首页 > 学术发表知识库 > 气雾剂处方研究论文

气雾剂处方研究论文

发布时间:

气雾剂处方研究论文

shè xiāng qū tòng qì wù jì

shexiang qutong aerosol [中医药学名词审定委员会.中医药学名词(2004)]

shexiang qutong qiwuji [中医药学名词审定委员会.中医药学名词(2004)]

麝香祛痛气雾剂为中成药,主要成分为麝香、红花、樟脑、独活、冰片、龙血竭、薄荷脑、地黄、三七[1]。具有活血祛瘀,舒经活络,消肿止痛的功效。用于各种跌打损伤,瘀血肿痛,风湿瘀阻,关节疼痛。

《中华人民共和国药典》(2010年版)记载有麝香祛痛气雾剂的药典标准。

麝香祛痛气雾剂

Shexiang Qutong Qiwuji

人工麝香0.33g、红花1g樟脑30g、独活1g、冰片20g、龙血竭0.33g、薄荷脑10g、地黄20g、三七0.33g

以上九味,取人工麝香、三七、红花,分别用50%乙醇10ml分三次浸渍,每次7天,合并浸渍液,滤过,滤液备用;地黄用50%乙醇100ml分三次浸渍,每次7天,合并浸渍液,滤过,滤液备用;龙血竭、独活分别用乙醇10ml分三次浸渍,每次7天,合并浸渍液,滤过,滤液备用;冰片、樟脑加乙醇100ml,搅拌使溶解,再加入50%乙醇700ml,混匀;加入上述各浸渍液,混匀;将薄荷脑用适量50%乙醇溶解,加入上述药液中,加50%乙醇至总量为1000ml,混匀,静置,滤过,灌装,封口,充人抛射剂适量,即得。

本品为非定量阀门气雾剂,在耐压容器中的药液为橙红色澄清液体;气芳香。

(1)取本品,照[含量测定]项下的方法试验,供试品色谱中应呈现与对照品色谱峰保留时间相同的色谱峰。

(2)取[含量测定]项下剩余药液50ml,加水200ml,摇匀,用石油醚(30~60℃)提取2次,每次100ml,合并石油醚液,自然挥干,残渣用无水乙醇2ml使溶解,取上清液作为供试品溶液。另取麝香酮对照品适量,加无水乙醇制成每1ml含0.1mg的溶液,作为对照品溶液。照气相色谱法(2010年版药典一部附录Ⅵ E)试验,聚乙二醇20000(PEG20M)毛细管柱(柱长为30m,内径为0.32mm,膜厚度为0.5μm),柱温为程序升温:起始温度为130℃,保持5分钟,以每分钟0.8℃的速率升温至180℃,保持2分钟,再以每分钟20℃的速率升温至220℃,保持5分钟。分别吸取对照品溶液与供试品溶液各1μl,注入气相色谱仪,测定。供试品色谱中,应呈现与对照品色谱峰保留时间相同的色谱峰。

应为47%~57%(2010年版药典一部附录Ⅸ M)。

应不低于0.8g/s(2010年版药典一部附录Ⅰ Z)。

应符合气雾剂项下有关的各项规定(2010年版药典一部附录Ⅰ Z)。

照气相色谱法(2010年版药典一部附录Ⅵ E)测定。

聚乙二醇20000(PEG20M)毛细管柱(柱长为30m,内径为0.53mm,膜厚度为1.0μm),柱温为160℃。理论板数按樟脑峰计算应不低于20000。

取萘适量,精密称定,加无水乙醇制成每1ml含4mg的溶液,作为内标溶液。另取樟脑对照品、薄荷脑对照品、冰片对照品各30mg、10mg、20mg,精密称定,置同一50ml量瓶中,精密加入内标溶液5ml,加无水乙醇至刻度,摇匀,吸取1μl,注入气相色谱仪,计算校正因子。

取本品,除去帽盖,冷却至5℃,在铝盖上鉆一小孔,插入连有干燥橡皮管的注射针头(勿与药液面接触),橡皮管另一端放入水中,待抛射剂缓缓排出后,除去铝盖,精密量取药液1ml,置50ml量瓶中,精密加入内标溶液5ml,加无水乙醇至刻度,摇匀,作为供试品溶液。吸取1μl,注入气相色谱仪,测定,冰片以龙脑峰、异龙脑峰面积之和计算,即得。

本品每1ml中含樟脑(C10H16O)应为25.5~34.5mg;含薄荷脑(C10H20O)应为8.5~11.5mg;含冰片(C10H18O)应为17.0~23.0mg。

活血祛瘀,舒经活络,消肿止痛。用于各种跌打损伤,瘀血肿痛,风湿瘀阻,关节疼痛。

外用。喷涂患处, *** 5~10分钟至患处发热,一日2~3次;软组织扭伤严重或有出血者,将药液喷湿的棉垫敷于患处。

孕妇慎用;乙醇过敏者慎用。

每瓶内容物重72g,含药液56ml[2]

遮光,30℃以下密封贮存。

《中华人民共和国药典》2010年版

中药

麝香祛痛气雾剂

Shexiang Qutong Qiwuji

人工麝香、红花、樟脑、独活、冰片、龙血竭、薄荷脑、地黄、三七

麝香祛痛气雾剂为非定量阀门气雾剂,在耐压容器中的药液为橙红色澄清液体;气芳香。

活血祛瘀,舒经活络,消肿止痛。用于跌打损伤,瘀血肿痛,风湿瘀阻,关节疼痛。

每瓶内容物重72克,含药液56毫升

外用,喷涂患处, *** 5~10分钟至患处发热,一日2~3次;软组织扭伤严重或有出血者,将药液喷湿的棉垫敷于患处。

1.麝香祛痛气雾剂为外用药,禁止内服。

2.用毕洗手,切勿接触眼睛、口腔等黏膜处。

3.忌生冷、油腻食物。

4.切勿置麝香祛痛气雾剂于近火及高温处并严禁剧烈碰撞,使用时勿近明火。

5.孕妇慎用;乙醇过敏者慎用。儿童、经期及哺乳期妇女、年老体弱者应在医师指导下使用。

6.软组织扭伤严重或有出血者,应在医师指导下使用。

7.麝香祛痛气雾剂不宜长期或大面积使用,用药后皮肤过敏者应停止使用,症状严重者应去医院就诊。

8.用药3天症状无缓解,或出现局部红肿、疼痛、活动受限等不适症状时应去医院就诊。

9.对麝香祛痛气雾剂过敏者禁用,过敏体质者慎用。

10.麝香祛痛气雾剂性状发生改变时禁止使用。

11.儿童必须在成人监护下使用。

12.请将麝香祛痛气雾剂放在儿童不能接触的地方。

13.如正在使用其他药品,使用麝香祛痛气雾剂前请咨询医师或药师。

如与其他药物同时使用可能会发生药物相互作用,详情请咨询医师或药师。

【摘要】 药剂学是化学制药技术专业的一门主干课程。为了培养合格的化学制药技术专业人才,要结合高职培养目标与专业特点,基于学生满意进行药剂学教学。文章结合多年的教学经验,对化学制药技术专业药剂学课程的教学内容和教学方法提出自己的观点。 【关键词】 化学制药技术专业; 药剂学; 教学内容; 教学方法Abstract:Pharmacology is a trunk course in chemical pharmaceutical technology specialty. In order to cultivate qualified pharmaceutical talents, pharmacology teaching should be based on students satisfaction and society demand. Combined with teaching experience in pharmaceutical engineering, some notions on the rearrangement of teaching content and the conducting methods were discussed in the paper.Key words:Chemical pharmaceutical technology specialty; Pharmacology; Teaching content; Teaching methods 高职化学制药专业的目标是培养从事化学制药生产运行、管理和药物生产的新方法、新工艺和新设备与开发等工作的高级技术应用性专门人才。学生毕业后能够在化学制药企业从事生产运行、产品质量控制、生产技术管理、制药新工艺、新设备开发应用等工作,同时也能够从事药品销售等相关工作。药剂学是化学制药专业的主干课程,它是研究药物配制理论、生产技术以及质量控制等内容的综合性应用技术科学。综合和应用,是药剂学最重要的外在特征,同时药剂学具有学习内容多而分散,记忆性、背诵性强的特点,难以系统掌握,为了改变这种局面,我们课程组展开了对该课程的全面建设工作,尤其是教学方法与手段的研究与改革。在对学生进行课程满意度调查的基础上,我们在教学方法上改变了以教师讲课为中心的传统教学模式,采用以“学生为主体、教师为主导”的因材施教的模式,在教师理清教学主线的前提下,课堂教学侧重讲练结合、讨论启发,鼓励学生独立思考,激发学习的主动性,培养学生的创新意识和良好的个性,取得了良好的教学效果。在此,谈一下自己的教法与体会,与同行交流共勉。1 教学内容 《药剂学》是一门实践性较强的主干专业课程,本课程的教学能对学生掌握药学领域的基本知识与技能起到主导作用。学生通过药剂学课程的学习后,能够掌握药物剂型和制剂的制备、生产及质量控制等方面的理论和技能,为日后从事药剂的生产、销售、管理和临床合理用药奠定基础。我们对课程内容的选择围绕着药剂学的基本任务来进行,主要包括药剂基本理论、药剂剂型的处方及生产工艺、药物新制剂、药品调剂与药学服务等4个方面。1.1 药剂学基本理论基本理论的研究对提高药剂的生产技术水平,制备安全、有效、稳定、质量可控、顺应性好的制剂十分重要,对完善和丰富药剂生产工艺、开发新剂型、新制剂和新型给药系统及提高产品质量都有重要的指导意义。虽然高职的主要培养对象是高技能人才,但是使学生具备一定的基础理论知识,如溶解理论、常见药剂辅料特性、药物制剂的稳定性理论等,还是十分必要的,没有理论指导的技能就犹如空中楼阁,缺乏发展的后劲。1.2 传统剂型的处方及生产工艺方法、原理和技术成熟的、目前相关工作岗位常用的符合《中国药典》规范的药剂剂型的处方及生产工艺应该是我们课程的重点,教学时间占课程学时的一半以上。常见剂型包括:溶液剂(Solution)、栓剂(Suppositories)、糖浆剂(Syrup)、片剂(Tablets)、注射剂(Injection)、胶囊剂(Capsules)、气雾剂(Aerosol)等。对这些剂型的学习内容主要包括:①剂型的定义、特点、分类、质量要求等,这是一种剂型有别于其它剂型的特征;②制备流程、处方和工艺,这是学习的核心,也是我们组织教学的主线。1.3 药物新制剂高效、长效、速效、低毒、缓释、控释、定位和靶向释放等各种新剂型与新制剂始终是药剂学的中心工作,也是体现高职课程先进性的地方。课程主要介绍比较成熟的新剂型的制备方法、生产过程、质量监控及相关理论,以典型实例贯穿实际生产操作全过程,以生产或实验室操作过程顺序组织课堂教学。我们讲解的药物新制剂主要包括:缓控释制剂、靶向制剂、透皮给药系统等。1.4 药品调剂与药学服务药品调剂与药学服务是药房的重要工作,也是药剂工作者必须要熟悉的内容。该部分的学习有利于学生日后在药品流通行业的工作。2 教学方法2.1 流程教学法药剂学具有知识点多而分散,叙述性和记忆性强的特点,传统的教学方法没有清晰明确的引导性思路,内容之间缺少必然的联系。采用流程教学法可以将药剂学的主要内容整合进药物剂型的制备或应用流程中,使学生对药剂学的内容有清晰的思路,沿着剂型的制备流程,非常容易掌握各种剂型的学习内容,学习药剂学不再是死背硬记,提高了课程教学的系统性、趣味性,便于学生对相关内容的掌握[1]。如对中药剂型这一章的学习,我们将内容归纳到以下流程中,对本章所有知识点的学习都围绕着这张流程图来进行,提高了学习效率。2.2 启发式课堂教学以“学为主体、教为主导、发展智能”为原则,在教师指导下,充分调动学生学习的主动性,激发学生的兴趣,师生互动教学,训练学生独立思考、解决问题的能力。如在对药剂质量要求的讲解过程中,抓住“安全、有效、稳定”的原则,启发学生探究如何才能使片剂、注射剂、输液剂等实现以上目标?对个生产环节如何控制?对生产环境有哪些要求?需要哪些质量控制指标?使学生在能够带着问题听课,积极思考,提高了学习效率。2.3 讲练结合式的课堂教学 改变“满堂灌”的传统教学方法,采用“讲-练-讲”结合的方式进行课堂教学,即教师讲习后,出一些灵活性高且能体现课堂重点知识点的习题由学生自己练习后,教师再总结,这样可以起到事半功倍的效果。如在注射剂这一章关于调节等渗的计算方法讲解后,让学生自己动手用不同的方法(如冰点下降数据法和氯化钠等渗当量法)计算同一道题,结果数值有差异,再提出问题:用冰点下降数据法和氯化钠等渗当量法计算同一道题的结果为什么不同?同学马上就会仔细地翻阅书本,找到答案:原来冰点下降数据法计算出的是100 ml该溶液需加入等渗调节剂的量,而氯化钠等渗当量法则是实际溶液所需加入的氯化钠的量,自然有区别。此后教师再对调节等渗的几种计算方法进行总结,加深学生对该知识点的理解。2.4 运用现代教育技术手段授课多媒体教学是我国高校普遍采用的一种现代化教学手段,它具有信息量大、直观、图声俱全等优点,本课程教学过程中,教师制作了全程的多媒体课件,充分利用药剂学教学素材包括文本、图像、视屏、动画等,并在使用过程不断完善和补充,直观生动、图文并茂的教学方法使学生易于了解和掌握抽象的理论概念和课程难点[2]。如在片剂讲解中我们通过动画影片展现压片的全过程;通过网络将药剂学的发展动态和企业状况介绍给同学,推荐课程国内外相关网站;通过网络实现与学生的交流与互动,激发学生的学习热情,培养学生的创新思维和能力。2.5 改革课程作业与考试方式从促进素质教育的指导思想出发,改变常规的作业与考试方式[3]。课程作业除了传统的书面题目外,还经常布置药剂学文献检阅与综述题目,提高学生自主学习的能力。采用了综合考核的方式,如以期末开卷考试为基础,综合实验能力的考核、综述能力(归纳报告)、平时测试和课堂讨论、课堂出席等情况综合给分,引导学生平时加强学习、注重活学活用,防止期末突击应付考试

环保化气雾剂的研究及应用论文

绿色催化剂的应用及进展摘要]对新型绿色催化剂杂多化合物的研究进展进行了综述,主要介绍了杂多化合物在催化氧化、烷基化、异构化等石油化工领域的研究现状,并对其应用和发展前景做了总结和评述。[关键词]杂多化合物;绿色化工催化剂;展望随着人们对环保的日益重视以及环氧化产品应用的不断增加,寻找符合时代要求的工艺简单、污染少、绿色环保的环氧化合成新工艺显得更为迫切。20世纪90年代后期绿色化学[1,2]的兴起,为人类解决化学工业对环境污染,实现可持续发展提供了有效的手段。因此,新型催化剂与催化过程的研究与开发是实现传统化学工艺无害化的主要途径。杂多化合物催化剂泛指杂多酸及其盐类,是一类由中心原子(如P、Si、Fe、B等杂原子及其相应的无机矿物酸或氢氧化物)和配位原子(如Mo、W、V、Ta等多原子)按一定的结构通过氧原子桥联方式进行组合的多氧簇金属配合物,用HPA表示[3-6]。HPA的阴离子结构有Keggin、Dawson、Anderson、Wangh、Silverton、Standberg和Lindgvist 7种结构。由于杂多酸直接作为固体酸比表面积较小(<10 m2/g),需要对其固载化。固载化后的杂多酸具有“准液相行为”和酸碱性、氧化还原性的同时还具有高活性,用量少,不腐蚀设备,催化剂易回收,反应快,反应条件温和等优点而逐渐取代H2SO4、HF、H3PO4应用于催化氧化、烷基化、异构化等石油化工研究领域的各类催化反应。1杂多酸在石油化工领域的研究进展随着我国石油化工工业的快速发展,以液态烃为原料制取乙烯的生产能力在不断增长,而产生的副产物中有大量的C3~C9烃类,其化工综合利用率却仍然较低,随着环保法规对汽油标准中烯烃含量的严格限制,如何在不降低汽油辛烷值的情况下,生产出高标号的环境友好汽油已是我国炼油业面临的又一个技术难题。目前,催化裂化副产物C3~C9烃类的催化氧化、烷基化、芳构化以及C3~C9烃类的回炼技术已成为研究的热点。因此,催化裂化C3~C9烃类的开发与应用将有着强大的生产需求和广阔的市场前景。1.1催化氧化反应杂多酸(盐)作为一类氧化性相当强的多电子氧化催化剂,其阴离子在获得6个或更多个电子后结构依然保持稳定。通过适当的方法易氧化各种底物,并使自身呈还原态,这种还原态是可逆的,通过与各种氧化剂如O2、H2O2、过氧化尿素等相互作用,可使自身氧化为初始状态,如此循环使反应得以继续。用杂多酸作催化剂使有机化合物催化氧化作用有两种路线是可行的[7]:①分子氧的氧化:即氧原子转移到底物中;②脱氢反应的氧化。将直链烷烃进行环氧化是生产高辛烷值汽油的重要途径之一。Bregeault等[8]研究了在CHCl3-H2O两相中,在作为具有催化活性的过氧化多酸化合物的前体的杂多负离子[XM12O40]n-和[X2M18O62]m-以及同多负离子[MxOy]z-(M=Mo6+或W6+;X=P5+,Si4+或B3+)的存在下,用过氧化氢进行1-辛烯的环氧化反应时,负离子[BW12O40]5-、[SiW12O40]4-和[P2W18O62]6-都是非活性的,并且许多光谱分析法表明它们的结构在反应过程中没有发生变化。[PMo12O40]3-表现出很低的活性,而[PW12O40]3-、H2WO4和[H2W12O42]10-都表现出高活性。反应中Keggin型杂多负离子[PW12O40]3-被过量的过氧化氢分解而形成过氧化多酸{PO4[WO(O2)2]4}3-和[W2O3(O2)4(H2O)2]2-,而这两种活性物种在环氧化反应中起到了重要的作用。1.2烷基化反应石油炼制工业上,烷烃烷基化、烯烃烷基化及芳烃烷基化反应是生产高辛烷值清洁汽油组分的环境友好工艺。但以浓硫酸和氢氟酸作为催化剂的传统烷基化工艺因氢氟酸的毒性和浓硫酸的严重腐蚀性受到了很大的限制。C4抽余液是蒸气裂解装置产生的C4馏份经抽提分离丁二烯后的C4剩余部分,其中富含大量的1-丁烯和异丁烯。如何利用C4抽余液中的异丁烯和1-丁烯是C4抽余液化工利用的关键。异丁烯是一种重要的基本有机化工原料,主要用于制备丁基橡胶和聚异丁烯,也用来合成甲基丙烯酸酯、异戊二烯、叔丁酚、叔丁胺等多种有机化工原料和精细化工产品。1-丁烯是一种化学性质比较活泼的a-烯烃,其主要用途是作为线性低密度聚乙烯(LLDPE)的共聚单体,也用于生产聚丁烯、聚丁烯酯、庚烯和辛烯等直链或支链烯烃、仲丁醇、甲乙酮、顺酐、环氧丁烷、醋酸、营养药、农药等。特别是自20世纪70年代LLDPE工业化技术开发成功以来,随着LLDPE工业生产的蓬勃发展,国内外对1-丁烯的需求与日俱增,已成为发展最快的化工产品之一。刘志刚[9]等用浸渍法制备了Cs+、K+、NH4+的SiPW12杂多酸盐类和SiO2负载的SiPW12杂多酸,在超临界条件下评价了它们对异丁烷和丁烯烷基化的催化作用。结果表明,它们的活性和选择性大小顺序是当阳离子数相同时,Cs+盐>K+盐>NH4+盐。(NH4)2.5H1.5SiW12O40尽管催化活性不高,但对C8产物的选择性达到83.48%;Cs2.5H1.5SiW12O40具有很高的催化活性,但其对C8产物的选择性却只有62.47%。1.3异构化反应汽油的抗爆性用异辛烷值表示,直链烃异构化是生产高辛烷值汽油的重要手段。C5~C6烷烃骨架异构化旨在提高汽油总组成的辛烷值,反应受平衡限制,低温有利于支链异构化热动力学平衡。为达到最大的异构化油产率,C5~C6烷烃异构化应在尽可能低的温度和高效催化剂存在下进行。烷烃骨架异构化是典型的酸催化反应,最近发现有较多的固体酸材料(其酸强度高于H-丝光沸石)可用于轻质烷烃骨架异构化,其中,最有效的有基于杂多酸(HPA)的催化材料和硫酸化氧化锆、钨酸化氧化锆(WOx-ZrO2)。2绿色催化剂绿色化学对催化剂也提出了相应的要求[1,2]:(1)在无毒无害及温和的条件下进行;(2)反应应具有高的选择性,人们将符合这两点的催化剂称之为绿色催化剂。由于一些杂多酸化合物表现出准液相行为,极性分子容易通过取代杂多酸中的水分子或扩大聚合阴离子之间的距离而进入其体相中,在某种意义上吸收大量极性分子的杂多酸类似于一种浓溶液,其状态介于固体和液体之间,使得某些反应可以在这样的体相内进行。作为酸催化剂,其活性中心既存在于“表相”,也存在于“体相”,体相内所有质子均可参与反应,而且体相内的杂多阴离子可与类似正碳离子的活性中间体形成配合物使之稳定。杂多酸有类似于浓液的“拟液相”,这种特性使其具有很高的催化活性,既可以表面发生催化反应,也可以在液相中发生催化反应。准液相形成的倾向取决于杂多酸化合物和吸收分子的种类以及反应条件。正是这种类似于“假液体”的性质致使杂多酸即可作均相及非均相反应,也可作相转移催化剂。陈诵英[10]等用二元杂多酸为催化剂,双氧水为氧化剂,醋酸为溶剂,催化氧化三甲基苯酚(TMP)合成三甲基苯醌(TMBQ),这与传统方法先用发烟硫酸磺化TMP,然后在酸性条件下用固体氧化剂氧化得到TMBQ相比,能减少排放大量废水以及10 t以上的固体废物,且其摩尔收率可达86%,大大提高了原子利用率。刘亚杰[11]等采用一种性能优良的环境友好的负载型杂多酸催化剂(HRP-24)合成二十四烷基苯。HR-24属于一种大孔、细颗粒、强酸性的固体酸催化剂,大孔和细颗粒有利于大分子烯烃的扩散,且不容易被长链烯烃聚合形成的胶质堵塞孔道,而强酸性可使催化剂在较低温度下就具有较高的催化活性。实验表明,在反应温度和压力较低的情况下(120℃和0.1~0.2 MPa),烯烃的转化率和二十四烷基苯的选择性都接近100%。Furuta等[12]采用Pd-H3SiW12O40催化乙烯在氧气和水存在下氧化一步合成了乙酸乙酯,简化合成工艺,与绿色化学相适应。刘秉智[13]以活性炭负载磷钼钨杂多酸为催化剂,用30%双氧水催化氧化苯甲醇合成苯甲醛,苯甲醛收率可达74.8%。与国内同类产品的生产工艺相比,其具有催化活性好,反应条件温和,生产成本低廉,催化剂可重复使用,对设备无腐蚀性,不污染环境,是一种优良的新型合成工艺路线,具有一定的工业开发前景。3展望虽然绿色化工催化剂理论发展逐渐得到完善,但大多数催化剂仍停留在实验阶段,催化剂性能不稳定,制备过程复杂,性价比低是制约其工业化应用的主要原因,但从长远角度考虑,采用绿色化工催化剂是实现生产零污染的一个必然趋势。环境友好的负载型杂多酸催化剂既能保持低温高活性、高选择性的优点,又克服了酸催化反应的腐蚀和污染问题,而且能重复使用,体现了环保时代的催化剂发展方向。今后的研究重点应是进一步探明负载型杂多酸的负载机制和催化活性的关系,进一步解决活性成分的溶脱问题,并进行相关的催化机理和动力学研究,为工业化技术提供数据模型,使负载型杂多酸早日实现工业化生产,为石油化工和精细化工等行业创造更大的经济、社会效益。[参考文献][1][2][3][4][5][6][7][8][9][10][11][12][13]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社,1997,170-195.夏恩冬,王鉴,李爽.杂多酸氧化-还原催化应用及研究进展[J].天津化工,2007,21(3):20-23.Aubry C,Chottard G,Bregeault J,et al.Reinvestigationof epoxidation using tungsten-based precursors andhydrogen peroxide in a biphase medium[J].Inorg Chem.,1991,30(23):4 409-4 415.刘志刚,刘植昌,刘耀芳.SiW12杂多酸盐在C4烷基化反应中应用的研究[J].天然气与石油,2005,23(1):17-19.陈诵英,陈蓓,王琴,等.环境友好氧化催化剂杂多酸的应用[J].宁夏大学学报,2001,(2):98-99.刘亚杰,温朗友,吴巍,等.负载型杂多酸催化剂合成二十四烷基苯[J].石油炼制与化工,2002,33(12):18-21.Futura M,Kung H H.Applied Catalysis A:General[J],2000,201:9-11.刘秉智.固载杂多酸催化氧化合成苯甲醛绿色新工艺[J].应用化工,2005,(9):548-549.Anastasp,Will Iamsont.Green Chemistry TheoryandPractice[M].Oxford:Oxford University Press,1998.Trostbm.The atom economy:a search for synthetic effi 2ciency[J].Science,1991,254(5037):1 471-1 477.Misono M,Okuhara T.Chemtech[J],1993,23(11):23-29.Kozhevrukov.Catal Rev-Sei Eng.[J],1995,37(2):311-352.温朗友,闵恩泽.固体杂多酸催化剂研究新进展[J].石油化工,2000,(1):49-55.

前言:农药是农业生产中必不可少的生产资料,又是具有毒物属性的有害化学物质,不合理使用将导致对人体键康和生态环境的危害。随着新世纪的到来,人们对环境质量和食品安全的要求越来越高。由于种种原因,我国当前的农药污染状况不容乐观,某些地方还相当严重。提高全民的环境意识,防治农药污染越来越重要。1.农药的发展概况农药的发展大体经历了三个历史阶段,即天然药物时代(约19世纪7O年代以前)、无机合成农药时代(约19世纪7O年代至2O世纪4O年代中期)和有机合成农药时代。2. 我国化学农药污染的现状我国是一个.农业大国,农药使用品种多、用量人,其中70%~80%的农药直接渗透到环境中,对十壤、地表水、地下水和农产品造成污染,并进一步进入生物链,对所有环境生物和人类健康都具有严重的、长期的和潜在的危害性。我国“预防为主,综合防治”的植保方针确立以来,农作物病虫害防治技术水平取得了较大的成就,但也存在化学农药用量过大,一些地区单纯依赖化学农药治虫防病等突出问题。我国白1983年始限制了有机氯的生产和使用,有机氯对环境的污染状况有了极大的改善,但在原有机氯重污染区,还将出现局部的、间歇性污染。我国化学农药生产企业的规模、设备和技术力量比较落后,化学农药品质还不能令人满意。近十儿年来,化学农约品种虽然发生了较火的变化,开发了不少新品种,但整体上还是以老的传统品种为主体,各类化学农药品种比例不合理、产品显老化、剂型单调。在我国,杀虫剂1 化学农药的70%以上,而其中高毒害杀虫剂有机磷又占70%以上;原约产量达万吨以上的品种有l2个,其中杀虫剂l1个,除草剂1个。农约剂 的开发与国外相比尚有很人的差距,在美国,原约与制剂之比为1:36,也就是说一种农药往往有36种制剂,日本为l:30,而我国仅为l:5,开发的余地很大。3.农药的危害3.1 农药污染对人体健康的危害农药既是重要的农业生产资料,又是对生物体有害作用的化学物质,即具有毒物的属性。农药可经消化道、呼吸道和皮肤三条途径进入人体而引起中毒,其中包括急性中毒、慢性中毒等。由于人们的生活方式不同,有误服、误食、食用不卫生的水果,蔬菜和不注重个人的清洁卫生的情况而引起药物性中毒,而有些农药能溶解在人体的脂肪和汗液中,特别是有机磷农药,可以通过皮肤进入人体,危_害人体的健康。急性中毒多发生于高效农药,尤其是高毒有机磷农药和氨基甲酸农药。这两种农药急性中毒都引起头晕头痛、恶心、呕吐、多汗且无力等:严重则昏迷、抽搐、吐沫、肺水肿、呼吸极度困难、大小便失禁、甚至死亡。慢性中毒是经常连续、吸入或皮肤接触较小量农药;使毒物进入人体后逐渐发生病变和中毒症状。此过程一般发病缓慢,病程较长,症状难于鉴别,也往往被人们忽略。我国除农药研制,生产人员外,因运输、贮藏和使用接触农药的人数达几百万之多,是一个相当庞大的群体。又因农药使用人员的自我保护设施和自我保护意识较差等原因,引起药物中毒,危害生命。3.2 农药对生态环境的污染在科学发展的今天,农药对生态环境的污染尤为严重。这是为什么呢?其中就包括了一个从量变到质变的过程。即可从本底值标准和农药卫生标准或生物标准两方面来理解农药污染。如果污染物的含量超过本底值,并达到一定数值就称为污染。污染物浓度超过卫生标准或生物标准,一般称之为污染或严重污染。这些都危害着人体健康,危害着生物和环境。3.2 .1农药对水环境的污染3.2.1.1 水体中农药的来源途径水体中农药的来源主要是以下几个方面:向水体直接施用农药;含农药的雨水落入水体;植物或土壤粘附的农药,经水冲刷或溶解进入水体;生产农药的工业废水或含有农药的生活污水等都时刻危害着地表水和地下水的水质,不利于水生生物的生存,甚至破坏水生态环境的平衡。3.2.1.2 农药污染对水环境的危害在有机农药大量使用期,世界一些著名河流,如密西西比河、莱茵河等的河水中都检测到严重超标的六六六和滴滴滴。有时为防治蚊子幼虫施敌敌畏,敌百虫和其他杀虫剂于水面;为消灭渠道、水库和湖泊中的杂草而使用水生型除草剂等造成水中的农药浓度过高,大量的鱼和虾类的水生动物死亡。还在一些农药药夜配制点有不少药瓶和其他包装物,降雨后会产生径流污染,施药工具的随意清洁也造成水质污染。3.2.2 农药对土壤的污染3.2.2.1 土壤中农药的来源途径农药进入土壤的途径有三种情况:第一种是农药直接进入土壤包括施用的一些除草剂,防治地下害虫的杀虫剂和拌种剂,后者为了防治线虫和苗期病害与种子一起施入土壤,按此途径这些农药基本上全部进入土壤;第二种是防治病虫害喷撒农田的各类农药。它们的直接目标是虫、草,目的是保护作物,但有相当部分农药落于土壤表面或落于稻田水面而间接进入土壤。第三种是随着大气沉降,灌溉水和植物残体。3.2.2.2 土壤农药对农作物和土壤生物的影响土壤农药对农作物的影响,主要表现在对农作物生长的影响和农作物从土壤中吸收农药而降低农产品质量。农作物吸收土壤农药主要看农药的种类,一般水溶性的农药植物容易吸收,而脂溶性的被土壤强烈吸附的农药植物不易吸收。 在前苏联的实验资料中显示水溶性农药乐果很易被莴苣,燕麦和萝f、等作物吸收,作物与土壤中农药浓度之比为5.3—4.8。植物对乐果的吸收系数是很高的农作物还易从砂质土中吸收农药,而从粘土和有机质中吸收比较困难。蚯蚓是土壤中最重要的无脊椎动物,它对保持土壤的良好结构和提高土壤肥力有着重要意义。但有些高毒农药,比如毒石畏、对硫磷、地虫磷等能在短时期内杀死它。除此之外,农药对土壤微生物的影响是人们关心的又一个农药对微生物总数的影响,对硝化作用、氨化作用、呼吸作用的影响。而对土壤微生物影响较大的是杀菌剂,它们不仅杀灭或仰制了病原微生物,同时也危害了一些有益微生物,如硝化细菌和氨化细菌。随着单位耕地面积农药用量的减少,除草剂和杀虫剂对土壤微生物的影响进一步地消弱,而杀菌剂对土壤微生物的负面作用将会更加地成为我们关注的对象。 3.2.3 农药对大气的污染由于农药污染的地理位置和空间距离的不同,空气中农药的量分布为三个带。第一带是导致农药进入空气的药源带。在这一带的空气中农药的浓度最高,之后由于空气流动,使空气中农药逐渐发生扩散和稀释,并迁离使用带。此外,由于蒸发和挥发作用被处理目标上的和土壤中的农药向空气中扩散。由于这些作用,在与农药施用区相邻的地区形成了第二个空气污染带。在此带中,因扩散作用和空气对流,农药浓度一般低于第一带。但是,在一定气象条件下,气团不能完全混合时局部地区空气中农药浓度亦可偏高。第三带是大气中农药迁移最宽和农药浓度最低的地带。因气象条件和施药方式的不同,此带距离可扩散到离药源数百公里,甚至上千公里远。农药对大气污染的程度还与农药品种、农药剂型和气象条件等因素有关。易挥发性农药,气雾剂和粉剂污染相当严重,长残留农药在大气中的持续时间长。在其他条件相同时,风速起着重大作用,高风速增加农药扩散带的距离和进入其中的农药量。化学农药的大量使用不但造成了土壤、大气和水资源的污染,同时,在动、植物体产生了化学农药的残留、富集和致死效应,已经成为破坏生态环境、生物多样性和农业持续发展的一个重大问题,应当给予充分的重视。而如何解决这一问题也成为了人们关注的焦点。笔者认为,在农业生产中,应该充分发挥农田生态系统中业已存在的害虫自然控制机制,综合运用农业防治、物理机械防治、生物防治和其他有效的生态防治手段,尽可能地减少化学农药的使用。4.农药污染的特点化学农药对环境的污染主要是毒化大气、水系和土壤,造成对自然的污染,影响生活在自然界中的各种生物, 引起生物相的改变,敏感种的减少与消失,污染种的增多与加强。4.1 化学农药对生物的直接毒害化学农药人致分为三类,即杀虫剂、杀菌剂和除草剂。杀虫剂是非特效毒药,不是只对一种目标害虫,而是对所有的生命都有毒性,对人类的危害最大。现在全世界每年冈杀虫剂中毒者近百万人、死亡者数万人。有一些化学农药虽然急性毒性较低,但在施用后对环境具有严重的潜在危害,有较高的慢性或“三致”毒性, 即最终可能导致动物的致畸、致癌,甚至还可能损害生物体的遗传机制,引起基冈突变。4.2 化学农药的“3R”问题一是农药的不断使用,导致害虫抗药性增强,化学农药的使用逐渐失去了它正常的防治效果,从而只有通过不断加大农药的使用量和使用次数来达到除害的目的,这就加剧了化学农药对环境的影响:二是由于目前使用的杀虫剂,大多数还缺乏选择性,在杀死害虫的同时往往也将它们的天敌杀死或杀伤,因而造成害虫再猖獗为害及次要害虫上升为害;三是化学农药使用后会以各种形式残留在农作物和其它环境要素(土壤、农产品、地下水等)中,有了残留,也就有了生物富集问题。由于生物富集和食物链传递,积少成多,积低毒成高毒,从而对人体健康造成极大的潜在威胁。5 实施持续植保,控制农药污染尽管我国实施“预防为主,综合防治”的植保方针以来,在病虫害防治上取得了一定的成效,但控制化学农药对环境污染的任务仍相当艰巨,我们必需实施持续植保,使植保 作的功能兼顾持续增产、人畜安全、环境保护、生态平衡等多方面的要求,针对整个农田生态系统,研究生态种群动态和相关联的环境,采 L}j尽可能相互协调的有效防治措施,充分发挥白然抑制因素的作用,将有害生物种群控制在经济损害水平下,使防治措施对农田生态系统的不良影响减少剑最低限度,以获得最佳的经济、生态;flI社会效益。5.1 建立有害生物防治新思想体系生物防治是综合治理的重要组成部分,是利用生物防治作用物(天敌昆虫和昆虫病原微生物)来调节有害生物的种群密度,通过生物防治维持生态系统中的生物多样性, 以生物多样性来保护生物,使虫口密度能持续地保持在经济所允许的受害水平以下。传统有害生物控制主要是通过抗病、虫品种植物检疫,耕作栽培制度以及物理化学防治等措施。从持续农业观念看,有害生物防治应在更高一级水平上实现,其中包括转抗病、虫基因植物的利川,病、虫、草害生态控制,生物抗药性的利用等。将克隆到的抗病、虫基因通过生物 [程手段转移至优良品种基因组内以获得高抗病、虫优良新品种的_J:作是近二十年来各国学者抗病、虫育种的热点,目前已取得重大突破。如通过转移苏云金芽孢杆菌的Bt基因已成功地获得高效抗虫棉,抗虫水稻和抗虫大白菜,其中抗虫棉已在生产上推陈出新广泛应用。中国科学院微生物研究所成功地将Bt基因转移至杨树中,获得的抗虫杨树已进入大田试验阶段。农作物、有害生物和环境是一个相互依赖、相互竞争的统一体,通过改善生态环境,比如轮作休闲、作物布局、耕作制度、栽培管理等都可以调=农作物的生长发育,控制有害生物发生危害。近几年来,转抗除草剂基因作物的培育和利用已成为育种和植保作的重点之一,目前已获得抗草甘膦、草胺膦的玉米、大豆、油菜、棉花以及抗草胺膦烟草 1水稻等多种抗除草剂作物,使得一些选择性不高的除草剂得以广泛使用,有效地控制杂草群落的演替。5.2 大力发展植物源农药. 植物源农药具有在环境中生物降解快,对人畜及非靶保护 生物毒性低,虫害不易产生抗性,成本低,易得等优点,尤其是热带植物中含有极具应用前景的植物源害虫防治剂活性成分尚待开发,现已发现楝科中至少有l0个属的植物对 虫有杀灭活性,因此是潜在的化学合成农药的替代物。在克服害虫的抗约性及减少环境污染方面,植物源农药具有独特的优势,近几年来国内植物性农药产品的开发发展很快,先后有鱼藤精、硫酸烟碱、油酸烟碱、苦参素、川I楝制剂等小规模工业化生产。5.3 研究开发有害生物监测新技术要在植物病原体常规监测方法中的孢子捕捉、诱饵植株利用、血清学鉴定基础上开展病原物分子监测技术的研究,采用现代分子生物学技术监测病原物的种、小种的遗传组成的消长变化规律,为病害长期、超长期预测提供基础资料。对害虫的监测也可利用现代遗传标记技术(RFLP’RAPD等)监测害虫种群迁移规律。对于杂草应充分考虑到杂草群落演替规律,分析农作物—— 杂草、杂草——杂草间的竞争关系,另外还应考虑使用选择性除草剂给杂草群落造成的影响,对杂草的生态控制进行研究。5.4 建立有害生物的超长期预测和宏观控制为适应农业的可持续性发展,预测、预报应对有害生物的消长变化作出科学的判断,也就是要对有害生物消长动态实施数年乃至十年的超长期预测。要在更人的时空尺度内进行,其理论依据不单单只是与有害生物种群消长密切相关的气候因子,亦包括种植结构、环保要求、植保政策以及国家为实现农业生产持久稳定发展所制定的政策措施。5.5 建立控制有害生物的长期性和反复性思想自有人类栽培农作物历史以来,植物病、虫、草害无时无刻不制约着农产品的产量和品质,而品种抗病性的丧失、有害生物抗药性的产生、有害生物演替规律难以预料, 以及病虫防治要求作物遗传多样化和生产栽培、商贸加 要求的品种单一化的矛盾等技术问题一直未能解决,同时一部分已被控制的有害生物在放松防治或环境条件改变后又会回升,如大豆灰斑病从20世纪60,-~90年代的四次大流行,60年代火面积发生的小麦腥黑穗病,90年代又造成巨大危害,80年代初期狷獗一时的草地螟,在1998年和1999年春夏季再度发生。交替变化的趋势的事实都说明了植物病、虫、草害防治:[作的长期性和反复性,因此植保工作要适应农业生产条件、生态环境、环保要求等的改变而变化,要树立持续的思想,在新形势下控制有害生物的危害。同时逐步建立科学完善的与持续农业发展方向相适应的植保技术支持体系和稳定的植保科技队伍,为在更高水平上保证农业生产持续、健康、稳定的发展做贡献。

应试教育你们骂考试,现在不需要考试要你自己查查资料写写论文,你们又不好好写!

固体制剂处方工艺研究论文

在固体剂型的制备过程中,首先将药物进行粉碎与过筛后才能加工成各种剂型。如与其他组分均匀混合后直接分装,可获得散剂;如将混合均匀的物料进行造粒、干燥后分装,即可得到颗粒剂;如将制备的颗粒压缩成形,可制备成片剂;如将混合的粉末或颗粒分装入胶囊中,可制备成胶囊剂等。对于固体制剂来说物料的混合度、流动性、充填性显得非常重要,如粉碎、过筛、混合是保证药物的含量均匀度的主要单元操作,几乎所有的固体制剂都要经历。固体物料的良好流动性、充填性可以保证产品的准确剂量,制粒或助流剂的加入是改善流动性、充填性的主要措施之一。可以用如下图示表示药物→粉碎→过筛→混合→造粒→压片 散剂 颗粒剂 片剂

典型的湿法制粒工艺固体制剂一般包含下列步骤:(都是固体制剂最基本的英文,不懂的发消息给我)WeighingMillingPre-mixingWet granulationWet millingDrying ( tray drying/ fluid bed drying )Dry millingBlendingLubricate/Final Blending Compression/encapsulationCoatingpackaging

固体制剂处方工艺研究的论文

溶出度检查一、概况早在几十年前就有人指出,药物在体内吸收速度常常由溶解的快慢而决定,固体制剂中的药物在被吸收前,必须经过崩解和溶解然后转为溶液的过程,如果药物不易从制剂中释放出来或药物的溶解速度极为缓慢,则该制剂中药物的吸收速度或程度就有可能存在问题,另一方面,某些药理作用剧烈,安全指数小,吸收迅速的药物如果溶出速度太快,可能产生明显的不良反应,维持药效的时间也将缩短,在这种情况下,制剂中药物的溶出速率应予以控制。依靠崩解时限检查作为所有片剂、胶囊在体内吸收的评定标准显示然是不够完善的,因为药物溶解后通过崩解仪筛网粒径常在1.6-2.0mm之间,而药物需呈溶液状态才能被机体吸收,其粒子大小以A来计算,所以崩解仅仅是药物溶出的最初阶段,而后面的继续分散和溶解过程,崩解时限检查是无法控制的,且固体制剂的崩解还要受到处方设计,制剂制备,贮存过程及体内许多复杂因素的影响,所以崩解时限检查不能客观反映药物与赋形剂之间的关系和影响,而溶出度检查却包括了崩解及溶解过程,因此研究溶出度就有更重要的意义。过去认为只有难溶性药物才有溶出度的问题,但近年来研究证明,易溶性药物也会因制剂的配方和工艺不同而致药物溶出度有很大差异,从而影响药物生物利用度和疗效,在USP中规定测定溶出度的制剂有相当数量是易溶性药物。大多数口服固体制剂在给药后必须经吸收进入血液循环,达到一定血药浓度后方能奏效,从而药物从制剂内释放出并溶解于体液是被吸收的前提,这一过程在生物药剂学中称作溶出,而溶出的速度和程度称溶出度,从药品检验的角度上讲,溶出度系指药物从片剂或胶囊等固体制剂在规定的溶剂中溶出的速度和程度。国外药典从70年代就相继收载了溶出检查法,我国在1985年版药典中正式收载了溶出度检查,这些年来,各国药典收载溶出度检查的品种呈上升趋势,药典规定溶出度检查是为了用药安全有效,起着评价固体制剂质量和疗效的作用。二、与生物利用度的关系溶出度是评价药物质量的一个内在指标,是一种模拟口服固定制剂在胃肠道中崩解和溶出的体外试验法,溶出度已经成为评价固体制剂生物利用度的体外方法,溶出度作为制剂质量控制的一种手段,其目的是使不同厂家生产的同一品种或同一厂家生产的不同批号的药品能达到一定程度上的生物等价,该试验能有效地区分同一种药物生物利用度的差异。生物利用度是人或动物服药后通过血或尿中药物浓度的测定来反映药物制剂在体内可能被吸收利用的程度进而推断疗效,从理论上讲,药物的体内试验和临床研究才是评价制剂的最根本和最可靠的依据,这是因为药物最终是用于人体的,但因生物利用度实验工作量极大,经济上消费高,而从药物生产的质量控制观点来看,不可能都用费时、费钱、费精力的测生物利用度的方法对每个样品进行体内试验来筛选评定。只能借助于体外溶出度试验的方法来检验和控制产品质量,现在的药剂水平尚达不到溶出度试验结果与体内完全一致,而只能有一定相关性,溶出度虽非必然与体内生物利用度相关,但多数情况下是相关的,也有报导药物的溶出速率等于或低于药物在体内生物利用度相关,但多数情况下是相关的,也有报导药物的溶出速率等于或低于药物在体内的吸收速率时,溶出速率成为限速因素,此时药物的溶出与生物利用度二者方可出现一定的相关性,溶出试验被看作是介于生物等效性和药品质量控制二者之间一项较为有力的措施,它是以体外实验法代替动物实验的一种方法,溶出度与生物利用度显示密切相关,而溶出度的体外实验较生物利用度简单易行,作为一个质量控制的指标,仍不失为一个经济有效的手段,这也是各药典收载这一检验项目的意图之一。从体外溶出度试验与体内吸收相关关系方面来寻找评价固体制剂的方法,只有选出一种较合适的体外溶出试验方法才有可能进一步求得体内外相关关系。溶出度与生物利用度时的相关性计算公式可参考有关文献。三、应用与发展溶出度的应用是比较广泛的,如检验上,执行法定标准,生产中,贯彻文明生产的要求,临床上,考察疗效及检验药品的稳定性,研究方面,新药的研制,处方筛选,工艺改进,等等。总之,溶出度检查能比较客观地反映固体制剂的内在质量,它已经发展成为制药工业必需的质量控制项目之一,是评价制剂和工艺的一种手段,也成为评价是否影响制剂活性成分的生物利用度和制剂均匀度的一种有效标准。95年版药典收载了小杯法,用于小剂量固体制剂的溶出度检查,国外药典还收载有流池法,近来还有光纤化学传感器在位监测溶出度的指导。四、溶出度仪的较正溶出度试验结果在很大程度上取决于仪器性能是否符合要求,人员的操作是否规范、熟练,为了做到测定数据有良好的重现性,除要求仪器的各个部位及安装检查符合规定外,还要用校正片来校正仪器,USP规定用二种校正片,有人经实验证明二种校正片对实验条件的变化均产生不同程度的影响,崩解型校正片比非崩解型校正片溶出度结果变化更为明显,由于我国药典对校正过程未做具体要求,且仪器之间性能上有差异,加上操作者的熟练程度不一从而使得同一批号校正片在不同仪器上所测得的结果有很大差异,所以校正不是使仪器及操作正规化的唯一可靠手段,但由于目前还没有良好的方法校正仪器和操作技术,所以使用校正片目前仍是一种较适宜的方法。五、计算影响药物溶出度的因素是多方面的,简述如下:①仪器的性能及操作水平,如介质除气程度,液体温度,仪器震动情况,搅拌速度,取样点位置,过滤的快慢,药物在杯中或转蓝中的位置等等,②药物本身的因素,如溶解度,药物的表面积,药物的结构与晶型,③制剂方面的因素,如剂型,处方,辅料工艺,药物相互作用,表面活性剂制剂崩解或主药释放后,微粒细度及总面积大小等。崩解度合格的同一制剂不同厂家的产品,药物溶出度与临床疗效却千差万别,除产品质量不稳定外,还与原、辅料,处方工艺,生产场所,人员素质,贮存不当有关。改善溶出度主要依靠提高崩解度或释放度,但在现阶段,不能制备出具有高崩解特性的产品仍是口服固体制剂广泛存在的大难题。药物制剂发展制剂可分为四代,第一代为一般制剂或常规制剂,在崩解度试验水平,第二代一般为长效缓慢制剂或肠溶制剂,在溶出度试验水平,第三代为精密的控释制剂,药物输送系统,透皮吸收治疗系统,第四代为靶向制剂。近年来,药物制剂研究向着“三效”(高效、速效、长效)和“三小”(毒性、副作用、剂量)方向发展。国外对溶出理论,溶出影响因素及其机理研究较重视,从配方到技术做了大量工作,对亲水性辅料,表面活性剂及其他辅料对具体片剂崩解和药物溶出的影响及其机理做了深入研究,对制剂工艺,溶出机理作了溶入观察,其结果对指导处方和工艺设计都有指导意义。从85年我国药典收载溶出度检查及新药审批办法公布以来,我国的药物制剂工艺有了长足的发展,主要反映在辅料、剂型、工艺上。采用新辅料不仅可以改变药物制剂外观,也可以改善溶出度,有关这方面指导较多,不一一列举,近几年来控释、缓释制剂发展较快,有微孔膜包衣,肠溶核心型片,多层控释片,胃内膨胀给药系统等多种类型,对控释、缓释制剂的评价除传统的AUC、Tmax,Cmax外,还有缓释时间指数,有效血浓维持时间,美国控制剂专业会议对口服控释制剂的体外实验做了具体规定,有报导用多聚物或无毒塑料制成骨架片以达到缓释要求,但应注意,不同溶解度的药物从骨架片中溶出的机理不同,近年来固体分散研究领域不断发展,它不仅可以增加药物溶出度,提高生物利用度,还可能制备速、缓释产品,其技术已为越来越多的人们所重视。缓释制剂的溶出度有三种类型,保证药物的缓释作用是控制药品质量的重要五一节。新剂型如分散片、口服速溶制剂的崩解溶出速度均得到很大改观,新剂型的开发和发展需要先进的理论指导,尤其是靶向给药系统发展,要求把制剂型研究工作摧向新的高度,迫切需要从分子水平来探讨制剂问题,90年代国内外的药物制剂有了新发展,产生了令人瞩目的社会效益和经济效益。总而言之,药品质量标准的提高,促进了药物制剂的发展,试想药典如未收载溶出度检查,那么广大患者服用的将仍是难溶出的,生物利用度低的药物,近10多年来,我国的药物制剂水平大有提高,但应该认识到我国的工业药剂学和生物药剂学其及实践与国外先进国家相比还有很大差距,有些领域还是空白,药物工作者任重而道远

本指导原则是根据国内药物研发实际状况,在参考国内外有关制剂研究的技术指导原则的基础上,考虑到目前制剂研究中容易被忽视的关键问题进行制订的。

气泡式雾化研究现状分析论文

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put forward.Key words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 5.3SiCP/2124Al 粉末冶金20 552 103 7.0SiCP/6061Al 粉末冶金20 496 103 5.5SiCP/7090Al 粉末冶金20 724 103 2.5SiCP/6061Al 粉末冶金40 441 125 0.7SiCP/7091Al 粉末冶金15 689 97 5.0SiCP/A356Al 搅拌铸造20 350 98 0.5SiCP/A359Al 无压浸渗30 382 125 0.4表1 碳化硅颗粒增强铝基复合材料的力学性能[1]Tab.1 Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域3.1 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为0.3m,仅重4.54kg。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。3.2 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。3.3 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。4.1 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 2.3SiCp /ZL101 20 375 101 1.64SiCp /ZL101A 20 330 100 0.5SiCp /6061 25 517 114 4.5SiCp /2124 25 565 114 5.6Al2O3 /Al-1.5Mg 20 226 95 5.9Cf /Al 26 387 112 -表2 金属基复合材料的力学性能[1]Tab.2 Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。4.2 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。4.3 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。4.4 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。5.1 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。5.2 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。5.4 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. Mater.Process.Tech.,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

  • 索引序列
  • 气雾剂处方研究论文
  • 环保化气雾剂的研究及应用论文
  • 固体制剂处方工艺研究论文
  • 固体制剂处方工艺研究的论文
  • 气泡式雾化研究现状分析论文
  • 返回顶部