首页 > 学术发表知识库 > 高低压变电系统论文开题报告

高低压变电系统论文开题报告

发布时间:

高低压变电系统论文开题报告

相关范文: 智能化低压配电系统的发展与应用 摘要:现代工业技术的发展对低压配电系统运行的可靠性及其智能化管理提出了更高的要求,而微处理器技术的广泛应用及计算机系统可靠性的大幅度提高,使智能化低压电器元件得到快速发展,智能化低压电气管理系统应运而生。 关键词:智能化低压配电系统 现场总线技术 1. 概 述 现代工业技术的发展对低压配电系统运行的可靠性及其智能化管理提出了更高的要求,而微处理器技术的广泛应用及计算机系统可靠性的大幅度提高,使智能化低压电器元件得到快速发展,智能化低压电气管理系统应运而生。相对于6kV及以上中高压系统的综合保护及系统监控(SCADA系统)的发展及其在电力系统中的应用,作为直接面向终端用户的低压开关设备,其智能化研究与应用起步较晚。现有不少应用于低压的智能化监控系统基本上是在SCADA系统基础上进行修改,可以满足基本的监控功能,但不能充分体现低压电气系统的特点及要求。因此,开发并推出符合工业控制要求及具有高可靠性的智能化低压电器及其管理系统,成了低压电器产品制造商们持续提高其竞争力的迫切任务。 智能化低压配电系统由低压开关设备具有通信功能的智能化元件经数字通信与计算机系统网络连接,实现变电站低压开关设备运行管理的自动化、智能化。系统可实现数据的实时采集、数字通信、远程操作与程序控制、保护定值管理、事件记录与告警、故障分析、各类报表及设备维护信息管理等功能。针对低压电气系统直接面向控制终端,设备多、分布广,而且现场条件复杂,系统本身及设备频繁操作、故障脱扣等产生的强电磁及谐波干扰等特点,智能化监控系统应能实现面向对象的操作模式,具有强抗干扰能力,主要控制功能由设备层智能化元件完成,形成网络集成式全分布控制系统,以满足系统运行的实时、快速及可靠性的要求。系统中的低压智能化元件就其功能而言总体上可分为:电能质量监测、开关保护与控制及电动机控制等。由于现场总线技术的应用,系统中智能化元件可不依赖计算机网络而独立运行,极大地提高系统运行的实时性和可靠性,满足低压电器设备运行管理的需要及工厂生产过程控制的要求。 2. 现场总线技术的应用 现场总线是应用在生产现场、在微处理器测控设备之间实现双向串行多节点数字通信的系统,也被称为开放式、数字式多点通信的底层网络。20世纪80年代中期,随着微处理器技术和网络技术的发展,DCS系统4~20mA的模拟量传输方式逐渐被数字网络传输方式所取代,现场总线控制系统(Fieldbus Control System,FCS),迅速发展并在自动化领域得到广泛应用。 FCS既是一个开放式通信网络,又是一种全分布式控制系统。它作为智能设备的联系纽带,把挂在总线上作为网络节点的智能设备连接为网络系统,并进一步构成自动化系统,实现基本的控制、计算、参数设置、报警、显示、监控及系统管理等综合自动化功能。在FCS中,各种部件用通信网络连接起来,数据传输采用总线方式,系统信号的传输完全数字化。系统内不存在严格意义上的主控部件,资源共享,各智能化部件可以不依赖计算机而独立运行。 FCS完全淘汰了4~20mA的模拟量传输方式,减少了大量的现场敷线;FCS的控制调节过程在现场部件,有效地提高了系统控制的实时性和可靠性,并避免了系统因主机故障而陷入瘫痪。 ISO国际标准化组织在ISO IEC7498标准中的OSI参考模型定义了网络互联的7层框架,详细规定了每一层的功能,以实现开放性系统环境中的互联性、互操作性与应用的可移植性。 考虑到工业生产现场大量的智能化装置零散地分布在一个较大的范围内,而单个节点面向控制的信息量不大,但实时性、快速性要求较高,为减少中间环节,满足实时性要求及降低工业网络的成本,现场总线采用的通信模型大都在OSI参考模型的基础上进行了不同程度的简化。它采用OSI模型中的3个典型层:物理层、数据链路层和应用层,省去了3~6层,具有结构简单、执行协作简单、成本低等优点,同时满足工业现场应用的性能要求(如图1所示)。通过一致性与互操作性测试,满足现场总线技术要求的不同制造商的产品即可实现在同一总线上的互联,为用户的系统集成带来极大的好处。 图1OSI与典型现场总线模型 几种有影响的现场总线技术包括FF、Profibus、LonWorks、CAN、DeviceNet等。它们的通信模型各不相同,其应用具有各自的特点,已形成统一标准并在特定的应用领域显示了自己的优势。现场总线技术的优点主要有: (1)节省硬件投资。现场总线系统的智能设备分散在现场,能直接执行控制和计算功能,可减少大量的变送器及调节器、计算单元等,也不再需要DCS系统的信号传输处理单元及其大量复杂的硬线连接,节省了可观的硬件投资,并可减少控制室的占地面积。 (2)节省安装费用。现场总线系统的接线十分简单,一条通信总线上可挂接几个甚至上百个设备,节省安装附件,安装工作量大大减少,设计及接线校对的工作量也大大减少。资料显示,与DCS相比,现场总线系统的安装费用可节省60%以上。 (3)减少维护费用。由于现场控制设备具有自诊断及一定的故障处理能力,并通过数字通信将相关信息送往控制室,用户可实时监测及查询所有设备的运行,及时了解维护信息,以便早期分析与排除故障,缩短维护停工时间。同时,由于系统结构简化、接线简单,减少了维护工作量。 (4)系统集成更简单、灵活。用户可选择不同制造商的产品来集成系统,避免或减少系统集成中因不兼容的协议和接口带来的麻烦。 (5)提高了系统的准确性和可靠性。由于现场总线设备的智能化、数字化,与模拟信号相比,它从根本上提高了测量与控制的精确度,减少了传送误差。同时,由于系统结构简化,现场智能化设备内部功能加强,减少了信号的往返传输,设备可不依赖网络而工作,提高了整个系统工作的可靠性。 现场总线系统是自动化领域的发展热点,应用现场总线技术也是智能化低压电器的发展趋向。在低压电气设备中,现场总线技术已在电动机控制、综合测控仪表及开关保护等智能化元件上广泛应用,并正在不断发展与完善。 3. ABB公司智能化低压配电系统气解决方案 智能化低压配电系统是ABB公司自动化产品的重要组成部分。根据低压电气成套开关设备的特点和要求,ABB公司先后推出了INSUM智能化电动机管理系统和ESD2000变电站监控系统。其中INSUM系统采用LonWorks现场总线,主要用于生产过程控制的电动机运行管理;ESD 2000则是集成变电站低压开关设备、变压器及中压开关设备的一体化分布式智能化管理系统。下面以ESD 2000系统模型(见图2)简述ABB智能化低压配电系统的应用。 图2ESD 2000系统模型 ESD 2000系统主机是变电站一体化监控平台,提供系统集中监控功能。系统现场层面配置前端机,经内部以太网与监控主机连接;前端机往下是设备层开放的现场总线网络,连接变电站设备的智能化装置。前端机为工业PC机,具有很强的通信处理功能及抗干扰能力,取消了路由器和网关,简化了网络结构,同时实现底层变电站设备的无缝连接。目前,大部分现场智能化装置虽具有数字通信功能,但不是严格经一致性和互操作性测试过的现场总线设备,协议不统一,通信兼容性差。而ESD 2000前端机灵活的通信处理功能很好地满足了系统开放性的要求,即可连接标准的现场总线产品,也兼容其他智能化装置,扩展灵活,可充分满足用户变电站内不同设备系统集成的要求。 低压开关设备智能化装置主要包括电能质量监测、开关控制及电动机控制等。连接ESD 2000系统具有代表性的实现上述功能的智能化装置有:S系列开关、PR1、F系列开关、PR212、E系列开关、PR112 PR113等智能化万能式断路器;INSUM及M101 M102智能化电动机控制单元;PMC915综合测控仪表等。智能化万能式断路器经现场总线与计算机系统连接实现开关保护定值设置、电参量测量与显示、故障与维护信息管理等功能;PMC915可实现电能质量综合监测、远程控制及参数越限告警等功能;M101 M102智能化电动机控制装置采用现场总线技术,具有强大的电动机控制和保护功能及参数测量与显示功能。控制功能包括直接起动、正反转、双速、星三角、阀门控制等;保护功能覆盖了过载保护、欠压保护、堵转保护、三相不平衡与断相保护、漏电保护、电动机热保护等;可测量与显示三相电流、三相电压、有功功率、无功功率、功率因素、电度量及报告故障类型、电动机运行维护信息等。同时M101 M102提供电动机自动重起动及故障预测功能,具有双冗余通信接口,通过装置的USB接口可进行软件升级。智能化低压电器集成了保护、控制、测量与显示等功能,有效地提高了开关设备运行的可靠性和准确性,实时为用户提供所需要的信息,是用户生产过程信息集成的重要组成部分,为系统的智能化管理提供了极大的便利。 智能化低压配电系统正在向小型化、多功能方向发展,现场总线技术的发展与应用将提高智能化低压电器产品在网络上的兼容性和系统运行的可靠性,并最终给用户带来实惠。 由于篇幅限制,请参照原文: 仅供参考,请自借鉴 希望对您有帮助

1 IEC 61850通讯规约在农村变电站自动化系统中的应用 王其红 农业工程学报 2007/12 2 数字化变电站自动化系统方案探讨 孙司正 继电器 2007/22 3 基于Hypersim的变电站自动化系统闭环测试环境的建立 杨洪涛 电力自动化设备 2007/11 4 变电站自动化系统中规约转换的分层结构 郑蔚 继电器 2007/17 5 变电站自动化系统无缝通信体系的研究及实现 陈祥华 电站系统工程 2007/05 6 新一代变电站自动化技术——集成变电站自动化系统(ISAS) 王财勇 电气应用 2007/09 7 SCL在变电站自动化系统的应用 周文瑜 继电器 2007/15 8 500kV斗山变电站自动化系统的改造 杨国庆 华东电力 2007/08 9 遵循IEC 61850实现变电站自动化系统时间同步的频率调节算法设计 易娜 电网技术 2007/16 10 基于点对点通信的变电站自动化系统双总线通信方案 李惠宇 电力系统自动化 2007/16 11 基于嵌入式以太网的变电站自动化系统无缝通信体系结构 孙鸣 电网技术 2007/09 12 接地方式对变电站自动化系统的影响 陆鸿禧 电力自动化设备 2007/06 13 变电站自动化系统实时仿真装置的设计与实现 黄曙 继电器 2007/04 14 变电站自动化系统通信网关的设计 徐云松 继电器 2007/03 15 基于IEC 61850标准的智能电子设备及变电站自动化系统的测试 吴俊兴 电网技术 2007/02 16 分布式内存数据库在变电站自动化系统中应用 钟昀 电力自动化设备 2007/03 17 变电站自动化系统遥信去抖方法分析 郭建 继电器 2007/01 18 基于IEC 62351安全体系的变电站自动化系统 丁杰 电网技术 2006/S2 19 变电站自动化系统遥信去抖方法分析 欧阳永坚 电网技术 2006/S2 20 双嵌入式以太网技术在变电站自动化系统中的应用 程臣 电网技术 2006/S1 21 多Agent分层分布式变电站自动化系统的研究 郑顾平 微计算机信息 2006/35 22 新型开放式变电站自动化系统研究 刘国民 电气应用 2006/10 23 国内首套应用IEC 61850标准的500 kV变电站自动化系统在南瑞出厂 电力系统自动化 2006/22 24 程序化操作在变电站自动化系统中的实现 叶锋 电力系统自动化 2006/21 25 智能通信服务器在变电站自动化系统中应用 眭碧霞 电力自动化设备 2006/10 26 嵌入式网关在变电站自动化系统中的应用 樊晓虹 工矿自动化 2006/04 27 以太网在变电站自动化系统通信中的应用前景 冯邦成 电力自动化设备 2006/07 28 西门子全球第100个IEC 61850项目——南桥500kV变电站自动化系统顺利投入运行 濮群方 电力自动化设备 2006/06 29 电力工业电力设备及仪表质量检验测试中心远动(方)终端、变电站自动化系统及智能单元委托、型式检验质检公告(第五号) 电网技术 2006/07

低压配电由配电变电所(通常是将电网的输电电压降为配电电压)、高压配电线路(即1千伏以上电压)、配电变压器、低压配电线路(1千伏以下电压)以及相应的控制保护设备组成1. 低压断路器 :低压断路器又称自动开关,它是一种既有手动开关作用,又能自动进行失压、欠压、过载、和短路保护的电器。它可用来分配电能,不频繁地启动异步电动机,对电源线路及电动机等实行保护,当它们发生严重的过载或者短路及欠压等故障时能自动切断电路,其功能相当于熔断器式开关与过欠热继电器等的组合。而且在分断故障电流后一般不需要变更零部件,一获得了广泛的应用。1) 断路器附件2) 微型断路器 :微型断路器,简称MCB,是建筑电气终端配电装置中使用最广泛的一种终端保护电器3) 塑壳断路器 :塑壳断路器能够自动切断电流在电流超过跳脱设定后。塑壳指的是用塑料绝缘体来作为装置的外壳,用来隔离导体之间以及接地金属部分。塑壳断路器通常含有热磁跳脱单元,而大型号的塑壳断路器会配备固态跳脱传感器。4) 框架断路器5) 智能型万能断路器2. 智能配电 :1) 低压无功补偿成套装置2) 复合开关3) 操作手柄4) 无功补偿控制器3. 低压配电开关 :1) 负荷开关 :负荷开关,顾名思义就是能切断负荷电流的开关,要区别于高压断路器,负荷开关没有灭弧能力,不能开断故障电流,只能开断系统正常运行情况下的负荷电流,负荷开关由此而得名2) 隔离开关 :隔离开关是高压开关电器中使用最多的一种电器,它本身的工作原理及结构比较简单,但是由于使 用量大,工作可靠性要求高,对变电所、电厂的设计、建立和安全运行的影响均较大。刀闸的主要特点是无灭弧能力,只能在没有负荷电流的情况下分、合电路3) 刀开关4. 熔断器 :熔断器是根据电流超过规定值一定时间后,以其自身产生的热量使熔体熔化,从而使电路断开的原理制成的一种电流保护器。熔断器广泛应用于低压配电系统和控制系统及用电设备中,作为短路和过电流保护,是应用最普遍的保护器件之一。熔断器是一种过电流保护电器。熔断器主要由熔体和熔管两个部分及外加填料等组成。使用时,将熔断器串联于被保护电路中,当被保护电路的电流超过规定值,并经过一定时间后,由熔体自身产生的热量熔断熔体,使电路断开,起到保护的作用。1) 熔芯2) 熔断器底座3) 低压熔断器5. 变压器 :1) 电子变压器 :电子变压器,输入为AC220V,输出为AC12V,功率可达50W。它主要是在高频电子镇流器电路的基础上研制出来的一种变压器电路,其性能稳定,体积小,功率大,因而克服了传统的硅钢片变压器体大、笨重、价高等缺点2) 控制变压器3) 隔离变压器 : 隔离变压器的原理和普通变压器的原理是一样的。都是利用电磁感应原理。隔离变压器一般是指1:1的变压器。由于次级不和地相连。次级任一根线与地之间没有电位差。使用安全。常用作维修电源。隔离变压器不全是1:1变压器。控制变压器和电子管设备的电源也是隔离变压器。如电子管扩音机,电子管收音机和示波器和车床控制变压器等电源都是隔离变压器。如为了安全维修彩电常用1比1的离变压器。隔离变压器是使用比较多的,在空调中也是使用的。6. 漏电保护装置 : 用于防止触电事故的漏电保护装置只能作为附加保护。加装漏电保护装置的同时不得取消或放弃原有的安全防护措施。

高压电器在变配系统的论文

供配电系统设计规范》GB50052/95第一章 总则 2第二章 负荷分级及供电要求 2第三章 电源及供电系统 3第四章 电压选择和电能质量 4第五章 无功补偿 5第六章 低压配电 6附录一 名词解释 7第一章 总则第1.0.1条 为使供配电系统设计贯彻执行国家的技术经济政策,做到保障人身安全,供电可靠,技术先进和经济合理,制订本规范。第1.0.2条 本规范适用于110KV及以下的供配电系统新建和扩建工程的设计。第1.0.3条 供配电系统设计必须从全局出发,统筹兼顾,按照负荷性质、用电容量、工程特点和地区供电条件,合理确定设计方案。第1.0.4条 供配电系统设计应根据工程特点、规模和发展规划,做到远近期结合,以近期为主。第1.0.5条 供配电系统设计应采用符合国家现行有关标准的效率高、能耗低、性能先进的电气产品。第1.0.6条 供配电系统设计除应遵守本规范外,尚应符合国家现行有关标准和规范的规定。第二章 负荷分级及供电要求第2.0.1条 电力负荷应根据对供电可靠性的要求及中断供电在政治、经济上所造成损失或影响的程度进行分级,并应符合下列规定:一、符合下列情况之一时,应为一级负荷:1.中断供电将造成人身伤亡时。2.中断供电将在政治、经济上造成重大损失时。例如:重大设备损坏、重大产品报废、用重要原料生产的产品大量报废、国民经济中重点企业的连续生产过程被打乱需要长时间才能恢复等。3.中断供电将影响有重大政治、经济意义的用电单位的正常工作。例如:重要交通枢纽、重要通信枢纽、重要宾馆、大型体育场馆、经常用于国际活动的大量人员集中的公共场所等用电单位中的重要电力负荷。在一级负荷中,当中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为特别重要的负荷。二、符合下列情况之一时,应为二级负荷:1.中断供电将在政治、经济上造成较大损失时。例如:主要设备损坏、大量产品报废、连续生产过程被打乱需较长时间才能恢复、重点企业大量减产等。2.中断供电将影响重要用电单位的正常工作。例如:交通枢纽、通信枢纽等用电单位中的重要电力负荷,以及中断供电将造成大型影剧院、大型商场等较多人员集中的重要的公共场所秩序混乱。三、不属于一级和二级负荷者应为三级负荷。第2.0.2条 一级负荷的供电电源应符合下列规定:一、一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。二、一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。第2.0.3条 下列电源可作为应急电源:一、独立于正常电源的发电机组。二、供电网络中独立于正常电源的专用的馈电线路。三、蓄电池。四、干电池。第2.0.4条 根据允许中断供电的时间可分别选择下列应急电源:一、允许中断供电时间为15s以上的供电,可选用快速自启动的发电机组。二、自投装置的动作时间能满足允许中断供电时间的,可选用带有自动投入装置的独立于正常电源的专用馈电线路。三、允许中断供电时间为毫秒级的供电,可选用蓄电池静止型不间断供电装置、蓄电池机械贮能电机型不间断供电装置或柴油机不间断供电装置。第2.0.5条 应急电源的工作时间,应按生产技术上要求的停车时间考虑。当与自动启动的发电机组配合使用时,不宜少于10min。第2.0.6条 二级负荷的供电系统,宜由两回线路供电。在负荷较小或地区供电条件困难时,二级负荷可由一回6KV及以上专用的架空线路或电缆供电。当采用架空线时,可为一回架空线供电;当采用电缆线路时,应采用两根电缆组成的线路供电,其每根电缆应能承受100%的二级负荷。第三章 电源及供电系统第3.0.1条 符合下列情况之一时,用电单位宜设置自备电源:一、需要设置自备电源作为一级负荷中特别重要负荷的应急电源时或第二电源不能满足一级负荷的条件时。二、设置自备电源较从电力系统取得第二电源经济合理时。三、有常年稳定余热、压差、废气可供发电,技术可靠、经济合理时。四、所在地区偏僻,远离电力系统,设置自备电源经济合理时。第3.0.2条 应急电源与正常电源之间必须采取防止并列运行的措施。第3.0.3条 供配电系统的设计,除一级负荷中特别重要负荷外,不应按一个电源系统检修或故障的同时另一电源又发生故障进行设计。第3.0.4条 需要两回电源线路的用电单位,宜采用同级电压供电。但根据各级负荷的不同需要及地区供电条件,亦可采用不同电压供电。第3.0.5条 有一级负荷的用电单位难以从地区电力网取得两个电源而有可能从邻近单位取得第二电源时,宜从该单位取得第二电源。第3.0.6条 同时供电的两回及以上供配电线路中一回路中断供电时,其余线路应能满足全部一级负荷及二级负荷。第3.0.7条 供电系统应简单可靠,同一电压供电系统的变配电级数不宜多于两级。第3.0.8条 高压配电系统宜采用放射式。根据变压器的容量、分布及地理环境等情况,亦可采用树干式或环式。第3.0.9条 据负荷的容量和分布,配变电所宜靠近负荷中心。当配电电压为35KV时亦可采用直降至220~380V配电电压。第3.0.10条 在用电单位内部邻近的变电所之间宜设置低压联络线。第3.0.11条 小负荷的用电单位宜接入地区低压电网。第四章 电压选择和电能质量第4.0.1条 用电单位的供电电压应根据用电容量、用电设备特性、供电距离、供电线路的回路数、当地公共电网现状及其发展规划等因素,经技术经济比较确定。第4.0.2条 当供电电压为35KV及以上时,用电单位的一级配电电压应采用10KV;当6KV用电设备的总容量较大,选用6KV经济合理时,宜采用6KV。低压配电电压应采用220~380V。第4.0.3条 当供电电压为35KV,能减少配变电级数、简化结线,及技术经济合理时,配电电压宜采用35KV。第4.0.4条 正常运行情况下,用电设备端子处电压偏差允许值(以额定电压的百分数表示)宜符合下列要求:一、电动机为±5%。二、照明:在一般工作场所为±5%;对于远离变电所的小面积一般工作场所,难以满足上述要求时,可为+5%、-10%;应急照明、道路照明和警卫照明等为+5%、-10%。三、其它用电设备当无特殊规定时为±5%。第4.0.5条 供配电系统的设计为减小电压偏差,应符合下列要求:一、正确选择变压器的变压比和电压分接头。二、降低系统阻抗。三、采取补偿无功功率措施。四、宜使三相负荷平衡。第4.0.6条 计算电压偏差时,应计入采取下列措施后的调压效果:一、自动或手动调整并联补偿电容器、并联电抗器的接入容量。二、自动或手动调整同步电动机的励磁电流。三、改变供配电系统运行方式。第4.0.7条 变电所中的变压器在下列情况之一时,应采用有载调压变压器:一、35KV以上电压的变电所中的降压变压器,直接向35KV、10(6)KV电网送电时。二、35KV降压变电所的主变压器,在电压偏差不能满足要求时。第4.0.8条 10(6)KV配电变压器不宜采用有载调压变压器;但在当地10(6)KV电源电压偏差不能满足要求,且用电单位有对电压要求严格的设备,单独设置调压装置技术经济不合理时,亦可采用10(6)KV有载调压变压器。第4.0.9条 电压偏差应符合用电设备端电压的要求,35KV以上电网的有载调压宜实行逆调压方式。逆调压的范围宜为额定电压的0~+5%。第4.0.10条 对冲击性负荷的供电需要降低冲击性负荷引起的电网电压波动和电压闪变(不包括电动机启动时允许的电压下降)时,宜采取下列措施:一、采用专线供电。二、与其它负荷共享配电线路时,降低配电线路阻抗。三、较大功率的冲击性负荷或冲击性负荷群与对电压波动、闪变敏感的负荷分别由不同的变压器供电。四、对于大功率电弧炉的炉用变压器由短路容量较大的电网供电。第4.0.11条 控制各类非线性用电设备所产生的谐波引起的电网电压正弦波形畸变率,宜采取下列措施:一、各类大功率非线性用电设备变压器由短路容量较大的电网供电。二、对大功率静止整流器,采取下列措施:1.提高整流变压器二次侧的相数和增加整流器的整流脉冲数。2.多台相数相同的整流装置,使整流变压器的二次侧有适当的相角差。3.按谐波次数装设分流滤波器。三、选用D,yn11结线组别的三相配电变压器。注:D,yn11结线组别的三相配电变压器是指表示其高压绕组为三角形、低压绕组为星形且有中性点和“11”结线组别的三相配电变压器。第4.0.12条 设计低压配电系统时宜采取下列措施,降低三相低压配电系统的不对称度。一、220V或380V单相用电设备接入220V~380V三相系统时,宜使三相平衡。二、由地区公共低压电网供电的220V照明负荷,线路电流小于或等于30A时,可采用220V单相供电;大于30A时,宜以220V~380V三相四线制供电。第五章 无功补偿第5.0.1条 供配电设计中应正确选择电动机、变压器的容量,降低线路感抗。当工艺条 件适当时,宜采取采用同步电动机或选用带空载切除的间歇工作制设备等,提高用电单位自然功率因数的措施。第5.0.2条 当采用提高自然功率因子措施后,仍达不到电网合理运行要求时,应采用并联电力电容器作为无功补偿装置。当经过技术经济比较,确认采用同步电动机作为无功补偿装置合理时,可采用同步电动机。第5.0.3条 采用电力电容器作为无功补偿装置时,宜就地平衡补偿,低压部分的无功功率宜由低压电容器补偿;高压部分的无功功率宜由高压电容器补偿。容量较大,负荷平稳且经常使用的用电设备的无功功率宜单独就地补偿。补偿基本无功功率的电容器组,宜在配变电所内集中补偿。在环境正常的车间内,低压电容器宜分散补偿。第5.0.4条 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定。第5.0.5条 无功补偿装置的投切方式,具有下列情况之一时,宜采用手动投切的无功补偿装置。一、补偿低压基本无功功率的电容器组。二、常年稳定的无功功率。三、经常投入运行的变压器或配、变电所内投切次数较少的高压电动机及高压电容器组。第5.0.6条 无功补偿装置的投切方式,具有下列情况之一时,宜装设无功自动补偿装置。一、避免过补偿,装设无功自动补偿装置在经济上合理时。二、避免在轻载时电压过高,造成某些用电设备损坏,而装设无功自动补偿装置在经济上合理时。三、只有装设无功自动补偿装置才能满足在各种运行负荷的情况下的电压偏差允许值时。第5.0.7条 当采用高、低压自动补偿装置效果相同时,宜采用低压自动补偿装置。第5.0.8条 无功自动补偿的调节方式,宜根据下列原则确定:一、以节能为主进行补偿时,采用无功功率参数调节;当三相负荷平衡时,亦可采用功率因子参数调节。二、提供维持电网电压水平所必要的无功功率及以减少电压偏差为主进行补偿者,应按电压参数调节,但已采用变压器自动调压者除外。三、无功功率随时间稳定变化时,按时间参数调节。第5.0.9条 电容器分组时,应满足下列要求:一、分组电容器投切时,不应产生谐振。二、适当减少分组组数和加大分组容量。三、应与配套设备的技术参数相适应。四、应满足电压偏差的允许范围。第5.0.10条 接在电动机控制设备侧电容器的额定电流,不应超过电动机励磁电流的0.9倍;其馈电线和过电流保护装置的整定值,应按电动机-电容器组的电流确定。第5.0.11条 高压电容器组宜串联适当参数的电抗器。低压电容器组宜加大投切容量或采用专用投切接触器。当受谐波量较大的用电设备影响的线路上装设电容器组时,宜串联电抗器。第六章 低压配电第6.0.1条 压配电电压应采用220~380V。带电导体系统的型式宜采用单相二线制、两相三线制、三相三线制和三相四线制。第6.0.2条 在正常环境的车间或建筑物内,当大部分用电设备为中小容量,且无特殊要求时,宜采用树干式配电。第6.0.3条 当用电设备为大容量,或负荷性质重要,或在有特殊要求的车间、建筑物内,宜采用放射式配电。第6.0.4条 当部分用电设备距供电点较远,而彼此相距很近、容量很小的次要用电设备,可采用链式配电,但每一回路环链设备不宜超过5台,其总容量不宜超过10KW。容量较小用电设备的插座,采用链式配电时,每一条环链回路的设备数量可适当增加。第6.0.5条 在高层建筑物内,当向楼层各配电点供电时,宜采用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电。第6.0.6条 平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的回路配电;同一生产流水线的各用电设备,宜由同一回路配电。第6.0.7条 在TN及TT系统接地型式的低压电网中,宜选用D,yn11结线组别的三相变压器作为配电变压器。注:TN系统在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分则通过保护线(PE线)与该点连接。其定义应符合现行国家标准《电力装置的接地设计规范》的规定。TT系统在此系统内,电源有一点与地直接连接,负荷侧电气装置的外露可导电部分连接的接地极和电源的接地极无电气联系。其定义应符合现行国家标准《电力装置的接地设计规范》的规定。第6.0.8条 在TN及TT系统接地型式的低压电网中,当选用Y,yn0结线组别的三相变压器时,其由单相不平衡负荷引起的中性线电流不得超过低压绕组额定电流的25%,且其一相的电流在满载时不得超过额定电流值。注:Y,yn0结线组别的三相变压器是指表示其高压绕组为星形、低压绕组亦为星形且有中性点和“0”结线组别的三相变压器。第6.0.9条 当采用220~380V的TN及TT系统接地型式的低压电网时,照明和其它电力设备宜由同一台变压器供电。必要时亦可单独设置照明变压器供电。第6.0.10条 由建筑物外引入的配电线路,应在室内靠近进线点便于操作维护的地方装设隔离电器。附录一 名词解释本规范用名词 曾用名词 解 释一级负荷中特别重要的负荷 中断供电将发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷应急电源 在正常电源发生故障情况下,为确保一级负荷中特别重要负荷的供电电源电压偏差 电压偏移 供配电系统改变运行方式和负荷缓慢地变化使供配电系统各点的电压也随之变化,各点的实际电压与系统额定电压之差△U称为电压偏差。电压偏差△U也常用与系统额定电压的比值,以百分数表示 逆调压方式 逆调压方式就是负荷大时电网电压向高调,负荷小时电网电压向低调,以补偿电网的电压损失电压波动 一系列的电压变动或电压包络线的周期性变动,电压的最大值与最小值之差与系统额定电压的比值以百分数表示,其变化速度等于或大于每秒0.2%时称为电压波动 电压闪变 负荷急剧的波动造成供配电系统瞬时电压升降,照度随之急剧变化,使人眼对灯闪感到不适,这种现象称为电压闪变不对称度 不对称度是衡量多相负荷平衡状态的指针。多相系统的电压负序分量与电压正序分量之比值称为电压不对称度;电流负序分量与电流正序分量之比值称为电流不对称度;均以百分数表示电压正弦波形畸变率 电压正弦波形畸变率UT=100/U1∑∞n=2U2n(%)式中 U1——50Hz基波电压;Un——n次谐波电压基本无功功率 当用电设备投入运行时所需的最小无功功率。如该用电设备有空载运行的可能,则基本无功功率即为其空载无功功率。如其最小运行方式为轻负荷运行,则基本无功功率为在此轻负荷情况下的无功功率

摘要:在工程电气设计领域中,电力系统的设备选型计算、校验计算无疑是最复杂和最烦琐的一件工作。问题复杂性在于电力系统运行的可靠性要求,必须将所有设备:如高压、低压配电设备、变电、输电线缆等设备全部计算选型校验,要考虑各种运行状态下的设备安全可靠运行,短路时可靠动作。由于设备多、回路多、系统复杂、校验项目多,造成了工作烦琐。目前国内尚无模拟电气工程师思路进行自动选型、校验计算的软件,以代替部分工作,把电气工程师真正从烦琐的计算和绘图中解放出来。我公司最新科研成果------供配电系统集成设计软件正好填补了这一空白。关键词:集成设计选型校验系统模型pivotalwords:IntegratedDesign,Selectandverifyequipmenttype、ConstitutePowerSystemmodel一、引言:在工程电气设计领域中,电力系统的设备选型计算、校验计算无疑是最复杂和最烦琐的一件工作。问题复杂性在于电力系统运行的可靠性要求,必须将所有设备:如高压、低压配电设备、变电、输电线缆等设备全部计算选型校验,要考虑各种运行状态下的设备安全可靠运行,短路时可靠动作。由于设备多、回路多、系统复杂、校验项目多,造成了工作烦琐。目前国内尚无模拟电气工程师思路进行自动选型、校验计算的软件,以代替部分工作,把电气工程师真正从烦琐的计算和绘图中解放出来。我公司最新科研成果------供配电系统集成设计软件正好填补了这一空白。二、详述:电气设计的目标我们只有了解了电气设计最终实现目标才能进行更明确的工作,为了详细说明一个变配电所的所有电气内容,通常需要出的图纸有:1.1电气主接线图或高压系统图1.2低压系统图1.3平面布置图、剖面图1.4配电柜立面图1.5电缆清册1.6设备材料表1.7电气计算书1.8二次控制原理图1.9二次外部线路图以上图纸中最复杂的图纸,工作量最大的莫过于高低压系统图,因为他们占用的计算工作量大。过去我们也提供一些计算工具软件,但大都是零散的,不系统的,比如负荷计算、电压损失计算、短路计算等,用户对整个系统的认识,一直停留在修改旧图,反复的计算-填写表格-替换设备-删除-复制等低级的劳动中,造成了劳动效率无法大幅度提高。而且由于缺乏整个供-配电系统结构的认识,往往上一级开关调整以后,没有改下一级开关,或上一级开关整定变了,没有跟着调整配线,造成许多前后不对照的错误图纸和问题工程。旧图中大量的图元各自独立并没有共性,所以难以大规模的一次性修改成功。旧图修改重复劳动特别多,反复的重复删除、复制、替换、文字、移动等命令,容易造成笔误。特别是当前工程设计周期被业主大幅度缩短,怎样提高设计、绘图效率就成为了一个关键性的问题。绘图计算软件的现状目前国内电气设计软件提供这部分的主要偏向于绘图功能。绘制高低压柜的一次方案,许多家厂商生产的软件都包含了这部分图库。我们绘图主要集中在插入相应的图块进行绘制,然后填写定货图表格。计算则是分开的。也有个别软件对高低压系统提供了部分计算,但大都是零碎的,不是对系统整体的计算,或是对其中一个回路、某一种负荷类型(如电动机)进行计算,其他回路或负荷类型无法计算,也无法作到上下级配合选型,也没有全面的综合校验电气设备所有技术参数,没有用电需求表,和实际工程需要的设计过程相差太多等等。所以在设计变配电所过程中,大部分工作仍集中在修改旧图,重新计算,选型上。计算机的辅助设计功能没有什么提高。电气设计的过程分析选型统一规定很多设计院在一个工程的协同设计过程中都采用了一种选型方案,比如高压配电柜选用KYN28,低压柜采用抽屉式MNS,主断路器采用CM1,电缆采用VV系列,等等,这个选型方案在同一工程中都是相同的。也可以应用到下一个工程中。用电需求定义水、暖、工艺等上行专业提供的用电需求,主要内容是用电设备的编号,设备名称,安装位置,额定电压,负荷等级,场所属性,负荷性质等对电气设计的要求。现在随着计算机普及,很多设计院已经使用EXCEL互提资料。负荷分配确定配电设备(配电箱、盘、柜)的位置,把每一个负荷分配到配电设备上。负荷计算对每个配电设备进行负荷计算。主要采用需要系数法。分配电中心计算选分配电中心(如某层的配电间、竖井、或机房的配电间)的配电柜供给下联的配电盘或箱。对这些配电盘、箱、柜进行选型。变配电中心计算选变配电中心对分配电中心供电。对变配电中心的所有设备包括母线、高压电缆、高压柜、低压柜、低压抽屉组件、低压出线等进行选型。短路计算选型完成以后,查表得出各组件和线缆的阻抗,并设定短路点,计算每个短路点的三相和单相短路电流。校验计算对于高低压设备进行短路校验、电压损失校验、电机启动校验以及灵敏度校验等。校验不合适的值,要重新进行选型。直到校验通过。绘制系统图根据系统模型,绘制系统图。排列柜子。根据平面情况,布置柜子。并绘制立面图、剖面图。根据柜子布置情况分别调整系统图抽屉柜位置和编号以及进线柜、母联柜位置回路库和设备库符号库高低压柜的一次方案是厂家样本提供的。在CAD绘图中要调用这些方案,必须将这些方案组织成一个回路库。每个回路都是由很多组件组成的。这些组件的电气属性(技术参数)则在设备库中定义。符号库是规定了这些组件对应的图例。以上三者在选型绘图过程中必不可少。为了应对众多的厂家和不同的型号规格产品,我们符号库、设备库、回路库都是开放的。用户可以新增设备系列,新增回路方案等等。符号库采用新国标图例。回路库和设备库也采用了最流行最先进的高低柜型号,特别是中国建筑标准所出的《统一技术措施电气设备选型卷》和电力出版社出的最新版《工厂常用电气设备手册》上下册以及上下册补充本。回路库结构中每个回路都可以设定盘内组件的型号规格和数量或额定电流、控制电机功率,这样完全按照样本提供的内容录入,对选型提供了“电子样本”。统一规定设定在做某一工程前,由电气专业项目负责人确定的设备选型的基本方案。该基本方案中将所有电气设备划分为供电、输电、配电、用电几类,用户只须对以上设备进行初步选型,确定设备的系列号以及相关参数。其它参数都可以自动选型。用电需求定义表用电需求表是用户自行录入的工程中所用到的所有用电设备列表。用户需要录入用电设备的安装位置、名称编号,设备容量,负荷性质等内容。可以从EXCEL中将水暖工艺提来的资料导入该表中,也可以将输入好的用电需求表导出到EXCEL中编辑。安装位置提供了一个很好的管理所有设备的结构,非常直观方便。系统模型的建立本软件设计宗旨和最终目标就是要实现电气设计的目标。即绘制出符合要求的图纸。而绘制图纸前就必须建立供配电系统。此前的设计软件都没有提出过集成设计的概念。 4.1所谓集成设计,就是面向供配电系统整体的电气设计,他包括了统一规定初步选型,用电需求表定义,用电负荷的分配,负荷计算、选型计算、短路计算、校验计算等一系列综合复杂的设计过程。它可以建立供配电系统模型,并能详细的列出模型上每个供配电-输电-用电设备的工作(运行)属性、短路属性、电气属性。任何一个供配电-输电-用电设备都有三种属性,工作属性、短路属性、电气属性。工作属性是指当前选定的设备的工作电流、设备容量、工作电压、功率因数等情况。短路属性是指当前选定设备的短路阻抗、短路电流等情况。电气属性是该设备的出厂铭牌的电气型号规格和电气技术参数等。集成设计的流程是:用电负荷被人工添加到配电柜上。然后进行负荷计算,并自动选择配电柜内元件型号规格,选定短路参数可以进行短路校验。如果短路校验不通过,重新进行选型计算。4.2系统模型的建立:要想实现对变配电所设备的整体选型校验和设计,必须建立整个工程的配电系统模型,才能够实现对所有设备的选校。一个好的系统模型首先比较直观,操作简单。上手快。组织严密。由于电气系统的树状结构和WINDOWS资源管理器的树状结构的相似性,我们完全可以利用WINDOWS资源管理器类似结构的树状系统来搭建一个模型,实现简单的配电系统。电力系统中最常用的电气连接关系就是串联和并联。所有的复杂的网络最后都可以看成是电气设备串联和并联不断组合搭建成的。从下图中可以看出,树节点上从左到右的组件名称关系就组成一个串联的电路:低压配电室(电源)à电缆à负荷开关à变压器à母线à进线柜 ……..从“3母线”节点下面所接的“3母线à抽屉柜2à抽屉柜3à抽屉柜4à抽屉柜5”是母线并联所连的若干个抽屉柜。这样搭建成的系统模型,具有形象直观、搭建简单、组织严密等特点。完全可以实现变配电所系统设计的所有功能。附图1对应的供配电系统如附图2所示。附图1附图24.3系统模型的功能立系统模型是从工程中的配电中心(配电间、配电室)建立。 统模型可以直观看到开关柜一次方案图形。以方便选型 统模型可以对用电需求进行统一分配。确定所有用电设备的电源位置 4、系统模型可以对每个设备都能进行负荷计算。统计总负荷5、系统模型可以对电源进行全厂负荷统计,和无功补偿计算6、系统模型可以进行短路计算。短路计算包括无限大容量系统和有源系统的短路计算。搭建的任何模型都可以自动进行计算。短路阻抗数据库可以扩充。7、模型在负荷计算、短路计算、和初步选型方案基础上进行自动选型计算 8、系统模型选型计算后对参数进行校验计算,包括高低压设备、配电干线等所有设备都可以按照规范要求进行校验。统模型可以直观的看到配电中心内配电系统上任何一个设备目前的工作电流,短路点短路电流以及设备技术参数情况。 10. 可以自动输出高低压系统图,主接线图,设备材料表,电缆清册,计算书,和抽屉柜排列图等一系列图纸。完成辅助设计全过程。软件实现流程图 软件实现过程实际上就是对电气工程师设计过程的模拟和抽象。该流程深入体现了第三节所述的电气设计的全过程,模拟设计思路进行电气辅助设计。常用设备选型校验方案(部分) 压器选型:负荷分配->负荷计算->选型 低压母线选型 负荷分配->负荷计算->按正常工作电流选型效验内容如下:电机启动压降计算 电压损失计算 3、过载保护效验4、热稳定效验电缆导线选型 负荷计算->按正常工作电流选型1、效验电压损失:2、效验经济电流密度:3、效验热稳定4、效验过载保护低压开关选型 负荷计算->按照正常工作选型:1、选择壳架等级电流 2、选择脱扣器额定电流 3、根据回路保护设置要求,进行短延时,瞬时,长延时三个脱扣器额定电流的选型。1、效验极限分断能力2、效验开断电流3、效验灵敏度4、上下级配合效验5、过载保护效验高压开关选型 负荷计算->按正常工作电流选型 1、选择额定电流效验开断电流或开断容量。 效验最高工作电压、效验动稳定、效验热稳定。 10、集成设计软件的优点1.实现了真正意义上的供配电系统模型,是面向整体电力系统的电气设计软件。不同于以往零散的孤立模块,这样的好处是比较直观清楚的让电气工程师知道每个电气元件在电力系统中的位置,作用,运行状态和短路状态以及所有电气属性等。i.进行负荷计算、短路计算、选型计算和校验计算。集四大计算于一体,更加清晰明了选型结果。2.成设计便于负荷调整,回路替换,设备技术参数的修改。并提供一系列智能检测系统,保证前后上下级联关系正确,确保电气回路的参数的正确性。集成设计便于输出管理电缆表,设备表。集成设计提供了可扩充的回路库和设备库,完全仿照设备样本,全部开放。用户可增添新设备。集成设计提供给用户最方便直接的查询功能,点击任何一个系统模型上设备元件,都可以看到该设备的电压,流过的电流,功率等运行情况。也可以看到在该点短路时的短路阻抗,短路电流情况,甚至可以查询其他点短路,在该点的短路电流情况。集成设计的界面采用资源管理器式界面,只要会windows的人都可以建立一个系统模型。不需要另外增加学习时间。操作也是类似与资源管理器,极其容易上手。集成设计提供了很多常用供配电设备的选型,校验计算方法。用户可以采用某种方法进行校验,也可以都采用,根据需要进行校验。非常灵活。集成设计是面对电气设备的cad电气设计软件,不象以前那样需要一点点绘制图块,复制粘贴,电气工程师考虑的只有电气设计需要考虑内容,其他有关绘图的命令和操作和任何线条图元,一概不需要考虑。这才是真正意义上的电气设计专家系统。集成设计完全参考最新版的电气规范、设计手册、统一技术措施和强制性条文以及最新版电气设备手册。紧跟时代步伐。三、结论变配电所的负荷计算、短路计算、选型、校验计算是电气设计中最复杂的内容之一。我们应用CAM/CAD软件辅助设计实现这一专家系统,是电气设计行业一次最初步的尝试,具有重要的历史意义和广阔的实用价值。意味着国内电气设计CAD将突破原来偏重于绘图,而轻辅助设计的趋向,向着更加智能化的电气设计专家系统迈出了可喜的一步。参考书目:《工业与民用配电设计手册》第二版,中国航空工业规划设计院等编水利电力出版社《建筑电气设计实例图册》,北京照明学会设计委员会编中国建筑工业出版社《工厂常用电气设备手册》兵器部第五设计院编中国电力出版社《民用建筑电气设计手册》湖南电气情报网编中国建筑工业出版社《低压配电设计规范》GB50054-95中国计划出版社《供配电系统设计规范》GB50052-95中国计划出版社《民用建筑电气设计规范》JGJ-T16-92中国计划出版社

35kv降压变电所论文开题报告

给你说个大概吧:1. 你先画个主接线图啊,基本框架是35kV单母分段,分别带两主变为10kV,主变容量照手册上选,考虑好余量。10kV段也是单母分段,所有馈电出线直接挂在两段10kV母线上就可以了。补偿电容器柜每段母线上挂一个;计算容量公式手册上有。且每段挂个所用变。所用电一次配电图,图集上有。 2. 选择设备的话,你把短路电流计算了,得出的数据就可以选择了,也可以进行设备的检验。 3. 平面布置图:那你把选好的设备布置好就行了,参照35kV变电所图集,室内室外都有的。35kV断面图图集上也有,注意安装尺寸需要厂家资料核实。 4. 考虑防雷保护设计:有了平面布置图那就好办了,装一到两个避雷针来保护,计算公式自己找。 5. 设计说明书:那你吧所有的东西怎么定的,数据怎么来的,东西怎么摆的,余量怎么考虑的,等等都写上就好了。 6. 最好再添两张弱电的图纸,还有就是照明和火灾报警的图纸。 7. 别忘记,你选的所有设备都需要保护装置来实现对其的保护噢。在设计说明书中详细说明。

要求很高哦,只能积分的话的觉得没人给你做,除非网上有现成的东西给你抄过来,要求原创的话就是用钱了用钱去任务中国这样的网站上发一个任务试试吧,悬赏RMB的话,做的人一定效果比这里要好的多的。

这么多工作才100分,当义务劳动啊?

35kV变电站继电保护设计(开题报告+论文+DWG) 摘 要随着电力电网事业的发展,全国联网的格局已基本形成。科技水平得到提高,电力环境保护得以加强,使中国电力工业的科技水平与世界先进水平日渐接近。电力管理水平和服务水平不断得到提高,电力发展的战略规划管理、生产运行管理、电力市场营销管理以及电力企业信息管理水平、优质服务水平等普遍得到提高。进一步扩大了对外开放,积极实施国际化战略。本论文围绕35kV变电站的保护整定计算展开分析和讨论,重点设计了电力系统基本常识以及需要系数法计算负荷、电力网接线方案的选择原则、短路电流的计算、变压器和线路的继电保护配置以及无功功率补偿等。同时详细介绍了主设备差动保护的整定算法,电气主接线的设计、做出短路点的等效电路图,对设备保护进行了相应的选择与校验。通过比较各个接线方式的优缺点,确定变电站的主接线方式。关键字 短路电流计算,继电保护,整定计算,电网接线方案,无功功率补偿目录1 绪 论 11.1 变电站继电保护的发展 11.2 继电保护装置的基本要求 11.3 继电保护整定 11.4 本文的主要工作 22 设计概述 32.1设计依据 32.2设计规模 32.3设计原始资料 33 主接线方案的选择与负荷计算 53.1主接线设计要求 53.2变电站主接线的选择原则 63.3接线方案选择 63.3.1一、二次侧均采用单母线分段的总降压变电所主电路图 63.3.2 一次侧采用外桥式结线、二次侧采用单母线分段的总降压变电所主电路图 73.3.3一次侧采用内桥式接线,二次侧采用单母线分段的总降压变电所主电路图 73.3.4 一、二次侧均采用双母线的总降压变电所主电路图 73.4 35kV变电所主接线简图 83.5 负荷计算 83.5.1 负荷计算的内容和目的 83.5.2 负荷计算的方法 93.5.3 本次设计的负荷计算 94 短路电流计算 114.1引言 114.2基准参数选定 114.3阻抗计算(均为标幺值) 124.4短路电流计算 134.5 短路电流计算结果 185 变电所继电保护及故障分析 195.1本系统故障分析 195.2 线路继电保护装置 195.3主变压器继电保护装置 195.4本设计继电保护原理概述 206 主变继电保护整定计算及继电器选择 216.1概述 216.2瓦斯保护 226.3差动保护:(主保护) 236.3.1 计算Ie及电流互感器变比,列表如下(表6.1): 236.3.2 确定基本侧动作电流: 246.3.3确定基本侧差动线圈的匝数和继电器的动作电流 256.3.4确定非基本侧平衡线圈和工作线圈的匝数 266.3.5计算由于整定匝数与计算匝数不等而产生的相对误差Δfza 266.3.6初步确定短路线圈的抽头 266.3.7保护装置灵敏度校验 266.4过电流保护:(后备保护) 276.4.1过电流继电器的整定及继电器选择: 276.5 过负荷保护:(后备保护) 286.6冷却风扇自起动: 287 线路保护整定计算 297.1 概述 297.1.1对 3~63kV 线路的下列故障或异常运行,应装设相应的保护装置: 297.1.2 对 3~10kV 线路装设相间短路保护装置,应符合下列要求: 297.1.3 在 3~10kV 线路装设的相间短路保护装置,应符合下列规定: 297.1.4 对 35~63kV 线路,可按下列要求装设相间短路保护装置: 307.2 线路保护的原理: 307.3 35kV线路三段式电流保护整定计算 317.3.1 第一段 无时限电流速断保护 317.3.2 第二段 带时限电流速断保护 327.3.3 第三段 过电流保护 327.4 10kV线路保护整定计算 337.4.1 电流速断保护的整定 337.4.2 过电流保护的整定 358 结 论 37谢 辞 38参考文献 39附录1:外文资料翻译 40A1.1 Substation and Power System Protection 40A1.2 变电站与电力系统继电保护 45

电力变压器保护论文开题报告

关于变压器的保护措施分析论文

摘要:文章分析了换流变压器的特点以及超高压直流输电的各种运行工况对换流变压器保护带来的影响。提出了换流变压器保护的总体设计思想。

关键词:换流变压器 保护 分析

0 引言

超高压直流输电由于其特有的优点,越来越广范的得到应用。这些优点包括:不须考虑稳定问题;线路故障恢复能力较强;调节作用利于交流系统的稳定;减少互联交流系统的短路容量;超过一定距离建设投资更经济等。换流变压器是直流输电系统中必不可少的重要设备。它可以提供相位差为30°的12脉波交流电压,降低交流侧谐波电流;作为交流系统和直流系统的电气隔离,提供阀的换相电抗;通过换流变压器可以在较大范围内调节交流电压,以使直流系统运行在最优的状态等。

1 换流变压器的特点

1.1 短路阻抗 直流输电中阀的换相过程实际上就是两相短路,为了将换向过程中的电流限制在一定范围内,换流变压器的短路阻抗要大于一般变压器。短路阻抗过大,会使换流变压器二次侧故障时短路电流较一般变压器小,因此保护配置与整定要在这方面予以考虑。

1.2 直流偏磁 当直流系统在使用大地回线的情况下,在一些运行工况下会有直流电流流入大地,如双极不平衡运行,单极大地回线方式等,使地电位发生变化,造成直流电流流入变压器原边绕组,使换流变压器发生直流偏磁,工作点偏移。如果此直流电流过大,会导致换流变压器铁心饱和,同时损耗和温升也将增加。因此,要配置相应的保护防止这种情况下对换流变压器造成的损坏。

1.3 谐波 由于换流器的非线性,在交流和直流系统中将出现谐波电压和电流。对于换流变压器,主要会流过特征谐波电流,即p*n+1次谐波电流(p为脉波数,n为任意正整数)。在运行中,谐波电流会使换流变压器损耗和温升增加,产生局部过热,发出高频噪声,还会使交流电网中的发电机和电容器过热,对通讯设备产生干扰。这些谐波电流应加以考虑,以免对保护装置造成影响。

1.4 调压分接头 为了使直流系统运行在最优的工况,减少交流系统电压扰动对直流系统的影响,换流变压器都具有较大范围的利用分接头调整电压的功能。例如:三峡到常州工程三峡侧换流变压器档位范围+25/-5,每档调节范围1.25%。因此保护设计时要考虑分接头调整带来的影响,如正常运行时变比的变化等。

1.5 直流系统的特殊运行工况 由于直流控制系统的特殊调节作用,使换流变压器遇到的运行工况以及故障情况不同于普通变压器。这些不同主要包括以下几点:

1.5.1 直流系统的故障相当于换流变压器的区外故障,一般短路电流都不会太大。对于整流侧,穿越换流变的'电流会增大,但由于直流控制保护系统的快速作用,很快会减小。对于逆变侧,直流系统的故障会造成直流电流无法传变至交流侧,反而会使穿越电流减小。

1.5.2 对于换流变压器保护来说,直流系统造成的最严酷的区外故障为整流侧的阀短路故障,相当于换流变出口的两相或三相短路故障。但由于直流保护的干预,实际只会出现半个周波的两相短路。对于逆变侧,由于触发角很大,阀短路时流过换流变压器的电流较整流侧小很多。

1.5.3 换流变压器发生区内故障时,直流系统一般不会提供短路电流。这是由直流控制系统的作用造成的。在整流侧,功率由交流侧转换至直流侧,换流变压器的故障只会造成这种转换的停止,而不会使功率反向,因此直流侧不会提供短路电流;在逆变侧,当故障轻微换相可以正常进行时,由于直流系统的定电流控制特性,直流侧不会提供额外的短路电流。如果故障严重,必然造成换相无法进行(交流电压降低),直流侧更不会提供短路电流。

1.5.4 由于直流控制系统快速的调节作用,在需要的时候,可以快速的将功率传输由一个方向反至另一个方向,对于换流变压器来说,就会出现快速的潮流反向。

1.5.5 换流变压器保护区内发生接地故障时,实际造成了阀的短路。由于阀的单向导电性,故障电流半周电流大,半周电流小,导致差电流中含有较大的二次谐波。

1.5.6 对于逆变侧的换流变压器的区内故障,往往会导致换相失败的发生,从而在穿越电流电流中产生很大的谐波,但差电流(即提供给故障点的电流)仍主要为工频分量。

1.5.7 由于换流变压器的特殊运行方式以及较大的漏抗(作为换相电抗),二次侧故障一般不会造成各侧TA的饱和,即使饱和造成保护的“误动作”也是正确的(换流变的区外即阀的区内故障,都会造成直流的停运)。但对于一个半开关的接线方式,交流系统区外故障时高压侧TA存在饱和的可能。。这种情况下的误动作是不可接受的,必须防止。

1.5.8 在阀未解锁前,当阀侧交流连线存在接地故障时,并不产生接地电流,也不会对变压器造成损害。但如此时不发现故障,阀一解锁后,就会造成阀的短路。因此要设置保护检测这种情况下的接地故障。

2 换流变压器的保护措施

2.1 保护的配置原则 为了保证既可靠又安全,在既简单又经济的情况下,可以这样配置换流变压器保护:每台换流变压器保护装设两台保护装置,每台保护装置的电源、输入独立,每台装置的输出都可以到达断路器的两个跳闸线圈以及直流控制的两个系统。每台装置采取措施防止自身误动作,而靠两装置的或出口防止故障情况下的拒动作。 2.2 保护的配置及原理 为了避免换流站特有的谐波对保护的影响,保护装置应从硬件和软件上采取措施,使保护只针对工频分量。

主保护包括稳态比率差动、差动速断、工频变化量比率差动、零序比率差动、过激磁保护。后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

2.2.1 稳态比率差动保护 由于变比和联接组的不同,电力变压器在运行时,各侧电流大小及相位也不同。在构成继电器前必须消除这些影响。换流变压器的TA一般装在各侧绕组上,因此原、副边绕组电流相位相同,因此只需要对变比的影响进行补偿。以下的叙述的前提均为已消除了变压器各侧幅值和相位的差异。

稳态比例差动保护用来区分感受到的差流是由于内部故障还是不平衡输出(特别是外部故障时)引起。装置采用初始带制动的变斜率比率制动特性,稳态比率差动元件由低值比率差动(灵敏)和高值比率差动(不灵敏)两个元件构成。为了保证区内故障的快速切除,只有低值比率差动元件(灵敏)设有TA饱和判据,高值比率差动元件(不灵敏)不设TA饱和判据。

对于换流变压器分接头调整造成的差动电流不平衡,可用三种方法来解决:一是通过整定值躲开;二是利用浮动门槛自适应调整;三是利用分接头位置来调整。方法一、二简单实用,三实现起来复杂。

2.2.2 工频变化量比率差动保护 装置中依次按相判别,当满足 一定条件时,工频变化量比率差动动作。工频变化量比率差动保护经过涌流判别元件、过激磁闭锁元件闭锁后出口。

由于工频变化量比率差动的制动系数可取较高的数值,其本身的特性抗区外故障时TA的暂态和稳态饱和能力较强。工频变化量比率差动元件提高了装置在变压器正常运行时内部发生轻微匝间故障的灵敏度。且工频变化量比率差动保护不会受换流变压器分接头调整造成的差动电流不平衡的影响。

2.2.3 后备保护 后备保护包括过流、零序过流、过电压、零序过压、饱和保护。

3 小结

分析换流变压器与交流系统的主变压器比较所具有特点,阐述了这些特点以及直流输电的各种特殊运行工况对换流变压器保护带来的影响,并提出了相应的保护方案。

变压器 开题报告

变压器是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯),是利用电磁感应原理制成的静止用电器。

1 、国内外对变压器差动保护的研究现状

变压器常有的保护有过电流保护、电流速断保护、瓦斯保护等。但他们有一些不足之处,过电流保护动作时限比较长,切除故障不迅速;电流速断保护由于“死区”的影响使保护范围受到限制;瓦斯保护只反映变压器的内部故障,但不反映外部故障。而变压器差动保护就是为了解决这问题的。

差动保护分为纵差动保护和横差动保护,纵差动保护用于单回路,横差动保护用于双回路。变压器差动保护是纵差保护。变压器差动保护是根据基尔霍夫定律产生的,保护原理简单,易实现,是变压器的主保护之一。一般容量在6.3mva以上应装设纵差动保护,差动保护是利用故障时产生的不平衡电流来动作,保护灵敏度很高,动作迅速。经过许多人的研究,变压器差动保护已经得到很好的发展,保护的正确动作率有了很大的提高。

由于变压器自身的原因、互感器的误差、保护装置等方面的因素,造成变压器不平衡电流,它是引起差动保护误动作的一个重要原因。为了解决这个问题,现在的差动保护装置都采用比率动作曲线,传统的基于ct变压器比率制动曲线,由于ct饱和等因素,斜率一般都较大,曲线较高,改用ect后,由于ect不饱和且具有良好的线性,因此比率制动作曲线不需要制定太高,甚至可以指定成水平线。

另外,励磁涌流也是在研究变压器差动保护是不可避免的问题,这个问题通过加励磁涌流闭锁来消除,经过大量研究,现在主要闭锁原理有以下几种:

二次谐波闭锁原理,利用励磁涌流时存在大量的二次谐波,而非励磁涌流时二次谐波很小的原理,形成了二次谐波闭锁,在实际中使用最多的方法之一。但是,随着电力系统的发展,这种方法出现了越来越大的问题,突出的表现就是由于电力系统各种电容的影响,变压器内部故障下二次谐波含量可能变得很高,但在励磁涌流时二次谐波又可能变得很低(当变压器饱和磁通较低时),所以这种方法需要进一步改进。

间断角原理和波形对称原理,是观察励磁涌流波形,发现涌流存在很小波变化方法。此方法解决了傅里叶算法不能完全提出暂态信号的特征的'缺点,适合于电力系统的暂态分析。由于需要较高的采样率,装置的硬件成本变高,同时,电力系统正常情况下也存在高次谐波可能影响判断,所以此方法也需要发展完善。

神经网络方法以及模糊控制理论等识别方法是比较新兴的方法。神经网络方法过程比较繁琐,需要大量的数据,但它充分发挥了人脑计算能力强、自学能力强、容错性、自适应性等优点,

是研究和发展的一个重要方向。模糊控制理论是将多个输入量及相关的保护判据给予不同的置信度,通过模糊理论得到最终的跳闸决策,提高了判断的准确性。间断角原理是一种清晰、直观、抗过励磁能力强的方法,但需配置相应的a/d芯片级cpu,提高了硬件成本,同时观擦波形可以发现励磁涌流还存在非对称性,因此形成波形对称原理。它比间断角原理更易实现,但在对称涌流时无法判别,因此,这两种方法都需要大量实验来确定,实现比较复杂。 差有功法、磁通判别法及基于变压器模型的判别法,利用了电流信号和电压信号,比只使用电流信号更有优势。差有功功率的理论基础是:变压器故障时主要增加有功功率,而其他情况下主要增加无功功率。磁通判别法的理论基础是:非内部故障时,变压器运行在正常的磁化曲线上;而故障时偏离磁化曲线运行。基于变压器模型的判别方法是根据变压器模型得出的变压器恒等式,在故障时恒等式关系不成立,而判别故障与否,可利用电流、电压信号计算出变压器的漏感、电阻以及励磁阻抗,利用他们的变化与否判断是否涌流,这三种方法都是从物理机理出发,原理简单,准确性高,但受多方面因素影响,整定较困难,还有待进一步研究。

目前,针对电力变压器励磁涌流的判别,国内外学者提出了许多新原理和新方法,但这些方法都由不足之处且还处在实验阶段,需要进一步验证才能采用。实际中最多的还是二次谐波检测,这种检测方法会在变压器空载合闸时出现差动保护动作或是在发生内部故障时出现保护拒动的情况。因此,需要进一步探索快速、准确的区分变压器励磁涌流和内部故障电流的新方法,提高变压器差动保护的性能。

国外早在1941年就有和应涌流现象的报导。当时在查找变压器差动保护误动原因过程中,发现较大暂态激励电流不仅出现在刚合闸的变压器中,也出现在已并网运行的变压器中。通过现场波形记录、实验测试和电流表达式的数学推导对合应涌流现象进行了深入的分析,并讨论了和应涌流对变压器差动保护及过电流保护的影响。saied通过数值仿真一台变压器空投充电,另外一台空载、负荷或有并联电容器的变压器正在并联运行时,两台变压器的电流、磁链和公共连接点的电压变化,对影响和应涌流的部分因素进行分析。bronzeado h s等通过仿真分析并联和串联变压器两种系统结构形式,指出空投一台变压器时,励磁涌流在系统与变压器间产生了一种暂态和应作用,不仅使空投变压器的励磁涌流的幅值和持续时间发生变化,而且在运行变压器中将产生和应涌流,结果导致运行变压器差动保护误动和长时间的谐波过电压。随着变压器线圈中的电阻值减小,和应涌流现象将增多。王怀智等通过对220kv系统中两台主变的空投试验再次说明了和应涌流的存在,并指出了它对变压器差动保护的影响。试验记录表明采用二次谐波“或”门制动可防止和应涌流导致差动保护误动。

2 研究的背景、目的及意义电力变压器是发电厂和变电站中的主要电气设备,它的安全运行与否直接关系到系统能否稳定正常地工作。随着电力容量及电压等级的增加,变压器造价越来越昂贵,如果因故障遭到破坏,其检修度大,检修时间长,经济损失惨重。因此要有一个安全、可靠、灵敏的变压器保护方案,这一直是国内外电力系统学者们研究的热点。变压器差动保护的关键问题是如何鉴别励磁涌流和内部故障,国内外许多专家和学者对此进行了大量的研究,也取得了很多有益的成果。

近些年来,在操作过程中引起的多次变压器差动保护误动情况引起广泛注意。2003年11月7日华能井冈山电厂发生一起机组非计划停运故障,在合#2主变出口断路器的过程中,#2主变差动保护动作导致#1发电机与系统解列停运,后查明是由于和应涌流导致变压器差动保护误动引起的。目前由于电网分层分区级大容量变压器的逐步投运,局部电网结构发生了根本性的变化,电力系统中和应涌流引起变压器差动保护误动的事故不断增加,因此和应涌流问题引起人们的关注。

和应涌流与合闸励磁涌流特征不完全相同,运行变压器本身没有故障,方向与空投变压器相反,和应涌流的峰值是先增大后减小,峰值出现的时刻与相邻变压器交相呼应,并且误动发

生在相邻变压器空投完成一段时间后,持续很长时间都不衰减,易导致电流互感器暂态饱和,误动原因更具有隐蔽性。前人的研究工作针对空载合闸或外部故障切除后电压恢复时变压器本身励磁涌流的产生机理、波形特征与变化特点进行的,而对并联或串联运行中变压器的和应涌流对变压器差动保护的影响分析并不多。因此有必要对和应涌流的产生机理和特点进行深入研究,揭示其本质,进而提出可行的措施,消除隐患,提高供电可靠性。

综述资料

变压器保护的发展历史,1931年r·e·cordray提出出比率差动的变压器保护标志着差动保护为变压器主保护时代的到来,1941年,c·d·hayward首次提出了利用谐波制动的差动保护,1958年,r.l.sharp和w.e.glassburn提出了利用二次谐波鉴别变压器励磁涌流的方法,并在模拟式保护中加以实现,同时还提出差动加速的方案,以差动加速、比率差动、二次谐波制动来构成整个谐波制动式保护的主体,延续至今。微机变压器保护的研究开始于60年代末70年代初。1969年,rockerfeller首次提出数字式变压器保护的概念,揭开了数字式变压器保护研究的序幕,之后o.p.malik和degens研究了变压器保护的数字处理和数字滤波分析;1972年,skyes发表了计算机变压器谐波制动方案,使得微机变压器保护的发展向前迈进。近年来,出现了数字信号处理器dsp,不仅提高了微机保护数据采样与计算的速度和精度,甚至改变了微机保护装置的设计方案,在保护装置中实现复杂的算法。

电力变压器是电力系统中最重要的电气主设备之一,作为电能的传输枢纽。大型变压器结构复杂、造价昂贵,一旦发生故障损坏,维修工作难度大,经济上损失重大。近年来,随着电力系统的发展,电压等级的升高,大容量变压器的应用不断增多。大容量变压器采用纠结式绕组,易于产生匝间短路,因此,故障率相对较高。为了保障变压器安全、可靠地运行,电力工作者不断深入分析其运行特性,研究新原理与方法,提高变压器保护的性能。针对差动保护中的励磁涌流问题,国内外积极研究各种方法予以解决,例如,二次谐波制动、间断角、电压制动、磁通特性原理和等值电路法等。还有一些新兴学科和方法运用到变压器的保护中进行研究。随着计算机及网络技术的迅速发展,高性能的微处理器芯片的不断产生,微机变压器保护装置的性能不断得到改善,整个微机保护系统正向集成化,人工智能化,网络化,保护、控制、测量、数据通信一体化,标准化方向发展。

3 论文的主要研究内容

1 对变压器差动保护的基本原理进行阐述,分析了可能引起差动保护继电器误动作的原因,并简单介绍了一些防范措施。

2 对变压器励磁涌流的产生机理及其性质进行分析和研究,综述了变压器差动保护的现状和发展趋势。研究了变压器励磁涌流的各种鉴别方法,并对其进行分析和评价。提出了消除产生励磁涌流,实现对励磁涌流的抑制方法。

3 利用励磁涌流偏向时间轴一侧的特点,解释了和应涌流的产生机理及其变化特点,指出和应涌流产生的本质原因是由于合闸变压器励磁涌流流过系统电阻使得其他变压器工作母线电压偏移,导致铁芯饱和造成的。讨论了和应涌流对变压器差动保护的危害并提出相应的一些防范措施。

液压系统设计论文开题报告

∷文档简介∷ 内容摘要 本说明书共七章,包括CB-50齿轮泵概述、齿轮泵的设计计算,齿轮泵的故障分析,CB-50齿轮泵实验台设计,系统的安装结束语七大部分内容。 其主要内容包括齿轮泵的设计计算、故障分析。CB-50泵实验台的设计方案的确定,液压元件的选则,还有油箱的设计,其次还有系统安装的相关阐述,如:安装齿轮泵的注意问题,安装联轴器的技术要求,空气滤清器的安装,系统的工作原理,故障的分析研究与排除方法等。 本说明书是吉林大学机械学院本科毕业生毕业设计内容之一,评审时请参阅相应的毕业设计图纸及相关文献。关键词: 齿轮泵 液压 故障分析 试验台 系统安装目录绪论 12 CB-50齿轮泵概述 32.1本次设计的题目: 32.2 概述 33齿轮泵的设计计算 43.1选择齿数Z 43.2选择齿轮模数m 43.3齿轮参数的确定 53.4瞬时流量 63.5理论排量 73.6 流量脉动 83.7泵的能量损失分析 93.7.1.齿顶圆和泵提内孔间的径向间隙 93.7.2 齿轮两侧面与轴套之间的轴向间隙 93.8卸荷槽的位置尺寸 103.9 计算齿宽B: 113.10齿轮节圆圆周速度的审核 113.11零件强度的计算 114 齿轮泵故障分析 145 CB-50泵实验台 155.1 方案的确定 155.2液压元件的选择 165.2.1电机的选择: 165.2.2管道和管接头的选择: 165.2.3 滤油器的选择 185.2.4 液压油的选择 195.2.5流量计的选择 195.2.6压力表的选择 195.2.7液位温度计的选择 195.2.8联轴器的选择 195.3油箱的设计 205.3.1确定油箱的容量 205.3.2油箱简介: 205.3.3油箱的防噪音问题: 216 系统安装 226.1安装齿轮泵注意问题 226.2安装联轴器的技术要求 226.3空气滤清器 226.4该系统的工作原理: 236.5常见故障及维修 236.5.1液压系统的维护任务包括调试检查,维护和修理 236.5.2使用维修时的注意事项: 236.6常见鼓掌及排除方法: 23结论 27致谢 28参考文献 29

你好,同学,你的方面开题报告老师让你往哪个方向写?开题报告有什么要求呢开题报告是需要多少字呢你可以告诉我具体的排版格式要求,希望可以帮到你,祝开题报告选题通过顺利。本科毕业设计(论文)开题报告的基本要求4.2本科毕业设计(论文)开题报告的内容和要求毕业设计(论文)开题报告的结构包括(1)选题的背景和意义,(2)研究的基本内容和拟解决的主要问题,(3)研究方法及措施,(4)研究工作的步骤与进度,(5)主要参考文献等项目。下面对有关项目作一些说明:(1)选题的背景和意义主要说明所选课题的历史背景、国内外研究现状和发展趋势。历史背景部分着重说明本课题前人研究过,研究成果如何。国内外研究现状部分说明本课题目前在国内外研究状况,介绍各种观点,比较各种观点的异同,着重说明本课题目前存在的争论焦点,同时说明自己的观点。发展趋势部分说明本课题目前国内外研究已经达到什么水平,还存在什么问题以及发展趋势等,指明研究方向,提出可以解决的方法。开题报告写这些内容一方面可以论证本课题研究的地位和价值,即选题的意义,包括对选题的理论意义和现实意义的说明;另一方面也可以说明开题报告撰写者对本课题研究是否有较好的把握。(2)研究的基本内容和拟解决的主要问题相对于选题的意义而言,研究的基本内容与拟解决的主要问题是比较具体的。毕业设计(论文)选题想说明什么主要问题,结论是什么,在开题报告中要作为研究的基本内容给予粗略的,但必须是清楚的介绍。研究基本内容可以分几部分介绍。(3) 研究方法及措施选题不同,研究方法则往往不同。研究方法是否正确,会影响到毕业设计(论文)的水平,甚至成败。在开题报告中,学生要说明自己准备采用什么样的研究方法。比如调查研究中的抽样法、问卷法,论文论证中的实证分析法、比较分析法等。写明研究方法及措施,是要争取在这些方面得到指导老师的指导或建议。(4) 研究工作的步骤、进度。课题研究工作的步骤和进度也就是课题研究在时间和顺序上的安排。毕业设计(论文)创作过程中,材料的收集、初稿的写作、论文的修改等,都要分阶段进行,每个阶段从什么时间开始,到什么时间结束都要有规定。在时间安排上,要充分考虑各个阶段研究内容的相互关系和难易程度。对于指导教师在任务书中规定的时间安排,学生应在开题报告中给予呼应,并最后得到批准。学生在实际操作中,时间安排一般应提前一点,千万别前松后紧,也不能虎头蛇尾,完不成毕业设计(论文)的撰写任务。(5) 主要参考文献。在开题报告中,同样需列出参考文献,这在实际上是介绍了自己的准备情况,表明自己已了解所选课题相关的资料源,证明选题是有理论依据的。在所列的参考文献中,同样应具备不少于2篇的外文文献。

齿轮泵是液压系统中应用十分广泛的动力元件,具有结构简单、价格便宜、自吸能力强,抗油液污染能力强等优点,但是其最大的缺陷是寿命过短,达不到设计要求的一半。外啮合齿轮泵的设计寿命为5000h。但目前一般均达不到此要求。本文就其中几个主要影响因素加以阐述,并提出相应的改进措施。1、轴承的设计与选用 像其他机械产品一样,齿轮泵设计也要考虑其寿命原则。为了经济合理地使用原材料和零配件,提高产品的技术经济指标,在设计产品时应力求做到大部分零部件和原材料寿命相等,不应造成产品的大部分零件还远没有达到使用寿命,而少数零件已报废。齿轮泵恰好存在这样的问题,报废的大多数情况是因为轴承损坏所至。目前不少齿轮泵不再使用滚针轴承,而改用带保持架的滚针轴承,这样虽可使寿命有所提高,但实践证明,在额定工况下运行不到2000h就因轴承损坏而报废。为此也有采用滑动轴承的,材料多为锡青铜、粉末冶金、增强尼龙6等,但效果仍不理想,且成本高............没什么好处,技术性的东西不愿告诉你们

三自由度运动平台由于其自身无法稳定,需要辅助结构进行站立,因此结构相对复杂,具体设计方案和结构图纸需要您进一步提出更为详细的设计要求,例如:俯仰角度、侧倾角度等。液压系统建议采用数字液压缸作为主要的控制器件,不仅可以避免复杂伺服系统调试和维护,同时控制完全数字化,控制系统采用工控电脑、PLC或者能够发出电脉冲的任何方式均可,大大降低系统设计和调试以及使用维护的难度。

  • 索引序列
  • 高低压变电系统论文开题报告
  • 高压电器在变配系统的论文
  • 35kv降压变电所论文开题报告
  • 电力变压器保护论文开题报告
  • 液压系统设计论文开题报告
  • 返回顶部