水平快速检测O157: H7 。4.23SrRNA在大肠杆菌O157: H7分型、检测中的应用传统的细菌分类方法主要依赖于细菌的形态学、代谢产物、酶活性和表面抗原等特征。随着现代分子生物学理论和技术的迅速发展,微生物检测进入了基因时代,以核糖体核糖核酸序列为基础的分类方法为微生物的鉴别提供了新的分子生物学方法。如16srRNA、 23srRNA、 16-23srRNA区间序列分析等等,它完全不同于传统方法,具有快速、简便、敏感和特异等优点。23SrRNA基因特征:原核生物的核糖体有三种大小(分别为23S、16S、 5S)的rRNA。目前已知23SrRNA基因全长序列的菌种数目已达250种。长度大约为3000pb。对许多细菌的23SrRNA基因序列分析发现,其序列的可变性比16SrRNA基因要明显,特别是亲源关系近的种系。利用这些可变区序列的差异可对相同菌种不同菌株进行分类鉴定。同时对已知23SrRNA基因序列分析也发现,在最初的520pb中有6个保守区域(5-10区域),并发现,这6个保守区域中6区段和10区段最保守,该序列在14个菌种中完全一致。应用:检测临床感染性疾病的病原菌 首先,将两条引物设计在保守区,成为通用引物,而在变异区中选择序列作为特异性探针,先用通用引物作PCR扩增,可筛选出含有病原菌的样本,再用特异性探针与扩增产物进行杂交,对目的细菌作出鉴定,达到诊断病原体及分型的目的。鉴定特定细菌种属 目前认为,已发现的23SrRNA基因的IVSs具有种属特异性,可利用IVSs(插入序列)进行PCR扩增达到对某一种属细菌的诊断。在流行病学方面的应用利用可变区序列的差异可对相同菌种不同菌株进行分析。为流行病提供依据。除以上介绍的各方法外,常用的有效检测方法还有脉冲场电泳、随机扩增多态性DNA指纹分析、细胞毒试验等,在此不一一赘述。 大肠杆菌O157: H7的检验程序 样品 增菌6小时 磁珠浓缩 可疑菌落 山梨醇麦康凯琼脂G染色 生化反应 血清学 毒力基因 大肠杆菌O157: H7实验室诊断依据 有下列情况之一具有实验室确诊意义: 1) 从腹泻病患者的粪便标本中分离出大肠杆菌O157: H7 ;2) 经PCR或DNA杂交试验证实具有溶血素基因 及志贺样毒素基因;3) 腹泻病患者恢复期血清抗O157LPS IgG抗体呈4倍升高;4) 具有血性便的腹泻患者的急性期血清或恢复期血清,蛋白印记试验证实含有和O157LPS、EHEC溶血素或志贺毒素的特异性抗体.小结自从O157: H7被认识以来,对其基因的研究越来越细,已经探明了许多结构与功能基因,对其病因学、病理学及临床治疗方面均有很大促进作用。由于引起感染所需的O157: H7剂量很低,有必要发展一些灵敏度高的方法,用于快速有效地检测。另外,现已发现存在许多变异株,单用一种方法来检测往往是不够的。如发酵山梨醇的变异株用SMAC即不能检测到;由于许多非EHEC(EPEC、霍乱弧菌、志贺菌等)也可产生SLT,故单纯检测SLT也会产生假阳性结果。因此对一个样品的检测需结合使用多种方法才能获得准确的结果。 第三章 大肠菌群测定 一、大肠菌群检验(一)检验方法(二)培养基 (三)检验时应注意事二、大肠菌群的卫生学意义 大肠菌群是评价食品卫生质量的重要指标之一,目前已被国内外广泛应用于食品卫生工作中。该菌群主要来源于人及温血动物粪便,一般多用来作为食品中的粪便污染指标。过去我国在大肠菌群的检验方面经验不多,对该菌群的认识也不够充分。1974年全国修订食品卫生细菌检验方法座谈会和1976年全国食品卫生标准会议建议以大肠菌群作为粪便污染指标菌,并提出进行有关大肠菌群方面的科研工作。为此,我们成立了大肠菌群科研协作组,对犬肠菌群的检验方法(包括快速检验方法)及其卫生学意义进行了广泛的科学研究和实践,取得了一定成绩,为制订大肠菌群检验方法提供了科学依据。 在这次修订l976年版食品卫生检验方法的过程中,大肠菌群科研协作组又于1983~1985年对大肠菌群检验方法进行了实验研究,并作了对比观察,同时对国内常用的大肠菌群快速检测方法也进行了研讨,为这次修订国家标准食品卫生检验方法微生物学部分中的大肠菌群测定提供了科学依据。 大肠菌群不是细菌学上的分类命名,而是根据卫生学方面的要求,提出来的一组与粪便污染有关的细菌,这些细菌在生化及血清学方面并非完全一致。其定义为:系指一群需氧及兼性厌氧、在37℃能分解乳糖产酸产气的革兰氏阴性无芽胞杆菌。有些科学工作者又用靛基质、甲基红、V~P、柠檬酸盐、硫化氢、明胶、动力和44.5℃乳糖分解等试验,将这群细菌再分为大肠艾希氏菌、柠檬酸杆菌、产气克雷白氏菌和阴沟肠杆菌等。不论分法如何,对大肠菌群的判定,均应以上述定义为基础。一、大肠茵群检验(一)检验方法 1.乳糖发酵试验。以无菌操作采取样品,采取量及稀释倍数,依据国家或当地卫生标准要求及样品污染情况而定。将待检样品接种于乳糖胆盐发酵管内,接种量在l m J以上者,用双料乳糖胆盐发酵管,lm1及1mI以下者,用单料乳糖胆盐发酵管。每一稀释度接种3管,置36±l℃温箱内,培养24±2小时,如所有乳糖胆盐发酵管都不产气,则可报告为大肠菌群阴性;如有产气者,则按下列程序进行。 2.分离培养。将产气的发酵管分别转种在伊红美蓝琼脂平板上,置36±l℃温箱内,培养18~24小时,然后取出,观察菌落形态,并作革兰氏染色和证实试验。 3.证实试验。在上述平板上,挑取可疑大肠菌群菌落l~2个进行革兰氏染色,同时
0引言脆性X综合征(fragile X syndrome, FXS)是一种最常见的遗传性智力发育不全综合征,有超过99%的FXS是由脆性X智障基因1(fragile X mental retardation, FMR1)中5′端非编码区CGG三核苷酸重复序列不稳定扩增及其CpG岛异常甲基化导致. FMR1基因的表达产物FMRP的缺乏导致FXS的发生[1-2]. 本实验对编码基因存在于3号染色体[3],能与FMR1 基因5′ d (CGG)n3′重复序列特异性结合的蛋白CGGBP1进行原核表达,并对其DNA结合活性进行研究.1材料和方法1.1材料大肠杆菌DH5α, BL21( DE3)和表达载体pRSET A均为本实验室保存. 质粒提取试剂盒购自Sigma公司; 限制性内切酶BamH I和KpnI购自宝生物工程公司;T4 DNA连接酶购自Promega公司; Ni2+NTA金属螯合蛋白质纯化系统购自Qiagen公司;链酶亲和素磁珠购自Dynal公司;低分子质量蛋白标准购自上海西巴斯生物技术有限公司. 1.2方法 1.2.1表达载体的构建根据CGGBP1基因起始密码子和终止子邻近序列设计PCR引物:CGGBP1F CGC GGA TCC GAG CGA TTG TAG TAA CAG CA,CGGBP1R GGG GTA CCT CAA CAA TCT TGT GAG TTG AG. 其上游及下游引物分别加入BamHI和KpnI酶切识别位点序列(引物序列下划线部分). PCR反应以人淋巴细胞cDNA文库为模板,扩增编码CGGBP1的基因序列. 设计PCR扩增体系25 μL,灭菌去离子水10 μL,10×反应缓冲液2.5 μL,25 mmol/L MgCl2 2.0 μL,DMSO 2.5 μL,4× dNTP混合物(每种2.5 mmol/L)2 μL,CGGBP1F和CGGBP1R各10 pmol,模板3.5 μL(50 ng/μL), Taq DNA(5 μ/μL)聚合酶0.5 μL. 扩增条件:95℃预变性5 min,再94℃ 30 s, 53℃ 1 min,72℃ 1 min循环40次,最后72℃终末延伸产物10 min. PCR产物经琼脂糖电泳分离,用胶回试剂盒回收目的基因. 用BamHI和KpnI酶切PCR产物和pRSET A,酶切产物电泳后回收,在T4连接酶作用下,目的片段定向克隆至pRSET A的BamHI和KpnI克隆位点. 将重组质粒转入大肠杆菌DH5α,接种到含氨苄青霉素的LB培养基平板并挑取单菌落.1.2.2融合蛋白的诱导表达将测序正确的重组质粒转入BL21( DE3). 挑取携带目标质粒的单菌落接种于含100 mg/L氨苄青霉素的LB培养基中, 37℃振荡培养12 h, 按10 mL/L比例转接于新鲜培养基,37℃振荡培养至对数生长期时,加入IPTG至终浓度1 mmol/L,32℃诱导振荡培养4 h,离心收集菌体,SDSPAGE分析重组蛋白的表达.1.2.3蛋白表达形式的分析取5 mL菌液离心,用500 μL的裂解液(10 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L磷酸二氢钠 pH 8.0)重悬,加溶菌酶至终浓度为1 mg/mL,冰浴30 min,超声波裂菌,离心后分别将上清和沉淀进行SDSPAGE分析.1.2.4融合蛋白的纯化将1 mL 500 mL/L Ni2+NTA悬液和4 mL细菌裂解上清液轻轻混匀4℃放置60 min,直接过柱. 过柱结束后,用4 mL漂洗液(20 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0),洗脱未和Ni珠结合的杂蛋白. 经过2次漂洗后再用0.5 mL洗脱液(250 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0) 3次洗脱特异结合的目的蛋白,分步收集. 取收集液,进行SDSPAGE分析.1.2.5CGGBP1与(CGG)29重复序列双链DNA结合实验取10 μL磁珠用1 mL的无RNA酶的三蒸水清洗磁珠2次,除去防腐剂. 1×生物素亲和素结合缓冲液(10 mmol/L TrisHCl,2 mol/L NaCl,1 mmol/L EDTA,1 g/L Tween 20)15 μL重悬磁珠,各5 μL分3组实验. 其中一组加入25 μL(100 ng/μL)生物素化的(CGG)29重复序列双链DNA,另外两组分别加入25 μL(100 ng/μL)非生物素化的(CGG)29重复序列双链DNA和25 μL三蒸水做对照;三组分别再加入2×生物素亲和素结合缓冲液30 μL,25℃轻摇1 h. 经磁力吸附后,弃上清. 重复上述步骤3次;加入纯化后CGGBP1(500 μg/mL)15 μL 和2×核酸蛋白结合缓冲液(20 mmol/L HEPES,100 mmol/L NaCl,0.5 mmol/L DTT,100 g/L甘油)20 μL,室温下静置30 min;经磁力吸附后,弃上清;用1×核酸蛋白结合缓冲液清洗磁珠2次;加三蒸水10 μL,沸水煮10 min,进行SDSPAGE分析.2结果2.1原核表达载体的构建及鉴定扩增产物在15 g/L的琼脂糖凝胶电泳,可观察到一条约504 bp的条带(图1); 重组质粒pRSET A/CGGBP1及质粒pRSET A分别用BamHI和KpnI酶切,pRSET A/CGGBP1分为两个片段,分别为2.9 ku和504 bp(图2),均与预计结果相同.2.2CGGBP1的表达用BamHI和KpnI双酶切pRSET A/CGGBP1表达质粒,筛选阳性重组质粒. 携带有pRSET A/CGGBP1质粒的E.coli BL21(DE3)菌株,经IPTG诱导后,在Mr 约25 000处出现1条表达条带;而未经IPTG诱导的菌体则无此条带. 诱导后的菌体经溶菌酶及超声波裂解,离心后分为上清和沉淀两部分. 经SDSPAGE分析表明,CGGBP1部分存在于细菌裂解液的上清中,为可溶性蛋白,上清液中的目标蛋白相对较少(图3). 2.3CGGBP1蛋白纯化在表达质粒pRSET A多克隆酶切位点的上游, 插入有连续6个组氨酸的序列 —(His )6 tag. 重组质粒经诱导表达后,(His )6 tag可以和外源插入片段共同表达. 利用(His )6 tag 和金属Ni2+的螯合所设计的固定化金属配体亲和柱层析方法,是纯化目的蛋白的一种高效而简单的方法. SDSPAGE显示,CGGBP1得到较高程度的纯化(图4).2.4CGGBP1与5′d(CGG)293′重复序列双链DNA结合实验生物素化的5′d(CGG)29 3′重复序列双链DNA被固定到链酶亲和素磁珠上,非生物素化的5′d(CGG)293′重复序列双链DNA因无法固定到链酶亲和素磁珠上而被洗脱掉. 同理,加入CGGBP1后,未和5′d (CGG)293′重复序列双链DNA结合的蛋白也被洗脱(图5).3讨论关于微卫星的产生机制,普遍认为是DNA复制过程中DNA聚合酶的滑动[4],或DNA复制和修复时滑动链与互补链碱基错配,导致一个或几个重复单位的插入或缺失. 已发现微卫星可能是一种非常活跃的碱基序列,通常各种简单的重复序列成簇地聚集在一个染色体区域,这个染色体区形成特异染色体结构的能力将会增强. 这些区域在核糖体RNA基因中非常复杂,同时这些重复序列所折叠形成的结构还能与特异的蛋白质相结合,成为“染色质折叠密码”[5-6],参与遗传物质的结构改变,基因调控及细胞分化等过程. 脆性X综合征是Igarashi等[7]研究报道的与三核苷酸重复片段扩增突变有关的7种神经变性疾病其中的一种. 该蛋白只和(CGG)n重复序列发生特异性结合,而与其它类型的三核苷酸重复序列不结合[8]. 因此,对该蛋白功能的研究具有重要的理论研究意义. 本实验成功地构建了含CGGBP1的重组质粒,以可溶性蛋白形式获得较高表达. 通过Ni2+NTA柱纯化,获得纯化的目标融合蛋白质,同时证明了该蛋白能和人FMR1基因5′d (CGG)293′重复序列双链DNA特异性结合. 这将为进一步开展真核生物蛋白CGGBP1功能的研究和阐释CGG三核苷酸动态突变的致病机理奠定基础.
0引言脆性X综合征(fragile X syndrome, FXS)是一种最常见的遗传性智力发育不全综合征,有超过99%的FXS是由脆性X智障基因1(fragile X mental retardation, FMR1)中5′端非编码区CGG三核苷酸重复序列不稳定扩增及其CpG岛异常甲基化导致. FMR1基因的表达产物FMRP的缺乏导致FXS的发生[1-2]. 本实验对编码基因存在于3号染色体[3],能与FMR1 基因5′ d (CGG)n3′重复序列特异性结合的蛋白CGGBP1进行原核表达,并对其DNA结合活性进行研究.1材料和方法1.1材料大肠杆菌DH5α, BL21( DE3)和表达载体pRSET A均为本实验室保存. 质粒提取试剂盒购自Sigma公司; 限制性内切酶BamH I和KpnI购自宝生物工程公司;T4 DNA连接酶购自Promega公司; Ni2+NTA金属螯合蛋白质纯化系统购自Qiagen公司;链酶亲和素磁珠购自Dynal公司;低分子质量蛋白标准购自上海西巴斯生物技术有限公司. 1.2方法 1.2.1表达载体的构建根据CGGBP1基因起始密码子和终止子邻近序列设计PCR引物:CGGBP1F CGC GGA TCC GAG CGA TTG TAG TAA CAG CA,CGGBP1R GGG GTA CCT CAA CAA TCT TGT GAG TTG AG. 其上游及下游引物分别加入BamHI和KpnI酶切识别位点序列(引物序列下划线部分). PCR反应以人淋巴细胞cDNA文库为模板,扩增编码CGGBP1的基因序列. 设计PCR扩增体系25 μL,灭菌去离子水10 μL,10×反应缓冲液2.5 μL,25 mmol/L MgCl2 2.0 μL,DMSO 2.5 μL,4× dNTP混合物(每种2.5 mmol/L)2 μL,CGGBP1F和CGGBP1R各10 pmol,模板3.5 μL(50 ng/μL), Taq DNA(5 μ/μL)聚合酶0.5 μL. 扩增条件:95℃预变性5 min,再94℃ 30 s, 53℃ 1 min,72℃ 1 min循环40次,最后72℃终末延伸产物10 min. PCR产物经琼脂糖电泳分离,用胶回试剂盒回收目的基因. 用BamHI和KpnI酶切PCR产物和pRSET A,酶切产物电泳后回收,在T4连接酶作用下,目的片段定向克隆至pRSET A的BamHI和KpnI克隆位点. 将重组质粒转入大肠杆菌DH5α,接种到含氨苄青霉素的LB培养基平板并挑取单菌落.1.2.2融合蛋白的诱导表达将测序正确的重组质粒转入BL21( DE3). 挑取携带目标质粒的单菌落接种于含100 mg/L氨苄青霉素的LB培养基中, 37℃振荡培养12 h, 按10 mL/L比例转接于新鲜培养基,37℃振荡培养至对数生长期时,加入IPTG至终浓度1 mmol/L,32℃诱导振荡培养4 h,离心收集菌体,SDSPAGE分析重组蛋白的表达.1.2.3蛋白表达形式的分析取5 mL菌液离心,用500 μL的裂解液(10 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L磷酸二氢钠 pH 8.0)重悬,加溶菌酶至终浓度为1 mg/mL,冰浴30 min,超声波裂菌,离心后分别将上清和沉淀进行SDSPAGE分析.1.2.4融合蛋白的纯化将1 mL 500 mL/L Ni2+NTA悬液和4 mL细菌裂解上清液轻轻混匀4℃放置60 min,直接过柱. 过柱结束后,用4 mL漂洗液(20 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0),洗脱未和Ni珠结合的杂蛋白. 经过2次漂洗后再用0.5 mL洗脱液(250 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0) 3次洗脱特异结合的目的蛋白,分步收集. 取收集液,进行SDSPAGE分析.1.2.5CGGBP1与(CGG)29重复序列双链DNA结合实验取10 μL磁珠用1 mL的无RNA酶的三蒸水清洗磁珠2次,除去防腐剂. 1×生物素亲和素结合缓冲液(10 mmol/L TrisHCl,2 mol/L NaCl,1 mmol/L EDTA,1 g/L Tween 20)15 μL重悬磁珠,各5 μL分3组实验. 其中一组加入25 μL(100 ng/μL)生物素化的(CGG)29重复序列双链DNA,另外两组分别加入25 μL(100 ng/μL)非生物素化的(CGG)29重复序列双链DNA和25 μL三蒸水做对照;三组分别再加入2×生物素亲和素结合缓冲液30 μL,25℃轻摇1 h. 经磁力吸附后,弃上清. 重复上述步骤3次;加入纯化后CGGBP1(500 μg/mL)15 μL 和2×核酸蛋白结合缓冲液(20 mmol/L HEPES,100 mmol/L NaCl,0.5 mmol/L DTT,100 g/L甘油)20 μL,室温下静置30 min;经磁力吸附后,弃上清;用1×核酸蛋白结合缓冲液清洗磁珠2次;加三蒸水10 μL,沸水煮10 min,进行SDSPAGE分析.2结果2.1原核表达载体的构建及鉴定扩增产物在15 g/L的琼脂糖凝胶电泳,可观察到一条约504 bp的条带(图1); 重组质粒pRSET A/CGGBP1及质粒pRSET A分别用BamHI和KpnI酶切,pRSET A/CGGBP1分为两个片段,分别为2.9 ku和504 bp(图2),均与预计结果相同.2.2CGGBP1的表达用BamHI和KpnI双酶切pRSET A/CGGBP1表达质粒,筛选阳性重组质粒. 携带有pRSET A/CGGBP1质粒的E.coli BL21(DE3)菌株,经IPTG诱导后,在Mr 约25 000处出现1条表达条带;而未经IPTG诱导的菌体则无此条带. 诱导后的菌体经溶菌酶及超声波裂解,离心后分为上清和沉淀两部分. 经SDSPAGE分析表明,CGGBP1部分存在于细菌裂解液的上清中,为可溶性蛋白,上清液中的目标蛋白相对较少(图3). 2.3CGGBP1蛋白纯化在表达质粒pRSET A多克隆酶切位点的上游, 插入有连续6个组氨酸的序列 —(His )6 tag. 重组质粒经诱导表达后,(His )6 tag可以和外源插入片段共同表达. 利用(His )6 tag 和金属Ni2+的螯合所设计的固定化金属配体亲和柱层析方法,是纯化目的蛋白的一种高效而简单的方法. SDSPAGE显示,CGGBP1得到较高程度的纯化(图4).2.4CGGBP1与5′d(CGG)293′重复序列双链DNA结合实验生物素化的5′d(CGG)29 3′重复序列双链DNA被固定到链酶亲和素磁珠上,非生物素化的5′d(CGG)293′重复序列双链DNA因无法固定到链酶亲和素磁珠上而被洗脱掉. 同理,加入CGGBP1后,未和5′d (CGG)293′重复序列双链DNA结合的蛋白也被洗脱(图5).3讨论关于微卫星的产生机制,普遍认为是DNA复制过程中DNA聚合酶的滑动[4],或DNA复制和修复时滑动链与互补链碱基错配,导致一个或几个重复单位的插入或缺失. 已发现微卫星可能是一种非常活跃的碱基序列,通常各种简单的重复序列成簇地聚集在一个染色体区域,这个染色体区形成特异染色体结构的能力将会增强. 这些区域在核糖体RNA基因中非常复杂,同时这些重复序列所折叠形成的结构还能与特异的蛋白质相结合,成为“染色质折叠密码”[5-6],参与遗传物质的结构改变,基因调控及细胞分化等过程. 脆性X综合征是Igarashi等[7]研究报道的与三核苷酸重复片段扩增突变有关的7种神经变性疾病其中的一种. 该蛋白只和(CGG)n重复序列发生特异性结合,而与其它类型的三核苷酸重复序列不结合[8]. 因此,对该蛋白功能的研究具有重要的理论研究意义. 本实验成功地构建了含CGGBP1的重组质粒,以可溶性蛋白形式获得较高表达. 通过Ni2+NTA柱纯化,获得纯化的目标融合蛋白质,同时证明了该蛋白能和人FMR1基因5′d (CGG)293′重复序列双链DNA特异性结合. 这将为进一步开展真核生物蛋白CGGBP1功能的研究和阐释CGG三核苷酸动态突变的致病机理奠定基础.
0引言脆性X综合征(fragile X syndrome, FXS)是一种最常见的遗传性智力发育不全综合征,有超过99%的FXS是由脆性X智障基因1(fragile X mental retardation, FMR1)中5′端非编码区CGG三核苷酸重复序列不稳定扩增及其CpG岛异常甲基化导致. FMR1基因的表达产物FMRP的缺乏导致FXS的发生[1-2]. 本实验对编码基因存在于3号染色体[3],能与FMR1 基因5′ d (CGG)n3′重复序列特异性结合的蛋白CGGBP1进行原核表达,并对其DNA结合活性进行研究.1材料和方法1.1材料大肠杆菌DH5α, BL21( DE3)和表达载体pRSET A均为本实验室保存. 质粒提取试剂盒购自Sigma公司; 限制性内切酶BamH I和KpnI购自宝生物工程公司;T4 DNA连接酶购自Promega公司; Ni2+NTA金属螯合蛋白质纯化系统购自Qiagen公司;链酶亲和素磁珠购自Dynal公司;低分子质量蛋白标准购自上海西巴斯生物技术有限公司. 1.2方法 1.2.1表达载体的构建根据CGGBP1基因起始密码子和终止子邻近序列设计PCR引物:CGGBP1F CGC GGA TCC GAG CGA TTG TAG TAA CAG CA,CGGBP1R GGG GTA CCT CAA CAA TCT TGT GAG TTG AG. 其上游及下游引物分别加入BamHI和KpnI酶切识别位点序列(引物序列下划线部分). PCR反应以人淋巴细胞cDNA文库为模板,扩增编码CGGBP1的基因序列. 设计PCR扩增体系25 μL,灭菌去离子水10 μL,10×反应缓冲液2.5 μL,25 mmol/L MgCl2 2.0 μL,DMSO 2.5 μL,4× dNTP混合物(每种2.5 mmol/L)2 μL,CGGBP1F和CGGBP1R各10 pmol,模板3.5 μL(50 ng/μL), Taq DNA(5 μ/μL)聚合酶0.5 μL. 扩增条件:95℃预变性5 min,再94℃ 30 s, 53℃ 1 min,72℃ 1 min循环40次,最后72℃终末延伸产物10 min. PCR产物经琼脂糖电泳分离,用胶回试剂盒回收目的基因. 用BamHI和KpnI酶切PCR产物和pRSET A,酶切产物电泳后回收,在T4连接酶作用下,目的片段定向克隆至pRSET A的BamHI和KpnI克隆位点. 将重组质粒转入大肠杆菌DH5α,接种到含氨苄青霉素的LB培养基平板并挑取单菌落.1.2.2融合蛋白的诱导表达将测序正确的重组质粒转入BL21( DE3). 挑取携带目标质粒的单菌落接种于含100 mg/L氨苄青霉素的LB培养基中, 37℃振荡培养12 h, 按10 mL/L比例转接于新鲜培养基,37℃振荡培养至对数生长期时,加入IPTG至终浓度1 mmol/L,32℃诱导振荡培养4 h,离心收集菌体,SDSPAGE分析重组蛋白的表达.1.2.3蛋白表达形式的分析取5 mL菌液离心,用500 μL的裂解液(10 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L磷酸二氢钠 pH 8.0)重悬,加溶菌酶至终浓度为1 mg/mL,冰浴30 min,超声波裂菌,离心后分别将上清和沉淀进行SDSPAGE分析.1.2.4融合蛋白的纯化将1 mL 500 mL/L Ni2+NTA悬液和4 mL细菌裂解上清液轻轻混匀4℃放置60 min,直接过柱. 过柱结束后,用4 mL漂洗液(20 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0),洗脱未和Ni珠结合的杂蛋白. 经过2次漂洗后再用0.5 mL洗脱液(250 mmol/L 咪唑,300 mmol/L NaCl及50 mmol/L 磷酸二氢钠 pH 8.0) 3次洗脱特异结合的目的蛋白,分步收集. 取收集液,进行SDSPAGE分析.1.2.5CGGBP1与(CGG)29重复序列双链DNA结合实验取10 μL磁珠用1 mL的无RNA酶的三蒸水清洗磁珠2次,除去防腐剂. 1×生物素亲和素结合缓冲液(10 mmol/L TrisHCl,2 mol/L NaCl,1 mmol/L EDTA,1 g/L Tween 20)15 μL重悬磁珠,各5 μL分3组实验. 其中一组加入25 μL(100 ng/μL)生物素化的(CGG)29重复序列双链DNA,另外两组分别加入25 μL(100 ng/μL)非生物素化的(CGG)29重复序列双链DNA和25 μL三蒸水做对照;三组分别再加入2×生物素亲和素结合缓冲液30 μL,25℃轻摇1 h. 经磁力吸附后,弃上清. 重复上述步骤3次;加入纯化后CGGBP1(500 μg/mL)15 μL 和2×核酸蛋白结合缓冲液(20 mmol/L HEPES,100 mmol/L NaCl,0.5 mmol/L DTT,100 g/L甘油)20 μL,室温下静置30 min;经磁力吸附后,弃上清;用1×核酸蛋白结合缓冲液清洗磁珠2次;加三蒸水10 μL,沸水煮10 min,进行SDSPAGE分析.2结果2.1原核表达载体的构建及鉴定扩增产物在15 g/L的琼脂糖凝胶电泳,可观察到一条约504 bp的条带(图1); 重组质粒pRSET A/CGGBP1及质粒pRSET A分别用BamHI和KpnI酶切,pRSET A/CGGBP1分为两个片段,分别为2.9 ku和504 bp(图2),均与预计结果相同.2.2CGGBP1的表达用BamHI和KpnI双酶切pRSET A/CGGBP1表达质粒,筛选阳性重组质粒. 携带有pRSET A/CGGBP1质粒的E.coli BL21(DE3)菌株,经IPTG诱导后,在Mr 约25 000处出现1条表达条带;而未经IPTG诱导的菌体则无此条带. 诱导后的菌体经溶菌酶及超声波裂解,离心后分为上清和沉淀两部分. 经SDSPAGE分析表明,CGGBP1部分存在于细菌裂解液的上清中,为可溶性蛋白,上清液中的目标蛋白相对较少(图3). 2.3CGGBP1蛋白纯化在表达质粒pRSET A多克隆酶切位点的上游, 插入有连续6个组氨酸的序列 —(His )6 tag. 重组质粒经诱导表达后,(His )6 tag可以和外源插入片段共同表达. 利用(His )6 tag 和金属Ni2+的螯合所设计的固定化金属配体亲和柱层析方法,是纯化目的蛋白的一种高效而简单的方法. SDSPAGE显示,CGGBP1得到较高程度的纯化(图4).2.4CGGBP1与5′d(CGG)293′重复序列双链DNA结合实验生物素化的5′d(CGG)29 3′重复序列双链DNA被固定到链酶亲和素磁珠上,非生物素化的5′d(CGG)293′重复序列双链DNA因无法固定到链酶亲和素磁珠上而被洗脱掉. 同理,加入CGGBP1后,未和5′d (CGG)293′重复序列双链DNA结合的蛋白也被洗脱(图5).3讨论关于微卫星的产生机制,普遍认为是DNA复制过程中DNA聚合酶的滑动[4],或DNA复制和修复时滑动链与互补链碱基错配,导致一个或几个重复单位的插入或缺失. 已发现微卫星可能是一种非常活跃的碱基序列,通常各种简单的重复序列成簇地聚集在一个染色体区域,这个染色体区形成特异染色体结构的能力将会增强. 这些区域在核糖体RNA基因中非常复杂,同时这些重复序列所折叠形成的结构还能与特异的蛋白质相结合,成为“染色质折叠密码”[5-6],参与遗传物质的结构改变,基因调控及细胞分化等过程. 脆性X综合征是Igarashi等[7]研究报道的与三核苷酸重复片段扩增突变有关的7种神经变性疾病其中的一种. 该蛋白只和(CGG)n重复序列发生特异性结合,而与其它类型的三核苷酸重复序列不结合[8]. 因此,对该蛋白功能的研究具有重要的理论研究意义. 本实验成功地构建了含CGGBP1的重组质粒,以可溶性蛋白形式获得较高表达. 通过Ni2+NTA柱纯化,获得纯化的目标融合蛋白质,同时证明了该蛋白能和人FMR1基因5′d (CGG)293′重复序列双链DNA特异性结合. 这将为进一步开展真核生物蛋白CGGBP1功能的研究和阐释CGG三核苷酸动态突变的致病机理奠定基础.
1、发酵法
这种方法主要是在44.5℃下的培养基上进行大肠杆菌的培养,该培养基含有荧光底物,需要培养 24 h。然后对荧光底物进行释放,需要采用葡萄糖醛酸进行,让培养基能够在紫外光的照射下发出荧光。
采用这样的方式方法,还可以进行统计学估计原来样品中的菌落。主要步骤包括发酵、分离培养、二次发酵、显微镜观察等 。
2、滤膜法
该方法主要过程:加入 10 mL 左右的无菌水于滤器中,然后掺入一些无菌水进行清洁滤器的内壁,再进行过滤,将滤膜放在 M-FC 培养基中,两者之间不能够有气泡,然后进行密封,存放温度为 44.5℃,存放时间约 24 h,直到大肠杆菌的菌群变成蓝色或蓝绿色。
然后记录数据,估算每一单位的水溶液菌群数量,然后进行大肠杆菌量值的换算 。
扩展资料:
大肠杆菌是短杆菌,两端呈钝圆形,革兰阴性。有时因环境不同,个别菌体出现近似球杆状或长丝状 ;大肠杆菌多是单一或两个存在,但不会排列呈长链形状。
大多数的大肠杆菌菌株具有荚膜或微荚膜结构,但是不能形成芽孢;多数大肠杆菌菌株生长有菌毛,其中一些菌毛是针对宿主及其他的一些组织或细胞具有黏附作用的宿主特异性菌毛 。
生化特性
大肠杆菌在常用的生化特性检测项目中,甲基红试验呈阳性,吲哚产生和乳糖发酵是阳性(个别菌株表现阴性),维-培试验是阴性,尿素酶和柠檬酸盐利用呈阴性(极个别菌株表现阳性),硝酸盐还原试验表现阳性,氧化酶表现阴性,氧化-发酵试验表现为F型
参考资料来源:百度百科-大肠杆菌
学术堂整理了十个关于大肠杆菌的论文题目,供大家参考:1、大肠杆菌表达系统的研究进展2、重组大肠杆菌高密度发酵研究进展3、山东省鸡大肠杆菌的分离鉴定4、大肠杆菌mtID基因和gutD基因的克隆,全序列测定和高效表达5、我国部分地区禽病原性大肠杆菌的分离与鉴定6、中国不同地区家禽大肠杆菌血清型分布和耐药性比较研究7、大肠杆菌毒力因子研究概况8、致病性大肠杆菌的耐药性监测9、动物大肠杆菌耐药性的变化趋势10、纳米银对大肠杆菌的抗菌作用及其机制