首页 > 学术发表知识库 > 新型高效干燥器特性参数研究论文

新型高效干燥器特性参数研究论文

发布时间:

新型高效干燥器特性参数研究论文

说明中文:喷雾干燥机英文:spray dryer[4]?连续式常压干燥器的一种。用特殊设备将液料喷成雾状,使其与热空气接触而被干燥。用于干燥有些热敏性的液体、悬浮液和粘滞液体,如牛奶、蛋、单宁和药物等。也用于干燥染料、中间体、肥皂粉和无机盐等。喷雾干燥机专为大专院校、科研院所、制药厂、从事医药(中药、西药、生物制药)食品、化工等科研部门在从事小试研究而设计的小型高效喷雾干燥机,干燥过程中低噪音、干燥速度快,液体受热温度较低,操作过程简单,方便,特别适用热敏性物料的干燥。仍保持原有的色泽、香味,具有良好的分散性,流动性和溶解性。溶剂可直接得到均匀干粉,省工、省力、卫生。特点优点:1、干燥进行迅速(一般不超过30秒钟),虽然干燥介质的温度相当高,但物料不致发生过热现象;2.、干物料已经呈粉末状态,可以直接包装为成品;缺点:1、容积干燥强度小,干燥室所需的尺寸大;2、.要将液料喷成雾状,消耗动力较大。根据液料喷雾的方法有离心喷雾(式)干燥器(centrifugal-type spray dryer)、机械喷雾(式)干燥器(nozzle-type spray dryer)和气流喷雾(式)干燥器(pneumatic-type spray dryer)。技术参数水分蒸发量: ≥2000mL/h排 风 量: 0.5-1.0m3/min送液流量: 0-40mL/min电 源: Ac380V 4.0kw温度调节: 40℃-200℃环境温度: 20℃-35℃喷雾压力: 0.2-0.5Mpa外形尺寸: 650×600×1350mm加热搅拌: 0-100℃ 0-2000n/min注:易燃易爆物品禁用适用范围化工:有机催化剂,树脂,合成洗衣粉,油脂类,硫铵,染料,染料中间体,白碳黑,石墨,磷铵等。食品:氨基酸及类似物,调味料,蛋白质,淀粉,乳制品,咖啡抽取物,鱼粉,肉精等。制药:中成药,农药,抗生素,医药冲剂等。陶瓷:氧化镁,瓷土,各种金属氧化物,白云石等。备注:1.蒸发量与物料特性相关,本表蒸发量与温度等数据仅供参考。2.雾化压力和泵的型号参照物料处理量、产品粒径要求配备。3.风机功率在配套布袋除尘器后有所增加。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

空气能热泵烘干机是一种在多种多样的领域都有使用的电器,主要的功能就是用来烘干,空气能热泵烘干机的外形像一个小房子,实际的空气能热泵烘干机的大小以及形状一般是根据实际来订做的。这种电器是环保的电器,空气能热泵烘干机的热量的主要的来源是空气中的热量。下面小编就来给大家介绍一下空气能热泵烘干机的工作原理,以及空气能热泵烘干机的价格。

空气能热泵烘干机的工作原理

利用逆卡诺原理,气体氟利昂被压缩机加压,成为高温高压气体(温度高达100℃),进入室内侧的换热器(冷凝器),冷媒冷凝液化释放出高温热量加热烘干房内空气。烘干房内的物料通过热风的形式使物料中的水分汽化蒸发,蒸发出来的水蒸汽由排湿系统排走而达到烘干物料的目的。冷凝放热后的冷媒经过节流阀变为低温低压的液体,由于压力骤然降低,液态的冷媒进入蒸发器会源源不断吸收周边空气的低位热能迅速蒸发变成气态,吸收了一定能量的冷媒回流到压缩机,进入下一个循环。这样,冷媒不断地循环就实现将空气中的热量搬运到烘干房内加热房内空气温度。

空气能热泵烘干机的机组特点

空气能热泵烘干机是一种新型的干燥装置。热泵吸收干燥器废气中的低温热能,将热能温度提升后,在用来加热进入干燥器的干燥介质,并同时将干燥器废气中的水分降温凝结为液态水排出。与常规烘干机设备相比,热泵干燥装置具有如下几个突出的优点:

①节能。高温热泵烘干机的能源消耗比普通烘干机可降低40%以上。

②低温。易于在常压下实现0-100℃的低温干燥,可获得高的干燥产品质量。

③安全。便于用惰性干燥介质全封闭循环对易燃易爆产品、易氧化变质产品进行安全干燥。

④环保。干燥时可不向外界环境排放粉尘、异味,并可回收产品中的香气成分、溶剂等。

因此,高温热泵烘干机可为诸多物料的低成本、高质量干燥提供一种全新的解决方案,具有很强的市场竞争力。在当前节约能源和保护环境日益受到重视,用户对物料干燥质量要求越来越高的大环境下,热泵烘干机这一既省钱又节能高效、干燥质量好的新型干燥装置获得了极好的发展机遇。

空气能热泵烘干机的日常维护

①.每天开机前检查电源线是否上紧,电压是否稳定。

②.每天清洗回风过滤网,清理集尘箱内的绒絮,保证良好的通风,使设备发挥最佳的烘干效果。

③.烘干机正常开启后30分钟内检测(高、中、低)的各个运行压力是否符合正常范围。

高温热泵烘干机的月维护保养

①.打开后箱盖,使用柔软棉布清洁设备内部的所有器件。

②.对烘干机的翅片换热器进行全面清洁,确保机组的换热效果达到最佳。

③.对风扇轴承等运动件加注合适的润滑油,以减少摩擦。

④.检查皮带张紧力,适当调整皮带轮,使其处于最佳工作状态。

⑤.对震动后容易造成松动和脱落的部位,包括电气线路、门的摇臂、管道连接处等进行坚固。

高温热泵烘干机的年度维修保养

①.检查机座的固定螺栓是否松动并坚固。

②.检查支承弹簧连接松紧情况并时行调整。

③.检查设备的接地情况并保证可靠。

④.检查电脑板的控制、风轮、热交换器的灵活程度。

⑤.对设备上温度表等仪表送当地技术监督局计量。

空气能热泵烘干机的价格

空气能热泵烘干机的价格是15888元到68888元。(价格来源网络,仅供参考。)

上文中小编给大家介绍了一下空气能热泵烘干机的市场价格是多少,以及在日常使用的过程中要怎么样对空气能热泵烘干机进行维护工作,还有空气能热泵烘干机使用的工作原理是什么。空气能是一种很值得在电器中推广以及使用的技术,这个技术的节能性以及环保性都是很突出的,利用空气能的空气能热泵烘干机也是非常的环保的电器。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【https://www.to8to.com/yezhu/zxbj-cszy.php?to8to_from=seo_zhidao_m_jiare&wb】,就能免费领取哦~

流化床干燥按照被干燥物料,可分为三类:(1)适用于粒状物料;(2)适用于膏状物料;(3)适用于悬浮液和溶液等具有流动性的物料。按操作条件不同,可分为两类:连续式和间歇式。按结构状态,可分为一般流化型、搅拌流化型、振动流化型、脉冲流化型、碰撞流化型。工作原理:散粒状固体物料由加料器加入流化床干燥器中,过滤后的洁净空气加热后由鼓风机送入流化床底部经分布板与固体物料接触,形成流化态达到气固的热质交换。物料干燥后由排料口排出,废气由沸腾床顶部排出经旋风除尘器组和布袋除尘器回收固体粉料后排空蒸气、电、热风炉均可配用(按用户要求配套)。特点:可实行自动化生产,是连续式干燥设备。干燥速度快,温度低,能保证生产质量,符合药品生产GMP要求。

木材干燥特性研究论文

由于竹材本身各向异性的特点及其固有的节间组织,如干燥不好势必造成开裂等各种缺陷现象发生。因此,为使竹材资源得以合理高效利用,积极开展竹材的基础理论研究和应用研究十分必要和重要。 1 竹材干燥特性和吸湿膨胀特性 竹材干燥特性主要是指竹材干燥过程中的水分移动特性、干缩变形情况、干燥缺陷及其形成原因、竹材构造特性对干燥的影响、竹材内含物对干燥的影响等。Walter Liese[3~6]研究了竹材的生物学特性和利用特性(化学、物理和力学)。研究结果表明:竹材干燥不同于木材干燥,竹材一开始干燥即发生收缩,含水率达40%时停止收缩,40%,以下时也可能继续收缩,但主要在径向。王建和[7]测定了竹材胶合板用竹片(毛竹)胀缩的变化规律:径向大于弦向大于纵向;有竹节处大于无竹节处;竹片含水率和密度相关,且随竹龄和立地条件不同呈较大差异;竹片宜采用热风气流循环干燥,以保持其平整。由于温度和湿度随自然环境而变化,所以一般情况下很难保持竹秆的含水率稳定。 K T wu[8]对孟宗竹圆竹高温干燥下的抗裂特性的影响因素进行了研究,结果显示:温度对圆竹的抗裂性能影响显著。许斌[]采用端部加压压注法,使毛竹在高含水率状态下,压注进水溶性无机盐、高分子化合物以及防虫剂等,对竹材进行了防裂和防虫处理,结果表明:该种处理对圆竹防裂有一定效果。 孙照斌等[10]对云南典型的材用丛生竹——龙竹(Dendrocalamus giganteus)的干燥特性进行了研究,比较了100℃和60℃2种温度下竹材干燥速度、干缩率、变形情况以及竹材在纵向、径向、弦向3个方向上干燥速度的大小。结果表明:高温干燥较低温干燥速度快,但竹材干缩率较大,变形较大;竹材无节部位径向干缩率大于弦向干缩率;竹材节子部位径向干缩率小于弦向干缩率;相同方向上,节子部位干缩率小于无节部位干缩率;无节试件在单位时间内纵向干燥速度较弦向和径向快,而有节试件在单位时间内径向干燥速度较纵向和弦向快。 竹材吸湿膨胀特性主要是指竹材从周围湿空气中吸着水分并产生膨胀的特性。竹材吸湿性会导致竹材尺寸不稳定,还可能伴随着变形,影响竹材的利用。周芳纯[11]在其论著中对36种竹材的吸水膨胀特性进行了阐述。竹材的吸水速度与公定容积重成正比,与浸水时间成反比。竹材吸水后,长度、宽度、厚度和体积都会产生膨胀,其膨胀率与吸水量有密切关系。烘干后再浸水的竹材的膨胀率比气干的竹材低,膨胀速度也较慢。有关竹材吸湿膨胀特性的研究目前报道较少。 2 竹材干燥方法和干燥T艺 竹材干燥通常采用自然干燥法和窑干法。 王连钧[12]经试验认为,竹黄干燥温度在105℃以内为宜。杜复元等[13]报道了机制竹凉席生产中竹篾条的干燥工艺,并对几种专用干燥室进行了比较,结论是:竹篾条可以实现高温(80℃)快速干燥,采用连续升温、分段加大热风风量的干燥基准,终含水率达到8.0%时,干燥周期为14 h。 张齐生[14]在对竹集成材和竹地板生产工艺的论述中,阐述了竹片干燥的工艺:竹片经过蒸煮或炭化后,其含水率一般较为接近,可达35%~50%,,由于竹片纤维排列整齐,厚度较小,在对流干燥过程中不会产生像木材那样的扭曲变形和开裂现象。因此竹材干燥工艺比木材干燥要简单得多,既不需要喷蒸加湿,也不需要用复杂的温度曲线来控制。一般采用60~70℃左右的温度连续干燥72~84 h,含水率即可以达到10%以内。但不宜采用超过70℃的温度,否则竹片会因干燥速度过快而产生翘曲变形。定型干燥采用热压法,竹片在适当的压力条件下进行加温和排湿,并间歇地使压力解除,让竹片排湿和自由收缩,以加快竹片的水分蒸发和防止由于干缩应力而产生的横向开裂。

研究微波干燥的木材特性片 含水率的变化(MC)和干燥速度特性的影响,木头片,微波功率和薄片形式变化特性进行了研究与干燥速度 实验与常规微波干燥烘箱烘干和组合,空气干燥的空气干燥炉、微波处理。每单元(UEC能耗计算),在微波干燥。以下的结果:微波干燥保存大约80%的时间被空气炉烘干。干燥特性均有显著影响,即微波功率。越大,微波功率, 干燥速度越快,越短时间消耗。木头片的形式在微波干燥速率的影响,更大的表面积,更明显的变化,这种速度theMC干燥速度。对于能源效率、最优率的微波功率输出和样品质量 4 ~ 7W / g之间。微波干燥会造成损坏木头薄片中集中精力在themicrowave制造领域。结合微波预处理airoven烘干才能避免损伤中微波干燥过程,实现最小targetMC。相对于传统的空气烤箱 干燥的空气干燥炉前用微波可节省约70%的干燥时间。

超低密度植物纤维材料尺寸稳定性的研究 摘 要:具有“桁架”网状结构的超低密度植物纤维材料在干燥过程中存在外形尺寸收缩的问题,当干燥温度小于100℃时,收缩量与温度之间呈正相关性,最大收缩量可超过5%;当温度大于100℃时,材料内部出现分层的现象。材料置于模具中进行干燥可以消除水平方向的收缩,但高度的收缩率大于无模具干燥的情况。关键词:尺寸稳定性 低密度 温度 成型 干燥Study on dimension stability of low-density mat made from plant fiberXie Yongqun Yang WenbinAbstract: low density mat made from plant fiber have a reticular structure. It’s dimension is reduced in drying process. Under 100℃ tempreture, shrink has a direct proportion with tempreture, maximal is more then 5%. when thempreture higher then 100℃, interstice is keep in the mat. When mat be dryed in form mould, this shrink almost is not keep on the horizon plan, but is carried out more vertical dimension decrease then in case without form mould. Key words: dimension stability, low density, tempreture, form mould, drying 低密度植物纤维材料一直是人们关注的重要问题,在纤维板、刨花板等人造板的研究中不断有相关的研究成果推出。但由于当前的包括人造板、纸板和纸等植物纤维产品的生产工艺主要依靠压力和温度两个参数[1,2],因此密度一般高于0.3g/cm3,试图取得更低密度的材料是十分困难的事情。为克服这一困难,研究人员采取了在人造板中添加发泡塑料等低密度材料;采取大片刨花,并同时辅以降低热压压力提高热压温度等措施降低其密度;利用宏观结构的构建,制造蜂窝纸板和瓦楞纸板等广义的低密度材料[3-8]。利用液体发泡原理构筑桁架结构(如图1)[9],可以避开由于使用温度、压力制造工艺带来的困扰,为超低密度材料的生产寻找出一条新路。依照液体发泡原理构筑桁架结构的理论,水是其重要的中间介质[10]。水分子在被帚化的植物纤维端部间构成水桥,使纤维在泡沫溶液中其端部得以接近并连接[11]。当含水坯料被干燥后,水分被逐渐去除,使纤维端部的氢键实现联接(如图2)。水分逐渐去除的过程也是纤维端部接近的过程,其宏观表现为坯料在干燥过程的尺寸收缩。不同的干燥工艺,其产生的收缩率和收缩方向存在着明显的差异,对材料形成的产品外观和性能有直接的影响。1 实验材料及设备1.1 主要原料 南平造纸厂硫酸盐化学木浆、福建将乐森绒绒毛浆厂杉木绒毛浆、福建福人木业有限公司中密度纤维板用纤维(松阔比3:7);萜烯类起泡剂、非离子型烷基表面活性剂、FPC复合胶(自制)。1.2 主要设备: ZSP300高浓盘磨、ZD-2自动电位滴定计、NDJ-9S数字粘度计、7312—I搅拌机、5l定量箱(自制)、成型箱(240×120×60) 、通用干燥箱。 样品参数: 坯料含水率:830~910%(干基)、坯料尺寸:240×120×60mm。 测试方法:将坯料放入干燥箱干燥至恒重(时间6小时),取出测量各边的尺寸变化。2 实验结果与分析2.1 温度对尺寸变化的影响2.1.1 无模具干燥 无模具干燥是将经过静置,在重力脱水过程结束后,将成型坯料从模具中脱出并放入干燥箱进行干燥,分别设定干燥温度为60℃、70℃、80℃、90℃、100℃、110℃、120℃七个干燥温度值,干燥至恒重,干燥时间分别为:7小时、6.5小时、6小时、5.5小时、5.5小时、5.5小时、5.5小时。图4为样品图,图5为样品各尺寸的收缩率曲线。2.1.2 带模具干燥 带模具干燥是指坯料在模具内静置,使重力脱水过程结束,坯料随模具一道进入干燥箱。分别设定干燥温度为60℃、70℃、80℃、90℃、100℃、110℃、120℃七个干燥温度值,干燥至恒重,干燥时间分别为:7小时、6.5小时、6小时、5.5小时、5.5小时、5.5小时、5.5小时。图6为样品图,图7为样品各尺寸的收缩率曲线。2.2 实验结果讨论: 1) 无模具干燥情况下,坯料上部品面自由平面和厚度均产生收缩,收缩程度与干燥温度有关。在实验温度范围内,坯料上部自由平面的收缩程度随温度的升高而增大,其边长收缩为:60℃时1.19%、100℃时4.83%、120℃时达到了5.82%;在高度尺寸上的尺寸收缩则表现为现加大后减少的情况:60℃时为3.52%,100℃时达到5.22%,120℃时则0.4%。而下部尺寸则出现了增大的情况,增大幅度的最大值出现在温度相对较低的70、80℃时,分别为1.12%和1.05%。 2) 坯料随同模具干燥的情况下,坯料上下面在模具中基本保持原有尺寸,从模具中取出后的测量值表明一些无规律的尺寸变化。高度方向的尺寸变化规律与无模具状况呈相同趋势,即:在高度尺寸上的尺寸收缩则表现为现加大后减少的情况,但收缩值更大:60℃时为4.09%,100℃时达到5.63%,120℃时则2.11%。干燥后的坯料总体形状保持良好,其上部表面随高度变化呈水平平行下降。3 结果分析与结论 超低密度纤维材料在干燥过程中,其外形尺寸会产生收缩。各部分尺寸变化原因分析为: 1) 无模具状态下,底部尺寸的扩张是由于坯料在高含水率情况下呈现出一定的流动特性,使其在干燥前受重力作用作用产生流变,导致底部向外扩长,使底部尺寸加大。 2) 各表面尺寸在无约束情况下,在干燥过程中产生收缩,是由于在干燥过程中,由于水分的减少,作用于纤维间的水桥拉近了纤维间的距离,当水分完全消失时,纤维实现联接,这一过程宏观上表现为坯料上边和厚度的收缩,而底部由于它与固体界面的接触阻碍了收缩过程的进行。利用模具作为容器和坯料一同干燥可以解决这重力影响产生的流变问题。参考文献[1] 华毓坤主编.人造板工艺学[M], 北京:中国林业出版社,2002年10月[2] 阿伦,马岩. 微米长薄片状木纤维低密度人造板的开发及应用前景[J],木材加工机械.2006.5[3] 马岩. 微米木纤维低密度轻质板制造技术探讨[J],木材工业 , 2006,(04) [4] 谢力生,陈志喜.干法低密度纤维板常规热压传热研究[J],林业科技,2005,(1)[5] 谢力生,李英俊. 低密度纤维成形体制造方法及其工艺的研究[J]林产工业2005,(3)[6] 谢力生,刘焕荣.低密度刨花板的常规热压传热[J],东北林业大学学报2005,(4)[7] 罗鹏,杨传民,滕立军.改性脲醛树脂胶低密度稻壳-木材复合材料制造工艺的研究[J],林产工业2005(6)[8] 王建萍.缓冲包装材料的研发、改进与利用[J],机械研究与应用.2004,Vol.17, (5)p29-30[9] 谢拥群,陈彦,张璧光. 植物纤维膨化材料的研究[J],木材工业.2003.Vol.18,(2) p30-33[10] 顾惕人主编.表面化学[M], 北京:科学出版社,1994年6月[11] 王中厚主编.制浆造纸工艺[M], 北京:中国轻工业出版社,2006年2月还有这个网站你看一

带式干燥器的研究进展论文

找了下,大约是这个吧进入料斗中的物料由加料器均匀地铺在网带上网带上采用12~60目不锈钢司网,由传动装置拖动在干燥机内移动。带式干燥机干燥段若干单元热风独立循环,其中部分尾热,经分配器分配后,成喷射流吹向网带,穿过物料后进入上腔,干燥过程是热风气流穿过物料层,完成热量与质量传递的过程。上腔由风管与风机入口相连,一部分气体循环,一部分温度较低含湿量较高的气体作为废气经排湿管、调节阀、排湿风机排出。下循环单元中,循环风机引出来的干燥的干热风进入上腔,向下经换热器加热,穿过物料层进行热能传递,并将湿气带入下腔,下腔由侧面风道及回风管与风机入口相连。大部分气体循环,一部分气体排出,上下层循环单元根据用户需要可灵活配备,单元数量可根据需要选取。

带式干燥机,是把物料放置在干燥运送带(可以是钢带、也可以是纤维带)上。采用直接加热或间接加热干燥带上的物料。使物料脱水,由此实现物料干燥的目的。例1:硫磺泡沫机械脱水后,干燥成固体颗粒。一般使用间接加热带式干燥机例2:硅胶颗粒机械脱水后,干燥成多孔固体颗粒。一般使用直接加热带式干燥机

真空冷冻干燥技术的现状及发展趋势 1 引言 近几年来, 真空冷冻干燥技术发展非常迅速, 国内尤为突出。十年前, 国内生产冻干设备的工厂只有3 家,现在已近30 家。冻干产品由生物制品到药品,再发展到出口冻干食品。生产冻干食品的厂家从无到有,目前已有几十家。冻干理论研究也活跃起来,有十几所高等院校和科研机关在研究冻干过程的传热传质,发表论文数十篇,出版了5 本专著。可以肯定地说,冻干设备、工艺和理论研究已经取得了可喜的成果,但也存在着不足。 2 冻干设备的现状及发展趋势 医药用冻干机已经基本成熟, 国内也制定了相应技术标准。有关厂家生产的医药用冻干机,已能代替进口设备。其压盖、清洗、消毒灭菌等功能齐全,产品质量和自动化程度较高,只是水分在线测量仪和个别电器元件等尚需进口。食品冻干机发展较快,生产厂家较多,质量、性能、规格型号各不相同。前几年多从国外引进,近几年已经基本国产化了。 目前,国产食品冻干机还都是非标准化产品。大部分生产厂家走的是仿制道路。有的厂家在采用国外先进技术的同时, 并且进行了很大的改进。如: 加热板内采用了特殊导流装置, 使板内流体的流量均匀, 保证了加热的均匀和稳定; 捕水器在工作中可实现交替捕水和融冰, 捕水器盘管内氨液制冷方式由传统的氨液相变制冷改为氨液无相变制冷, 使捕水器盘管内温度均匀, 结霜性能良好。除仿制之外, 国内自己的研制能力也在提高, 有的单位已经脱离了仿制国外机型, 抽气系统采用低架式水蒸汽喷射泵抽水蒸气, 省去了捕水器和制冷系统, 使设备价格有所降低。设计采用地车式装卸料, 地车采用万向胶轮支撑运输装卸料盘的料车进出冻干箱。它与我国台湾产地车运送料盘不同,与丹麦ATLAS 公司等引进的设备采用上吊车的结构也有区别, 是两者优点的结合, 既省去了车间铺吊轨、影响美观、进出冻干室需搬道叉的麻烦,又克服了地车送料盘装卸料时间长、传导加热温度不均匀等缺点。这种设备结构简单,制造容易,使用方便。 食品冻干机还存在着许多不足, 无论是国产还是引进设备其共同的缺点是价格贵, 耗能高,收回投资慢。因此,降低成本,减少能耗是食品冻干机今后的主攻方向。除此之外,国产冻干机还存在一些不足之处: (1) 搁板温度不均匀,造成冻干产品含水率不均匀,产品合格率受影响。造成温度不均匀的原因各不相同。有的是搁板结构和材料质量不好;有的是加热流体分流或流程有缺欠; 有的是捕水器在干燥箱内绝热不好。 (2) 干燥速率低, 干燥箱内各点干燥快慢不一致,反映在产品上仍然是合格率受影响。其原因除搁板温度不均匀外,还与真空系统配置得不合理有关。主要体现在捕水器配置得不合理;水蒸汽喷射泵性能不稳定;抽气口位置不合理等。 (3) 无法判断干燥何时结束,这是重要缺欠,因为它可能造成产品含水率高而不合格,也可能造成干燥时间过长而浪费能源。 (4) 捕水器效率低。主要体现在捕水器面积大而捕水量小,有部分无效面积,其根本原因是捕水器设计不合理。 (5) 真空度不稳定。除操作原因外,可能是真空系统设计不合理。对于水蒸汽喷射泵而言,可能出现的问题是蒸汽锅炉压力不稳定。 食品用冻干机的研究方向和发展趋势应该是: (1) 改进结构,优化设计,降低成本,减少能耗。国外有些冻干机不采用不锈钢制造, 而采用低碳钢涂覆食品用可烘干树脂, 涂层厚度为0. 12~0. 20 mm ,在室温下就会发出红外线。搁板表面涂高性能远红外发射材料,增强其辐射能力, 料盘表面处理, 增强其吸热能力。料盘在两块辐射搁板之间有一最佳位置, 而不是取中间位置,因此应优化设计。捕水器的结构、尺寸、结霜特性的优化,更有实际意义,因为它的造价目前几乎相当于冻干箱的造价, 运转功耗较大。对于冻干机而言, 加热系统只是补充升华热,功率消耗本不应太高,但现有设备并不尽如人意,应该通过结构优化,降低能耗。 (2) 保证质量, 提高性能。有的厂家生产的冻干机从安装好之后, 一直不能投入正常生产; 有的冻干机虽然能生产,但能耗太高,生产的产品越多,赔钱越多; 还有的元器件不断出现故障,影响正常生产。因此,今后生产的冻干机质量必须保证,可靠性要好。提高性能是指除加热速率、抽气速率、温度均匀性、真空度稳定性之外,增强设备新的功能。例如增加冻干结束的判断功能,最简单的办法是称重法。目前已经有人试验,但都不太成功。原因是没有离开天平和地秤的模式,致使小设备安装困难,大设备笨重而不稳定。应该发展重量传感器,用很小的一次元件给出重量随时间的变化。 (3) 开发连续式冻干设备, 当前生产的冻干机都是间歇式产品, 随着工业技术的发展,人民生活水平的提高,消费量会增大,因此发展连续冻干设备,增加冻干产品的产量是必然趋势。 3 冻干工艺的现状及发展趋势 目前,研究冻干工艺的人员比研究冻干设备的人员要多,研究食品冻干工艺的人员比研究医药冻干工艺的人员要多。被研究的冻干食品品种也越来越多。仅就本校已研究过的冻干品种有: (1) 中草药类:人参、冬虫夏草、山药。 (2) 水果类:桃、梨、苹果、香蕉、草莓。 (3) 蔬菜类:葱、菠菜、洋葱、胡萝卜。 (4) 肉类:牛肉、牛肝、鸡肝。 (5) 水产类:虾、海带、海参、扇贝。 (6)其它类:蜂蜜、幼竹鲜汁、紫草红色素、“勿忘我”鲜花等。 本校研究的冻干工艺都没有进行优化研究, 不能算是最佳工艺, 从实验室走入生产车间还应该进一步优化, 使其适合于产业化、快速、节能的要求。有的单位对几种食品的冻干工艺研究得比较出色,其中比较有代表性的食品是蘑菇、大蒜粉、芦笋、速溶咖啡、速溶茶等,并给出了脱水大蒜和脱水洋葱的技术要求,这是冻干食品走向成熟的标志。 西药、血液制品和生物制品的冻干工艺比较难,工艺成熟与否关系重大,产品质量直接关系到人的生命安全。所以研究人员比较少,研究成果有一定时间的保密性。西药冻干的关键问题是避免染菌,一但染菌就会造成重大事故。生物制品则要求更加严格,除避免染菌外还要防止菌种变异,保持活菌活毒的活性。在冻干过程中要加入添加剂和保护剂,这是技术水平很高的工作, 国内外有不同的冻干保护剂, 我国六大生物制品研究所之间也各有妙方。 生物体的冻干工艺已经提到了日程上,本校将灰鼠皮肤去毛冻干后在沈阳药科大学做药理实验证明了与新鲜皮肤的药理作用相同, 复水后在生物显微镜下做组织观察, 与鲜皮细胞组织基本相同。现正在国家自然科学基金的资助下,与中国医科大学合作开展家兔角膜的冻干实验研究。 4 冻干理论的研究现状及发展趋势 真空冷冻干燥技术的理论研究可概括为低压低温传热传质的理论研究,非稳态流场的理论研究和热物性参数与其测量方法研究三大部分。其中低压低温传热传质的理论研究进行得比较早,效果比较明显,目前公认的冻干模型可归纳成三种: 一种是1976 年Sandall 等提出的冰界面均匀后移的稳态模型(URIF) ; 另一种是1968 年Dryer [6 ]等提出的准稳态模型; 第三种是1979 年Litchield 等提出的吸附- 升华模型。 这几种模型都可以描述冻干过程,但又都存在着不足,描述传热过程比较准确,描述传质过程误差较大。主要问题是在传质过程中要发生固- 汽相变,水蒸气在多孔的通道中传递,通道长度要随时间不同而变化,是非稳态过程。多孔通道的结构尺寸还与预冻速度、被冻干物料的物质结构等有关。从近几年的研究报道中还没有见到有新的突破。冻干过程传热传质的理论研究重点是研究发生在被冻干物料内部的过程。非稳态流场的理论研究,重点是研究物料之外、冻干机之内的低压低温空间环境。描述该空间环境的参数有温度、压力、湿度等,这些参数形成的温度场、压力场、湿度分布等都是随时间变化的非稳态流场,这些非稳态流场的模拟方法至今还是个难题。冻干机捕水器中的非稳态流场中又增加了一个汽- 固相变的问题,使研究更加复杂化。因此,近几年虽然有人研究并发表了论文,但都没有形成有效的理论,仍然是值得深入研究的课题之一。无论是传热传质理论研究还是非稳态流场理论研究,都需要一些热物性参数,例如被冻干物料的密度、导热系数、传质系数、水分含量等。由于被冻干物料是各种各样的,无法查找这些数据,需要自己测量。测量时采用什么方法、什么仪表、什么原理等都是研究的课题。还有一类热物性参数测量更是比较困难,这就是在低温低压下湿空气和霜层的特性参数。例如,在真空条件下霜层的密度、厚度、导热系数等都随时间、温度、压力而变化,研究工作相当困难,进展缓慢。 5 结束语 从上述分析可见,冻干技术发展很快,存在问题也不少。迈向21 世纪的冻干技术,除了在设备、工艺和理论方面开展更新、更好、更深入地研究之外,还有待于开拓市场。目前冻干产品销售情况不景气, 除国际市场受东南亚经济危机的影响外, 也受冻干产品质量和品种的制约。国内市场受冻干产品的价格限制,也受新鲜果蔬生产和保鲜技术的冲击。开拓市场的方向应该是上品种、重质量、降价格、面向国外。冻干技术还需开发新的应用领域,生命科学、材料科学等都是冻干技术的交叉学科,是很有发展前途的领域,应该作为开发应用新领域的首选范围。

毕业论文带式干燥器

机械专业毕业论文开题报告范文(精选6篇)

在生活中,报告与我们愈发关系密切,要注意报告在写作时具有一定的格式。那么什么样的报告才是有效的呢?下面是我整理的机械专业毕业论文开题报告范文,欢迎阅读,希望大家能够喜欢。

论文题目:

MC无机械手换刀刀库毕业设计开题报告

本课题的研究内容

本论文是开发设计出一种体积小、结构紧凑、价格较低、生产周期短的小型立式加工中心无机械手换刀刀库。主要完成以下工作:

1、调研一个加工中心,了解其无机械手换刀刀装置和结构。

2、参照调研的加工中心,进行刀库布局总体设计。画出机床总体布置图和刀库总装配图,要有方案分析,不能照抄现有机床。

3、设计该刀库的一个重要部分,如刀库的转位机构(包括定位装置,刀具的夹紧装置等),画出该部件的装配图和主要零件(如壳体、蜗轮、蜗杆等3张以上工作图。

4、撰写设计说明书。

本课题研究的实施方案、进度安排

本课题采取的研究方法为:

(1)理论分析,参照调研的加工中心,进行刀库布局总体设计。

进度安排:

2009.3.16-3.20 收集相关的毕业课题资料。

2009.3.23-3.27 完成开题报告。

2009.3.30-4.17 完成毕业设计方案的制定、设计及计算。

2009.4.20-5.15 完成刀库的设计

2009.5.18-5.29 完成毕业设计说明书。

2009.6.01-6.08 毕业设计答辩。

主要参考文献

[1] 廉元国,张永洪. 加工中心设计与应用 [M]. 北京:机械工业出版社,1995.3

[2] 惠延波,沙杰.加工中心的数控编程与操作技术 [M]. 北京:机械工业出版社2000.12

[3] 励德瑛.加工中心的发展趋势 [J]. 机车车辆工艺,1994,6

[4] 徐正平.CIMT2001 加工中心评述[J]. 制造技术与机床,2001,6

[5] 刘利. FPC-20VT 型立式加工中心[J]. 机械制造,1994,7

[6] 李洪. 实用机床设计手册 [M]. 沈阳:辽宁科学技术出版社,1999.1

[7] 刘跃南.机械系统设计[M].北京:机械工业出版社,1998.8

[8] Panasonic 交流伺服电机驱动器 MINASA 系列使用说明书

[9] 成大先.机械设计手册第四版第 2 卷[M]. 北京:化学工业出版社,2001.11

[10] 成大先.机械设计手册第四版第 3 卷[M]. 北京:化学工业出版社,2001.11

1 课题提出的背景与研究意义

1.1 课题研究背景

在数控机床移动式加工中移动部件和静止导轨之间存在着摩擦,这种摩擦的存在增加了驱动部件的功率损耗,降低了运动精度和使用寿命,增加了运动噪声和发热,甚至可能使精密部件变形,限制了机床控制精度的提高。由于摩擦与运动速度间存在非线性关系,特别是在低速微进给情况下,这种非线性关系难以把握,可能产生所谓的尺蠖运动方式或混沌不清的极限环现象,严重破坏了对微进给、高精度、高响应能力的进给性能要求。为此,把消除或减少摩擦的不良影响,作为提高机床技术水平的努力方向之一。该课题提出的将磁悬浮技术应用到数控机床加工中,即可以做到消除移动部件与静止导轨之间存在的摩擦及其不良影响。对提高我国机床工业水平及赶上或超过国际先进水平具有重大意义,且社会应用前景广阔。

1.2课题研究的意义

机床正向高速度、高精度及高度自动化方向发展。但在高速切削和高速磨削加工场合,受摩擦磨损的影响,传统的滚动轴承的寿命一般比较短,而磁悬浮轴承可以克服这方面的不足,磁悬浮轴承具有的高速、高精度、长寿命等突出优点,将逐渐带领机电行业走向一个没有摩擦、没有损耗、没有限速的崭新境界。超高速切削是一种用比普通切削速度高得多的速度对零件进行加工的先进制造技术,它以高加工速度、高加工精度为主要特征,有非常高的生产效率,磁悬浮轴承由于具有转速高、无磨损、无润滑、可靠性好和动态特性可调等突出优点,而被应用于超高速主轴系统中。要实现高速切削,必须要解决许多关键技术,其中最主要的就是高速切削主轴系统,而选择合理的轴承型式对实现其高转速至关重要。其中,磁悬浮轴承是高速切削主轴最理想的支承型式之一。磁悬浮轴承可以满足超高速切削技术对超高速主轴提出的性能要求。但它与普通滑动或滚动轴承的本质区别在于,系统开环不稳定,需要实施主动控制,而这恰恰使得磁悬浮轴承具有动特性可控的优点磁悬浮轴承是一个复杂的机电磁一体化产品,对其精确的分析研究是一项相当困难的工作,如果用实验验证则会碰到诸如经费大、周期长等困难,在目前国内情况下不能采取国外以试验为主的研究方法,主要从理论上进行研究,利用计算机软件对磁悬浮控制系统进行仿真是一种获得磁悬浮系统有关特征简便而有效的方法。这就是本课题的研究目的和意义。

2 本课题国内外的研究现状

磁悬浮轴承的应用与发展可以说是传统支承技术的革命。由于具有无机械接触和可实现主动控制两个显著的优点,主动磁悬浮轴承技术从一开始就引起了人们的重视。磁悬浮轴承的研究最早可追溯到1937年,Holmes和Beams利用交流谐振电路实现了对钢球的悬浮。自1988年起,国际上每两年举行一届磁悬浮轴承国际会议,交流和研讨该领域的最新研究成果;1990年瑞士联邦理工学院提出了柔性转子的研究问题,同年G.Schweitzer教授提出了数字控制问题;1998年瑞士联邦理工学院的R.Vuillemin和B.Aeschlimann等人提出了无传感器磁悬浮轴承。近十年,瑞士、美国、日本等国家研制的电磁悬浮轴承性能指标已经很高,并且已成功应用于透平机械、离心机、真空泵、机床主轴等旋转机械中,电磁悬浮轴承技术在航空航天、计算机制造、医疗卫生及电子束平版印刷等领域中也得到了广泛的应用。纵观2006年在洛桑和托里诺召开的第10界国际磁轴承研讨会,磁轴承主要应用研究为磁轴承在高速发动机、核高温反应堆(HTR-10GT)、人造心脏和回转仪等方面。国内在磁悬浮轴承技术方面的研究起步较晚,对磁悬浮轴承的研究起步于80年代初。

1983年上海微电机研究所采用径向被动、轴向主动的混合型磁悬浮研制了我国第一台全悬浮磁力轴承样机;1988年哈尔滨工业大学的陈易新等提出了磁力轴承结构优化设计的理论和方法,建立了主动磁力轴承机床主轴控制系统数学模型,这是首次对主动磁力轴承全悬浮机床主轴从结构到控制进行的系统研究;1998年,上海大学开发了磁力轴承控制器(600W)用于150m制氧透平膨胀机的控制;2000年清华大学与无锡开源机床集团有限公司合作,实现了内圆磨床磁力轴承电主轴的'工厂应用实验。目前,国内清华大学、西安交通大学、国防科技大学、哈尔滨工业大学、南京航空航天大学等等都在开展磁悬浮轴承方面的研究。2002年清华大学朱润生等对主动磁悬浮轴承主轴进行磨削试验,当转速60000r/min、法向磨削力100N左右时,精度达到小于8m的水平,精磨磨削效率基本达到工业应用水平。2003年6月,南京航空航天大学磁悬浮应用技术研究所研制的磁悬浮干燥机的性能指标已通过江苏省技术鉴定,向工业应用迈出了可喜的一步。2005年“济南磁悬浮工程技术研究中心”研制的磁悬浮轴承主轴设备,在济南第四机床厂做磨削试验,成功磨制出一个内圆孔工件,这是我国第一个用磁悬浮轴承主轴加工的工件。此项技术填补了国内空白。近几年来,由于微电子技术、信号处理技术和现代控制理论的发展,磁悬浮轴承的研究也取得了巨大进展。

从总体上看,磁悬浮轴承技术正向以下几个方向发展:

(1)理论分析更注重系统的转子动力学分析,更多地运用非线性理论对主动

磁悬浮转子系统的平衡点和稳定性进行分析;更注重建立系统的非线性耦合模型以求得更好的性能。

(2)注重系统的整体优化设计,不断提高其可靠性和经济性,以期获得磁悬浮轴承更加广泛的应用前景。

(3)控制器的实现越来越多的采用数字控制。为达到更高的性能要求,控制器的数字化、智能化、集成化成为必然的发展趋势。由于数字控制器的灵活性,各种现代控制理论的控制算法均在磁悬浮轴承上得到尝试。

(4)发展了多种新型磁悬浮轴承如:无传感器磁悬浮轴承、无轴承电机超导磁悬浮轴承、高温磁悬浮轴承。此外,磁悬浮机床主轴在各方面也有较大的发展空间如:高洁净钢材Z钢和EP钢的引入;陶瓷滚动体,重量比钢球轻40%;润滑技术的开发,对于高速切削液的主轴,油液和油雾润滑能有效防止切削液进入主轴;保持架的开发,聚合物保持架具有重量,自润滑及低摩擦系数的特点从应用的角度看,磁悬浮轴承的潜力尚未得到的发掘,而它本身也未达到替代其它轴承的水平,设计理论,控制方法等都有待研究和解决。

3 课题的研究目标与研究内容

3.1 研究目标

控制器是主动控制磁悬浮轴承研究的核心,因此正确选择控制方案和控制器参数,是磁悬浮轴承能够正常工作和发挥其优良性能的前提。该课题主要研究单自由度磁悬浮系统,其结构简单,性能评判相对容易、研究周期短,并且可以扩展到多自由度磁悬浮系统的研究。针对磁悬浮主轴系统的非线性以及在控制方面的特点,该课题探索出提高系统总体性能和动态稳定性的有效控制策略。

3.2 主要研究内容

(1)阐述课题的研究背景与意义,对国内外相关领域的研究状况进行综述。

(2)对磁悬浮机床主轴的动力学模型进行分析,并将其数值化、离散、解耦和降阶等,为后续研究

1、 目的及意义(含国内外的研究现状分析)

本人毕业设计的课题是”钢坯喷号机行走部件及总体设计”,并和我的一个同学(他课题是“钢坯喷号机喷号部件设计”)一起努力共同完成钢坯喷号机的设计。我们的目的是设计一种价格相对便宜,工作性能可靠的钢坯喷号机来取代用人工方法在钢坯上写编号。

对钢坯喷号是钢铁制造业必然需要存在的一个环节,这是为了实现质量管理和质量追踪。我们把生产钢坯对应的连铸机号、炉座号、炉号、流序号以及表示钢坯生产时间的时间编号共同组成每块钢坯的唯一编号,适当的写在钢坯的表面。这样就在钢铁厂的后续检验或在客户使用过程中,如果发现钢坯的质量有问题,就可以根据这个编号来追踪到生产这个钢坯的连铸机、炉座、炉号、流序及时间等重要信息,及早的发现并解决生产设备中存在的问题。

目前,在国外像日本、美国等一些发达国家已经实现了对钢坯的自动编号,虽然其辅助设备较多,价格较贵,但大大提高生产的自动化进程和效率。并且钢坯喷号机具有设备利用率高、位置精度高、可控制性能好等优点。而在国内,除了少数的几家大型钢铁企业(宝钢、鞍钢等)引进了自动钢坯喷号机,大部分的钢铁企业仍然处在人工编号的阶段。

实现钢坯喷号的机械化和自动化是提高生产效率和降低生产成本的重要途径之一,钢坯喷号机无论在国内还是国外都会有很大的市场。一方面因为人工的工艺流程不但浪费了大量的能量,而且打断了生产的自动化进程,从而致使生产效率降低,生产成本增加。另一方面由于生产钢坯的车间温度很高,有强烈的热辐射,同时还有大量的水蒸气和粉尘,因此对其中进行人工编号的工人的劳动强度非常大,并且对身体是一种摧残,容易得职业病。所以无论从那个方面看都急需一种价格相对便宜,工作性能可靠的钢坯喷号机来代替人工编号。

作为一个大学生,毕业设计对我来说是展示我大学四年学习成果的一个机会,也是对我的综合能力的一个考验。我本人对“钢坯喷号机行走部件及总体设计”的课题也非常感兴趣,我一定会努力完成这次毕业设计的。总的来说,钢坯喷号机对于钢铁厂和这次毕业设计对于我都是具有现实意义的。

2、基本内容和技术方案

本课题是基于机械设计与电子控制结合的技术来设计钢坯喷号机。经连连轧的钢坯规格为160mmx200mm的方形钢坯,用切割机割成定长,由300mm宽的输出通道送出。

1.基本内容

先拟定钢坯喷号机的总体方案,然后确定钢坯喷号机行走部件的传动方案及结构参数,最后画出钢坯喷号机行走部件的装配图以及零件图。

2.系统技术方案

(1)工作过程:启动机器PLC控制步进电机带动钢坯喷号机到相应的位置,按下启动键发送控制信号传到控制部件(PLC),控制部件发出控制命令给执行部件(主要是行走部件及喷号部件,行走部件带动喷头靠近钢坯表面,然后喷头进行喷号),喷号完成后喷头上升并清洗号码牌。再次移动喷号到下一个钢坯处。

(2)要求实现的功能:行走部件功能(喷号机整体左右的移动,喷号部件的上下前后移动,喷头的左右移动)、喷号部件功能(喷头喷号,清洗号码牌,号码牌的更换)。其中号码为(0—9)十个数字,号码可以变化更换。每个号码大小为35mmx15mm,号码间距为5mm。

(3)实现方案:

行走功能的实现:由于在钢坯上喷号并不需要很精确的定位,所以采用人工控制步进电机的方式移动整体喷号机来粗调。采用液压缸提供动力来推动喷号部件,并采用行程开关控制电机来实现喷号部件上下移动,下行程开关可以控制喷号部件与钢坯表面之间的间距和发出信号使喷头开始喷涂料并向右移动。采用液压缸推动,滚轮在导架上滚动的方式实现喷好机构的前后移动,并采用行程开关控制电机来实现喷头的左右移动,右行程开关可以控制喷头停止喷涂料并回到初始位置和喷号部件向上移动。

喷号功能的具体实现方案由和我一组的同学确定。

3、进度安排

3-4周 认真阅读和学习有关资料和知识,并翻译英文文献

5-7周 钢坯喷号机行走部件的传动方案及总体设计

8-9周 确定钢坯喷号机行走部件结果参数

10-13周 完成钢坯喷号机行走部件装配图及零件工作图

14-15周 准备并进行毕业答辩

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、提高劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大提高。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、提高零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,提高材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,提高产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30﹪;由于锻件精化减少了切削加工量,电力消耗可降低30﹪;

(2)锻件质量显着提高,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均提高2~3倍;

(3)由于一次性挤压成型,生产率提高25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、提高生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)写毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

一、毕业设计题目的背景

三级圆锥—圆柱齿轮减速器,第一级为锥齿轮减速,第二、三级为圆柱齿轮减速。这种减速器具有结构紧凑、多输出、传动效率高、运行平稳、传动比大、体积小、加工方便、寿命长等优点。因此,随着我国社会主义建设的飞速发展,国内已有许多单位自行设计和制造了这种减速器,并且已日益广泛地应用在国防、矿山、冶金、化工、纺织、起重运输、建筑工程、食品工业和仪表制造等工业部门的机械设备中,今后将会得到更加广泛的应用。

二、主要研究内容及意义

本文首先介绍了带式输送机传动装置的研究背景,通过对参考文献进行详细的分析,阐述了齿轮、减速器等的相关内容;在技术路线中,论述齿轮和轴的选择及其基本参数的选择和几何尺寸的计算,两个主要强度的验算等在这次设计中所需要考虑的一些技术问题做了介绍;为毕业设计写作建立了进度表,为以后的设计工作提供了一个指导。最后,给出了一些参考文献,可以用来查阅相关的资料,给自己的设计带来方便。

本次课题研究设计是大学生涯最后的学习机会,也是最专业的一次锻炼,它将使我们更加了解实际工作中的问题困难,也使我对专业知识又一次的全面总结,而且对实际的机械工程设计流程有一个大概的了解,我相信这将对我以后的工作有实质性的帮助。

三、实施计划

收集相关资料:20XX年4月10日——4月16日

开题准备: 4月17日——4月20日

确定设计方案:4月21日——4月28日

进行相关设计计算:4月28日——5月8日

绘制图纸:5月9日——5月15日

整理材料:5月15日——5月16日

编写设计说明书:5月17日——5月20日

准备答辩:

四、参考文献

[1] 王昆等 机械设计课程设计 高等教育出版社,1995.

[2] 邱宣怀 机械设计第四版 高等教育出版社,1997.

[3] 濮良贵 机械设计第七版 高等教育出版社,2000.

[4] 任金泉 机械设计课程设计 西安交通大学出版社,2002.

[5] 许镇宁 机械零件 人民教育出版社,1959.

[6] 机械工业出版社编委会 机械设计实用手册 机械工业出版社,2008

1. 设计(或研究)的依据与意义

十字轴是汽车万向节上的重要零件,规格品种多,需求量大。目前,国内大多采用开式模锻和胎模锻工艺生产,其工艺过程为:制坯→模锻→切边。生产的锻件飞边大,锻件加工余量和尺寸公差大,因而材料利用率低;而且工艺环节多,锻件质量差,生产效率低。

相比之下,十字轴冷挤压成形的具有以下优点:

1、增强劳动生产率。用冷挤压成形工艺代替切削加工制造机械零件,能使生产率大大增强。

2、制件可获得理想的表面粗糙度和尺寸精度。冷挤压十字轴类零件的精度可达ITg---IT8级,表面粗糙度可达Ra O.2~1.6。因此,用冷挤压成形的十字轴类零件一般很少再切削加工,只需在要求特别高之处进行精磨。

3、增强零件的力学性能。冷挤压后金属的冷加工硬化,以及在零件内部形成合理的纤维流线分布,使零件的强度高于原材料的强度。

4、降低零件成本。冷挤压成形是利用金属的塑性变形制成所需形状的零件,因而能大量减少切削加工,增强材料的利用率,从而使零件成本大大降低。

2. 国内外同类设计(或同类研究)的概况综述

利用切削加工方法加工十字轴类零件,生产工序多,效率低,材料浪费严重,并且切削加工会破坏零件的金属流线结构。目前国内大多采用热模锻方式成形十字轴类零件,加热时产生氧化、脱碳等缺陷,必然会造成能源的浪费,并且后续的机加工不但浪费大量材料,产品的内在和外观质量并不理想。

采用闭式无飞边挤压工艺生产十字轴,锻件无飞边,可显着降低生产成本,增强产品质量和生产效率:

(1)不仅能节省飞边的金属消耗,还能大大减小或消除敷料,可以节约材料30%;由于锻件精化减少了切削加工量,电力消耗可降低30%;

(2)锻件质量显着增强,十字轴正交性好、组织致密、流线分布合理、纤维不被切断,扭转疲劳寿命指标平均增强2~3倍;

(3)由于一次性挤压成型,生产率增强25%.

数值模拟技术是CAE的关键技术。通过建立相应的数学模型,可以在昂贵费时的模具或附具制造之前,在计算机中对工艺的全过程进行分析,不仅可以通过图形、数据等方法直观地得到诸如温度、应力、载荷等各种信息,而且可预测存在的缺陷;通过工艺参数对不同方案的对比中总结出规律,进而实现工艺的优化。数值模拟技术在保证工件质量、减少材料消耗、增强生产效率、缩短试制周期等方面显示出无可比拟的优越性。

目前,用于体积成形工艺模拟的商业软件已有“Deform”、“Autoforge”等软件打入中国市场。其中,DEFORM软件是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。DEFORM无需试模就能预测工业实际生产中的金属流动情况,是降低制造成本,缩短研发周期高效而实用的工具。二十多年来的工业实践清楚地证明了基于有限元法DEFORM有着卓越的准确性和稳定性,模拟引擎在大金属流动,行程载荷和产品缺陷预测等方面同实际生产相符保持着令人叹为观止的精度。

3. 课题设计(或研究)的内容

1)完成十字轴径向挤压工艺分析,完成模具总装图及零件图设计。

2)建立十字轴径向挤压成形模具的三维模型。

3)十字轴径向挤压成形过程数值模拟。

4)相关英文资料翻译。

4. 设计(或研究)方法

1)完成十字轴径向挤压成形工艺分析,绘制模具总装图及零件图。

2)毕业论文建立十字轴径向挤压成形模具的三维模型。

3)完成十字轴径向挤压成形过程数值模拟。

4)查阅20篇以上与课题相关的文献。

5)完成12000字的论文。

6)翻译10000个以上英文印刷符号。

5. 实施计划

04-06周:文献检索,开题报告。

07-10周:进行工艺分析、绘制模具二维图及模具三维模型设计。

11-13周:进行数值模拟。

14-16周:撰写毕业论文。

17周:进行答辩。

是污水处理厂污泥吗?因为污泥能造成环境的污染,所以我们需要尽最大的努力使之无害化。对污泥处理有标准的,你可以查《城市污水处理厂污水污泥排放标准》(CJ 3025-93)4污泥排放标准4.1城市污水处理厂污泥应本着综合利用,化害为利,保护环境,造福人民的原则进行妥善处理和处置。4.2城市污水处理厂污泥应因地制宜采取经济合理的方法进行稳定处理。4.3在厂内经稳定处理后的城市污水处理厂污泥宜进行脱水处理,其含水率宜小于80%。4.4处理后的城市污水处理厂污泥,用于农业时,应符合GB4284标准的规定。用于其它方面时,应符合相应的有关现行规定。4.5城市污水处理厂污泥不得任意弃置。禁止向一切地面水体及其沿岸、山谷、洼地、溶洞以及划定的污泥堆场以外的任何区域排放城市污水处理厂污泥。城市污水处理厂污泥排海时应按GB3097及海洋管理部门的有关规定执行。常用的污泥处理的工艺流程:根据处理方式不同,流程也不相同

4.5.1.1污泥自身环境问题污泥是污水处理厂和污水污水站污水处理的必然产物。未经恰当处理处置的污泥进入环境后,直接给水体和大气带来二次污染,不但降低了污水处理系统的有效处理能力,而且对生态环境和人类的活动构成了严重的威胁。存在的主要环境问题如下 :(1)污泥含水率高。未脱水污泥含水率大于90%,初步脱水污泥含水率也高达80%,造成运输成本高、堆放面积大,挤压垃圾填埋场库容,堵塞垃圾渗滤液管等问题;(2)细菌滋生。不仅造成视觉污染,而且为其他有害生物的滋生提供了场所;(3)大气污染。污泥堆放在露天散发出臭气和异味,日晒风刮,污染物颗粒会造成大气污染; (4)污染水体。经水浸泡、溶解,污染物伴随污水流入河道,会污染地表水,进入地下水;(5)含有重金属。如不加以控制,则可能污染土地。目前,我国城市污水处理厂普遍采用污泥脱水机进行脱水,形成含水率80~75%的脱水污泥,目前的市污水处理厂脱水污泥处置方法中,污泥农用占44.8%、陆地填埋占31%、其他处理约10.5%、没有处理约13.7%。《城市污泥处置 混合填埋泥质》(CJ/T 249-2007)规定了城市污泥进入生活垃圾卫生填埋场混合填埋处理和用作覆盖土的泥质指标,详见表4-5表4-5城市污泥处置混合填埋泥质基本指标序号 控 制 项 目 限 值1 污泥含水率 ≤60%2 pH 5~103 混合比例 ≤8%注:表中pH指标不限定采用亲水性材料(如石灰等)与污泥混合以降低其含水。新标准出台以后,城市污泥处置一些主要指标发生了变化。一是我们城镇污水处理厂的出厂污泥是要求含水率小于80%;二是城镇污水处理厂园林绿化用污泥含水率是小于45%,有机质含量不小于20%;三是混合填埋污泥的泥质含水率要求小于等于60%才能进填埋厂。目前我国污泥处置运用最多的是进垃圾场填埋和园林绿化,新标准的出台,由此带来了新的问题,污泥含水率必须符合进垃圾填埋场和运用于林绿化用污泥要求。污泥的处理和处置目标为减量化、稳定化、资源化。城市污水处理厂污泥的稳定化技术主要有厌氧消化、好氧消化、污泥堆肥以及污泥焚烧等。污泥浓缩、脱水以及焚烧是污泥减容的主要技术。填埋、焚烧、作农肥、投海和制造建筑材料等是目前污泥处置和综合利用的主要途径。4.5.2污泥处理工艺比较选择4.5.2.1污泥脱水工艺从表4-6可以看出,板框式压滤机设备投资相对较低,但间隙敞开运行,操作维护管理复杂。表4-6 城市污泥脱水设备综合比较设备型式 板框式压滤机 带式脱水机 离心式脱水机设备重量 大 较大 小设备体积 大 较大 小脱水率 高,泥饼含水率70%-85% 低,泥饼含水率70%-86% 低,泥饼含固率75%-85%生产率 小,间断运行,时产50kg/h固体 小,间断运行,每小时产固体小于80kg(相对过滤面积) 较高,连续运行,每小时产固体大于90kg(相对过滤面积)自动性 差,需专人看守 差,需专人看守 好,不需专人看守设备密封 开敞式,臭味逸出 开敞式,臭味逸出 密封式,臭味和有害污泥微粒不逸出噪音 低,小于75dB 高,大于75dB 较高, 80dB稳定性 不稳定,活动部件多 不稳定,协作部件多,部件移动间距大 稳定,设备简单。维护量 维护量大,维修难度大。 大,滤布3个月需更换一次。移动部件损害严重,维护费用高 小,每年检修一次,维护部件主要是刮刀片,维护费用少能耗 每立方米污泥脱水耗电为1.0kw/m3 每立方米污泥脱水耗电为0.8kw/m3 每立方米污泥脱水耗电为1.2kw/m3反冲洗 挤压原理,不需反冲洗 为防止滤带堵塞,需高压水不断冲刷 离心沉降原理,不需反冲洗投药量 投药量小 投药量大 投药量较小设备使用寿命 短 短 长操作简单度 较为复杂,须专人管理 操作复杂, 须专人管理 简单,全自动,无需管理设备投资 稍低 适中 较高带式脱水机的优点是节省电耗、噪音小、造价相对低、但是其出泥含固率略低、占地面积大、需要冲洗、开放式运行卫生环境差,维护管理复杂。离心式脱水机的优点是出泥干、全密闭运行、卫生环境好、不需冲洗水、系统简单体积小,投药量小、全自动运行、维护管理水平要求低。但设备投资及能耗相对高一些。综合比较,本项目污泥脱水推荐采用离心机进行机械脱水方式。4.5.2.2污泥干化工艺根据《城镇污水处理厂污泥处置 园林绿化用泥质》(CJ248-2007)规定,园林绿化用泥质含水率必须小于45%,《城市污泥处置 混合填埋泥质》(CJ/T 249-2007)和《生活垃圾填埋场污染控制标准》(GB16889—2008)规定城市污泥进入生活垃圾卫生填埋场污泥含水率必须小于60%,而城市污泥经过污泥脱水机脱水后污泥含水率为75~80%,还满足不了污泥处置要求,还必须进行污泥预干化处理。污泥预干化技术是通过热能对污泥进行水分去除处理,在干化过程中将耗去大量的热能,为了降低污泥预干化所需要的热能,由大量的分析研究和试验可得:脱水污泥经加热干化使含水率由80%降到60%这一阶段所消耗能量小,其主要去除的是污泥中的游离水;污泥在含水率35%—60%之间,为污泥的塑性阶段,这阶段污泥的流体特性类似胶水。胶状、黏稠,很难处置,对其干化消耗能量急剧增加,很难干化;同样含水率在35%以下继续干化消耗能量也小,这两段的能量消耗基本接近理论值根据上述特性,干化污泥要避开污泥塑性阶段。要充分利用污泥干化特性,尽量在含水率60%,或者35%以下。在含水率为35%—60%之间干化耗能约为含水率60%以上和35%以下干化耗能的2.5倍;所以对脱水污泥需采用预干化技术,使脱水污泥含水率由80%降至60%,这样大大节约了能耗。目前主要的干化技术有如下四种:(1)污泥晾晒干化污泥晾晒干化主要为自然干化,将含水率为80%的脱水污泥在阳光大棚内以0.4—0.6米的厚度堆放,并使用专用晾晒翻堆设备对污泥进行多次晾晒翻堆,使污泥含水率由80%快速降至60%,该工艺是利用太阳能对污泥进行水分去处,工艺简单,耗能很低,但占地面积较大,需要大量人力。(2)加热干燥目前,许多国家已在污泥处理中采用加热干燥技术。按照热介质是否与污泥相接触,现行的污泥热干燥技术可以分为三类:直接热干燥技术、间接热干燥技术和直接-间接联合式干燥技术。直接热干燥技术又称对流热干燥技术。对流热干燥是通过热空气从污泥表面去除水分。在操作过程中,热介质(热空气、燃气或蒸汽等)与污泥直接接触,热介质低速流过污泥层,在此过程中吸收污泥中的水分,处理后的干污泥需与热介质进行分离。排出的废气一部分通过热量回收系统回到原系统中再用,剩余的部分经无害化后排放。此技术热传输效率及蒸发速率较高,可使污泥的含固率从25%提高至85%~95%。闪蒸式干燥器(flashdryer)、转筒式干燥器(rotarydryer)、带式干燥器(beltdryer)、喷淋式干燥器(spraydryer)、螺环式干燥器(toroidaldryer)和多效蒸发器(multiple effect vaporattion)等都属直接热干燥装置类型。在间接热干燥技术中,热介质并不直接与污泥相触,而是通过热交换器将热传递给湿污泥,使污泥中的水分得以蒸发,因而热介质不仅仅限于气体,也可用热油等液体,同时热介质也不会受到污泥的污染,省却了后续的热介质与干污泥分离的过程。过程中蒸发的水分到冷凝器中加以冷凝。热介质的一部分回到原系统中再用,以节约能源。由于间接传热,该技术的热传输效率及蒸发速率均不如直接热干燥技术,这种技术的操作设备有薄膜热干燥器,圆盘式热干燥器等。直接-间接联合式干燥系统则是对流-传导技术的整合,如高速薄膜干燥器、新型流化床干燥器以及带式干燥器等。在所有提及的这些干燥器中,闪蒸式干燥器是目前应用最广的一种加热干燥设备。(3)微波干化微波技术由于其的热绝缘特性,广泛应用于科技领域的各个方面,微波加热也被认为是高温分解有机物的一种可选方法。与传统的干燥方法相比,微波加热干燥污泥可以节约大量的时间和能量。(4)污泥石灰干化处理向污泥中均匀加入石灰粉后,生石灰和污泥中的水发生放热反应,在水合反应放出的热量的作用下(每千克溶解性氧化钙放热1164千焦)系统温度将提高,加速水分蒸发,从而达到干化的目的。同时,生石灰均匀投加混合入污泥,和污泥中的水发生放热反应后造成一个高温、高碱性的环境,而实践证明,在加温至60°C、pH值呈高碱性状态下致病微生物能得到有效去除,蠕虫卵虽然不能被杀死 (在壳体结构中这几乎是不可能的) ,但已不再具备繁殖能力。因此石灰处理工艺可以有效的杀死污泥中的致病微生物。表4-7 各种污泥干化方法综合比较干燥方法 干燥效率 占地面积 二次污染 是否需要外加能量 设备投资费用 运行费用 性价比 适用范围污泥晾晒干化 较高 较大 有臭气排放造成二次污 否 较低 较低 高 土地充裕,污泥量较小的污泥处置加热干燥 较高 较大 尾气排放,造成二次污染 是 高 高 中 大量污泥处置微波干化 高 大 无 是 高 高 中 产地卫生条件要求较高范围污泥石灰干化处理 中等 小 稳定污泥、杀灭细菌 否 中等 中等 高 小型污泥处置综合比较,污泥石灰干化处理占地面积小,设备投资、运行费用适中,操作简单,无二次污染,是目前特别适宜于中国的污泥预干化解决方案。污泥石灰干化处理工艺引进的是德国成熟先进的混合技术,目前在德国已建设600多座利用此技术的城市污泥干化处理厂,1万多座利用此技术对污泥进行稳定化处理的污泥处理厂。污泥石灰干化处理工艺的引进,与中国当前污泥处置方式进行有效的整合,目前国内大多数污泥最终采用的都是填埋处置方式,这也是当最为经济的处理方式。但如果把机械脱水后的污泥直接运送到垃圾填埋厂进行填埋,会由于污泥含水率过高而造成运输和填埋困难,并且增大了垃圾填埋厂对于垃圾渗滤液的处理负荷。石灰混合处理技术可将脱水污泥含水量从80%降低到60%,从而达到半干化的目的。降低污泥的含水率,使污泥密度增大,体积减小,提高污泥填埋强度,颗粒状的污泥极大的方便了运输和填埋,显著降低了垃圾填埋厂的运行成本和运输成本。4.5.3污泥处置方式比较选择《城市污泥处置 分类》(CJ/T2392007)规定了城市污泥处置方式分为由如下四类:(1)污泥土地利用污泥经稳定化、无害化处理后,达到土地利用的标准后,应推广污泥的土地利用,如污泥园林绿化,用来种植草皮及树木以达到防蚀保土和改善环境的作用;污泥土地改良,改善盐碱地,沙化地的性能;污泥还可以用来种植不进入人类食物链的植物,如玉米等,可用作生产工业酒精的原料,这种技术投资少,能耗低,可资源化,但对污泥的理化指标、营养指标、污染物浓度限值都有严格的限制,须慎重使用。(2)污泥填埋混合填埋指污泥与生活垃圾混合在填埋场进行填埋处置,将污泥与生活垃圾进行尽可能充分的混合,然后将混合物平展、压实,进行填埋。单独填埋指污泥在专用填埋进行填埋处置,可分为沟填、掩埋和堤坝式填埋三种类型。这种处置方法简单、易行、成本低,是一项比较普遍采用的污泥处置技术,新标准规定了污泥含水率小于60%的规定,污泥含水率需满足新标准要求。(3)污泥建筑材料利用污泥建筑材料利用一般包括用作水泥添加料、制砖和制轻质骨料等,这几方面技术比较成熟,消纳量较大,市场前景较好,可以作为污泥消纳的手段。制作建筑材料,污泥量需达到一定规模,才能有一定经济性。(4)污泥焚烧新标准认为污泥焚烧既是污泥处置,又是污泥处理。污泥属于污泥处置,这是因为污泥在焚烧过程中,尤其是在火力发电厂中与煤混烧,利用了污泥本身的热量,且经过焚烧后有机物完全矿化,自身性质已完全改变,符合污泥处置的定义。污泥焚烧也属于污泥处理,这是因为污泥焚烧是污泥稳定化、减量化和无害化处理的过程,符合污泥处理的定义。其优点是能使有机物全部碳化,杀死病原体,可最大限度地减少污泥体积,有效地利用了污泥的热值,且可以迅速和彻底地使污泥减容,能够满足越来越严格的环境要求。这种处理方式投资昂贵、设备复杂,尾气可能带来二次污染。表4-8 各种污泥处置方法综合比较序号 处置方式 技术难度 建设投资 运行费用 场地要求 能否资源化 无害化程度1 污泥土地利用(农田、园林绿化) 较简单 投资适中 稍大 较小 能 重金属低于标准时可以达到无害化要求2 填埋 简单 低,利用现有垃圾场设施 小 大 不能 延缓污染, 没有最终消除污染风险3 焚烧 技术设备要求较高 投资较大 较大 小 不能 尾气可能带来二次污染4 建筑材料 技术设备要求高 投资大 高 大 能 重金属稳定后不会带来二次污染通过上几种污泥处置方式进行比较,四种污泥处置方案都符合污泥处置“减量化、无害化、资源化”的处置原则,几种处置方案各有有缺点,结合本项目建设条件,其中污泥土地利用、污泥填埋由于投资运行费用低,较符合本项目实际,污水站污泥脱水干化后对污泥成分指标进行检测,如理化指标、营养指标、污染物浓度符合园林绿化、农田标准,屠宰厂污泥优先用于园林绿化、农田,不符合园林绿化和农田的泥质标准或者园林绿化利用不完的,

喷雾干燥是系统化技术应用于物料干燥的一种方法。于干燥室中将稀料经雾化后,在与热空气的接触中,水分迅速汽化,即得到干燥产品。该法能直接使溶液、乳浊液干燥成粉状或颗粒状制品,可省去蒸发、粉碎等工序。带式干燥机是成批生产用的连续式干燥设备,用于透气性较好的片状、条状、颗粒状物料的干燥,对于脱水蔬菜、催化剂、中药饮片等类含水率高、而物料温度不允许高的物料尤为合适;该系列干燥机具有干燥速度快、蒸发强度高、产品质量好的优点,对脱水滤饼类的膏状物料,需经造粒或制成条状后方可干燥。微波干燥不同于传统干燥方式,其热传导方向与水分扩散方向相同。与传统干燥方式相比,具有干燥速率大、节能、生产效率高、干燥均匀、清洁生产、易实现自动化控制和提高产品质量等优点,因而在干燥的各个领域越来越受到重视。

流化床干燥器毕业论文

摘要:流化床干燥器因具有较高的热质传递速率、结构紧凑、便于操作等优点而被广泛用于化工、食品、陶瓷、制药等行业,就流化床干燥设备的种类及普遍存在的一些问题和解决方法做一简要综述。关键词:干燥;卧式多室流化床;搅拌流化床;振动流化床;离心式流化床;脉冲流化床流化技术起源于1921年,最早应用于干燥工业化大生产是1948年美国建立的多尔—奥列弗固体流化装置,而我国直到1958年后才开始发展此项技术。流化床干燥过程中散状物料被置于孔板上,下部输送气体,使物料颗粒呈悬浮状态,犹如液体沸腾一样,使得物料颗粒与气体充分接触,进行快速的热传递与水分传递。流化干燥由于具有传热效果良好、温度分布均匀、操作形式多样、物料停留时间可调、投资费用低廉和维修工作量较小等优点,得到了广泛的发展和应用。1 流化床干燥设备的分类流化床干燥设备在不到100年的时间里,经过科研人员的不断改进和创新,得到了长足的发展和广泛的应用。其种类很多,根据待干燥物料性质的不同,所采用的流化床也不同,按其结构大致可分为:单层和多层圆筒型流化型、卧式多室流化型、搅拌流化型、振动流化型、离心式流化型、脉冲流化型等类型。1.1 单层和多层圆筒型流化床最早应用的流化床为单层圆筒型,其材料为普通碳钢内涂环氧酚醛防腐层,气体分布板是多孔筛板,板上小孔半径1.5 mm,正六角形排列。整个干燥过程为:湿物料由皮带输送机运送到抛料加料机上,然后均匀地抛入流化床内,与热空气充分接触而被干燥,干燥后的物料由溢流口连续溢出。空气进入鼓风机、加热器后进入筛板底部,向上穿过筛板,使床层内湿物料流化起来形成流化层。尾气进入旋风分离器组,将所夹带的细粉除下,然后由排气机排到大气中。此干燥器操作简单、劳动强度低、劳动条件好、运转周期长。但是由于单层圆筒流化床直径较小,物料停留时间较长,干燥后所得产品湿度不均匀。因此发展了多层流化床,该流化床不仅可以提高效率,更重要的是能够得到较为均匀的停留分布时间。为了对物料进行内扩散控制,多层流化床还先后经历了溢流管式、下流管式和穿流板式3个阶段。多层流化床的物料干燥程度均匀,干燥质量易于控制。热效

流化床不能干燥,易燃的液体流体向上流过一个微细颗粒的床层(塔体),当流速低的时候流体只是穿过静止的颗粒之间的空隙,此时的床体称为固定床;随着流速的增加,颗粒互相离开,并可看到少量的颗粒在一定的区间进行震动和游动,称为膨胀床;速度再升高达到使全部颗粒都刚好悬浮在向上流动的气体或者液体中,此时的床层就是流化床起点。 简单的说固体颗粒在流体作用下表现出类似流体状态的现象称为流态化。流化床是流态化发生的设备流化床干燥就是将待干燥的物料颗粒填入流化床中,再通入热的气流,形成流化状态,此时由于颗粒分散并作不规则运动,流体湍动程度加剧,造成了气体和固体之间的良好接触,加速了气固相之间的传质传热,而且床层温度均匀,没有局部过热,设备结构较简单紧凑,连续操作。流化床干燥技术是近年来发展起来的一种新型干燥技术,其过程是散状物料被置于孔板上,并由其下部输送气体,引起物料颗粒在气体分布板上运动,在气流中呈悬浮状态,产生物料颗粒与气体的混合底层,犹如液体沸腾一样。在流化床干燥器中物料颗粒在此混合底层中与气体充分接触,进行物料与气体之间的热传递与水分传递。目前被广泛用于化工、食品、陶瓷、药物、聚合物等行业中文名流化床干燥外文名fluid-bed drying应用领域化工、食品、药物、陶瓷用途物料干燥简介流化床干燥过程是散状物料被置于孔板上,并由其下部输送气体,引起物料颗粒在气体分布板上运动,在气流中呈悬浮状态,产生物料颗粒与气体的混合底层,犹如液体沸腾一样。在流化床干燥器中物料颗粒在此混合底层中与气体充分接触,进行物料与气体之间的热传递与水分传递[1]。流化原理如果气体通过一个颗粒床层,该床层随着气流速度的变化会呈现不同的状态。在流速较低时,气流仅是在静止颗粒的缝隙中流过,这时称为固定床。当气流速度增大到一定值时,所有的颗粒被上升的气流悬浮起来,此时气体对颗粒的作用力与颗粒的重力相平衡,床层达到起始流态化,这时的 气流速度称为最小流化速度。当气流速度超过这个值,高到超过颗粒的终端速度(最大流化速度)时,床层上界面消失并出现夹带现象,固体颗粒随流体从床层中带出,这种情况就是气力输送固体颗粒现象,或称分散相流化床[2]。流化床干燥的特点及应用流化床干燥具有较高的传热和传质速率,干燥速率高,热效率高,结构紧凑,基本投资和维修费用低,便于操作等优点。因此流化床干燥器被广泛用于化工、食品、陶瓷、药物、聚合物等行业[3]。流化床干燥器典型的流化床干燥器有一个锥形反应室,热空气从底部进入,通过物料层,再从顶部排出。工程上在普通流化床干燥器的基础上进行改型,研制开发了振动流化床干燥机、搅拌流化床干燥器、离心流化床干燥机等,扩大了流态化干燥的范围,改善了流化质量,提高了热质传递的强度。1.振动流化床干燥机振动流化床(vFB)就是在普通流化床上施加振动而成。在输料板上放上一层物料(粉状、粒状、条状等),对输料板施以振动,当振动加速度大于重力加速度时,料层开始膨胀,出现所谓的振动流态化状态。这时放在输料板上的物料产生强烈的混和,并且很容易作水平和倾斜移动。在此条件下,利用 对流、 传导、 辐射向料层供给热量,即可达到干燥的目的。由于床层的强烈振动,传热和传质的阻力减小,提高了振动流化床的干燥速率,同时使不易流化或流化时易产生大量夹带的块团性或高分散物料也能顺利干燥,克服了普通流化床易产生返混、沟流、粘壁等现象。振动流化床现在广泛应用于医药、食品、食盐、化工,饲料工业的干燥、冷却、造粒生产上[4]。2.搅拌流化床干燥器搅拌流化床干燥器是在流化床内装设搅拌器,使某些湿颗粒物料或易凝聚成团的物料也能采用流化干燥。可用于硫酸铵、氨基酸、酐酪素、聚丙烯树脂等物料的干燥。搅拌流化床干燥器具有下列优点:首先,扩大了流态化干燥技术的应用范围,适合于湿含量较大、在热气流中不易分散的物料或者在干燥脱水过程中可能结块的物料的干燥;其次,可以有效避免 沟流、腾涌和死床现象,获得均匀的流化状态,改善了流化质量,从而提高了热质传递强度。近年来随着搅拌流化床在药物、食品、化工产品的 造粒、涂层等过程中的应用,搅拌流化床干燥器在工业上得到了相当广泛的应用。3.离心流化床干燥机离心流化床是在离心力场中进行流化干燥的一种新型干燥设备,由于离心力场的存在离心加速度可以是重力加速度的几倍到几十倍,因此与普通重力流化床相比较,强化了湿分在物料内部的迁移过程,干燥时问短,传热传质速率高,能够有效地抑制气泡的生成及物料的夹带,对于在重力流化床中难以干燥的低密度、热敏性、易粘结的固体物料都可以有效地干燥。离心式流化床的应用比较广泛,目前已在水果、蔬菜、米饭等食品的干燥方面取得较好效果[5]。

流化床干燥器又称沸腾床干燥器,是利用流态化技术干燥湿物料。流化床干燥器种类很多,大致可分为以下几种:单层流化床干燥器、多层流化床干操器、卧式多室流化床干燥器、脉冲流化床干燥器、旋转快速干燥器、振动流化床干燥器、离心流化床千燥器和内热式流化床干燥器等。产品简介:流化床干燥机是由物料自进料进口进入机内,在振动力作用下,物料沿水平面流化床抛掷,向前连续运动,热风向上穿过流化床同湿物料换热后,湿空气经旋风分离器除尘后由排风1:3排出.干燥物料由排料进口排出。适用于化工、制药、食品、脱水蔬菜、粮食、矿产等行业的粉状、颗粒状物料的干燥、冷却等作业。工作原理 物料自进料进口进入机内,在振动力作用下,物料沿水平面流化床抛掷,向前连续运动,热风向上穿过流化床同湿物料换热后,湿空气经旋风分离器除尘后由排风1:3排出.干燥物料由排料进口排出。适应物料 适用于化工、制药、食品、脱水蔬菜、粮食、矿产等行业的粉状、颗粒状物料的干燥、冷却等作业。 如:柠檬酸、味精、硼砂、硫铵、复合肥、萝l、丝、豆粕、酒糟、种子、矿渣、砂糖等。性能特点◎振动源是采用振动电机驱动,运转平稳,维修方便,噪音低,寿命长。◎流态化匀称,无死空隙和吹穿现象,可以获得均匀的干燥,冷却制品。◎可调性好,适用面宽。料层厚度和在机内移动速度以及全振幅变更均可实现无级调节。◎对物料表面的损伤小.可用于易碎物料的干燥,物料颗粒不规则时亦不影响工作效果。◎采用全封闭式的结构.有效地防止了物料与空气间交叉感染,作业环境清洁。◎机械效率与热效率高,节能效果好,比一般干燥装置可节能30一60%。分类:按照被干燥物料,可分为三类:(1)适用于粒状物料;(2)适用于膏状物料;(3)适用于悬浮液和溶液等具有流动性的物料。按操作条件不同,可分为两类:连续式和间歇式。按结构状态,可分为一般流化型、搅拌流化型、振动流化型、脉冲流化型、碰撞流化型。特点:可实行自动化生产,是连续式干燥设备。干燥速度快,温度低,能保证生产质量,符合药品生产GMP要求。应用范围:它适用于散粒状物料的干燥,如医药药品中的原料药、压片颗粒料、中药;中剂、化工原料中的塑料树脂、柠檬酸和其它粉状、颗粒状物料的干燥除湿,还用于食品饮料;中剂,粮食加工,玉米胚芽、饲料等的干燥,以及矿粉、金属粉等物料。 物料的粒径最大可达6mm.最佳为0.5-3mm。除湿/干燥床编辑使加热的外界空气流过水分饱和的除湿/干燥床上方,

  • 索引序列
  • 新型高效干燥器特性参数研究论文
  • 木材干燥特性研究论文
  • 带式干燥器的研究进展论文
  • 毕业论文带式干燥器
  • 流化床干燥器毕业论文
  • 返回顶部