当今时代,电脑已经成为人们生活以及公司发展的必需品。现在和未来一切都是电脑,所以现在电脑技术还是很有前途的,只要你的技术过硬,找到一份好工作,获得高额薪水,一切都不是问题。
我也是大四的计算机学院的,其实吧,题目这种东西你可以跟老师商量一下,有特殊情况的话应该可以不用做学校的题目,你可以自己选一个简单的,说得过去的,好好跟导师商量一下,如果导师不是很死板的话会理解的。我学的是.NET,导师给的题目都是PHP的,我就自己选的题目,导师也同意了。
数据挖掘得概念,关键技术及应用 数据挖掘的分类方法、概念、关键技术、图形图像得应用数据挖掘的关联规则、概念、算法(以两种算法规则为例)归纳算法过程
本科学位论文是侧重于动手能力的,所以称为毕业设计,大数据处理类的,如果真的去搭建云平台是稍微有些不太好做,毕竟咱们个人的计算机终端是不够的,所以我觉得侧重于大数据安全,有一些算法,简单仿真,或者基于hadoop对某个行业的数据进行下分析计算也是没问题,到实例部分其实你用数据挖掘的方法去做,结果差不多
python数据挖掘技术及应用论文选题如下:1、基于关键词的文本知识的挖掘系统的设计与实现。2、基于MapReduce的气候数据的分析。3、基于概率图模型的蛋白质功能预测。4、基于第三方库的人脸识别系统的设计与实现。5、基于hbase搜索引擎的设计与实现。6、基于Spark-Streaming的黑名单实时过滤系统的设计与实现。7、客户潜在价值评估系统的设计与实现。8、基于神经网络的文本分类的设计与实现。
金融类毕业论文常用题目1. 金融不良资产价值影响因素的实证研究2. 我国农村经济增长中的农村金融抑制研究3. 发展中国家的金融自由化与中国金融开放4. 衍生金融工具会计问题研究5. 我国房地产金融风险及防范研究6. 房地产金融风险管理及对策研究7. 我国金融衍生市场创建若干法律问题初探8. 现代银行业金融机构市场退出法律问题刍议9. 论我国进出口政策性金融机构的立法完善10. 上海国际金融中心建设的制约因素分析11. 我国商业银行金融创新研究12. 我国商业银行金融衍生品的风险管理研究13. 金融危机后韩国银行业重组机制对中国的启示14. 金融自由化所必须的法律规则及其实施15. 我国金融发展对经济增长影响的理论分析与实证研究16. 制度、制度变迁与我国金融制度变迁研究17. 离岸金融法律监管问题研究18. 连接函数(Copula)理论及其在金融中的应用19. 我国金融控股公司的风险管理研究20. 构建中国金融条件指数21. 中国金融发展水平:比较与分析22. 论国际金融衍生交易中的法律问题23. 金融投资风险评价BP神经网络模型研究及应用24. 现代金融危机的理论与实践25. 欧元对国际金融市场的影响26. 试论金融债权资产的定价理论与实务27. 中国宏观金融风险的统计度量与分析28. 无线金融交易模型(WFTM)技术研究 29. 中国渐进改革中以租金为基础的政府金融支持行为30. 对我国金融控股公司发展问题的探讨31. 我国农村金融抑制问题研究32. 论金融控股公司的监管33. 金融监管有效性研究34. 区域金融中心与区域经济发展研究35. 非正规金融在我国金融生态中的地位和作用分析36. 商业银行金融服务创新及应用研究37. 西部地区县域金融发展问题38. 房地产金融风险的评价及防范对策研究39. 房地产市场泡沫及其金融风险研究40. 中国发展金融控股公司的研究与设想41. 金融开放条件下的货币政策传导机制42. 金融创新的扩散机理研究43. 关于我国金融资产管理公司商业化转型的研究44. 基于行为金融理论下的市场有效性研究与证券价值分析45. 亚洲金融危机以来我国外贸出口政策的协调性研究46. 我国农村金融生态问题研究47. 金融中介的发展与金融稳定问题研究48. 中外汽车金融比较研究49. 金融资源优化配置解析及对江苏的实际考察50. 金融衍生工具在利率风险管理中的应用51. 沪港金融中心发展的比较研究52. 养老保险制度基础与金融工具创新53. 区域金融发展与区域经济增长关系的实证研究54. 中国资本项目开放与金融深化关系的实证分析55. 金融反腐败与金融安全56. 我国金融中介作用于经济增长的路径分析57. 中国金融领域反洗钱制度分析58. 金融服务业消费者的安全保障问题研究59. 基于资本市场的国防工业整合中的金融支撑研究60. 汽车金融中的信贷资产证券化研究61. “新经济”后美国财政货币政策及对金融市场的影响研究62. 和谐金融生态体系的构建及区域金融生态的改善63. 金融控股公司风险与监管研究64. 中国金融资产管理公司发展策略研究65. 我国农村信用社金融风险研究66. 论我国农村金融市场的构建67. 论我国商业银行个人金融业务的发展68. 我国中小企业的金融机构融资之路研究69. 中国汽车金融风险管理70. 金融危机与民主化71. 构建金融网格的若干技术研究72. 金融深化、资本深化与地方财政分权73. 金融创新环境中的银行审慎监管机制研究74. 重庆近代金融建筑研究75. 网络金融风险及其监管探析76. 金融中介理论和我国全能银行的发展77. 重构我国农村金融体系研究78. 非洲货币联盟的发展79. 关于建立我国中小企业政策性金融体系的思考80. 金融衍生工具监管制度研究81. 我国金融制度变迁路径的不对称研究82. 我国的非正规金融83. 安徽县域经济发展中的金融支持研究84. 银行国际化与金融发展关系的实证分析85. 基于VaR技术的中国金融市场风险管理及实证研究86. 世界金融监管模式的发展及我国之借鉴87. 我国商业银行金融品牌理论与实践探讨88. 山东省金融资源的配置和经济分析89. 我国商业银行对中小企业金融支持的路径研究90. 农村金融资源的逆向配置与政策研究91. 中国金融资产管理公司的商业化转型问题研究92. 山东省农村金融发展对农村经济增长的作用机制:理论与实证研究93. 金融创新视角下的金融管制研究94. 中国金融业务综合经营收益和风险模拟分析95. 电子金融的风险发生机理与防范策略研究96. 金融集团监管的法律问题研究97. 衍生金融工具会计对我国银行业的影响研究98. 我国商业银行房地产金融风险及其防范99. FDI与经济发展:金融市场的作用100. 国内金融控股公司业务协同与创新研究101. 新光证券交易系统的设计与实现102. 论我国住房抵押贷款证券化的实践与完善103. 资产证券化的定价探讨和实证分析104. 资产证券化理论及我国的应用探索105. 从行为金融学的角度透析我国证券市场的效率106. 证券翻译理论与实践107. 我国住房抵押贷款证券化运作模式及定价方法研究108. 住房抵押贷款证券的定价方法及其在中国的应用分析109. 中国早期证券公司衰亡原因分析110. 股权分置改革的法律问题研究111. 证券服务机构虚假陈述民事责任问题研究112. 对我国资产证券化法制环境的分析和立法构想113. 我国证券投资者权益保护法律问题研究114. 互联网对我国证券经纪业的影响115. 我国证券投资基金投资风格的经验分析116. 中国开放式证券投资基金的风险管理117. 中国证券市场有效性研究118. 我国证券市场有效性研究119. 证券市场中的会计事务所变更研究120. 中国证券市场最小报价单位调整的效应分析121. 证券公司网络改造技术研究122. 数据挖掘技术在证券领域的应用123. 上市公司证券法监管研究124. 证券欺诈犯罪若干问题研究125. 中美证券市场比较分析126. 资产证券化127. 住房抵押贷款证券化模式研究128. 基于与证券投资基金比较的我国社会保障基金管理研究129. 我国证券公司竞争力研究130. 我国证券市场机构投资者价值投资行为研究131. 中国证券市场投资风险与收益研究132. 住房抵押贷款证券化产品在我国的应用研究133. 中国证券投资基金业绩与规模关系的实证研究134. 我国开放式证券投资基金业绩评价实证研究135. 基于行为金融理论下的市场有效性研究与证券价值分析136. 我国证券市场股权结构的制度安排与改革137. 我国证券经纪业务研究138. 我国证券经纪人发展问题研究139. 构建和提升证券公司核心竞争力探析140. 资产证券化相关会计问题研究141. 住房抵押贷款证券化过程的风险控制研究142. 汽车金融中的信贷资产证券化研究143. 佣金自由化下的证券公司盈利模式分析144. 我国证券投资基金系统性与非系统性风险研究145. 我国证券市场中小投资者权益保护机制研究146. 我国住房抵押贷款证券化研究与实证分析147. 我国证券投资基金和股票价格波动性的实证研究148. 证券投资中股票选择理论分析与案例研究149. 中国证券投资基金羊群行为及内部博弈研究150. 我国证券市场内幕交易管制的实证检验151. 我国证券信息内幕操纵与证券监管研究152. 中国证券投资基金业绩评价实证研究153. 证券公司风险的法律监管154. 证券投资基金监管法律制度研究155. 世界主要国家和地区与我国证券稽查执法模式比较156. 资产证券化—我国的立法模式选择157. 证券市场操纵行为法律规制研究158. 资产证券化中特殊目的载体法律问题研究159. 一类部分信息下证券投资最优化问题160. 我国工商企业资产证券化融资方式研究161. 信贷资产证券化法律问题研究162. 我国证券市场的风险研究163. 证券交易所上市费的经济分析164. 中国证券公司治理结构与发展环境分析165. 银行信贷资产证券化的信用风险分析166. 淄博市农村合作银行证券委托业务处理系统167. 我国住房抵押贷款证券化的障碍及对策研究168. 证券业网上交易系统设计与实现169. TT证券经纪业务营销策略研究170. 证券公司数据采集与数据可视化171. 证券投资基金风险管理研究172. 利率期限结构的混沌模型及其在利率衍生证券定价中的应用173. 资产证券化财务效应研究174. 证券市场政府监管的适度性分析175. 证券民事责任制度研究176. 证券管制的立法目标及其实现177. 中国证券市场审计失败问题研究178. 中国证券市场投资者有限理性行为研究179. 我国商业银行不良贷款证券化研究180. 我国证券市场国际化的风险问题研究181. 抵押权证券化法律问题研究182. 我国开放式证券投资基金市场营销分析183. 中国的A股上市公司是否成功地购买了审计意见184. 人寿保险证券化及其在化解我国寿险业利差损问题中的应用185. 证券市场委托理财合同纠纷案件处理的思考186. 中国证券公司盈利模式转变研究187. 人民币升值对中国银行业、证券业及外商直接投资的影响分析188. 中国证券市场信用问题研究189. 我国证券投资基金评价体系研究190. 保险风险证券化研究191. QDⅡ制度与我国证券市场的渐进开放192. 证券投资基金产品创新设计研究193. 我国证券监管法制现状及其完善194. 中国证券投资基金业绩绩效评价体系的研究195. 证券投资者保护基金法律问题研究196. 资产证券化SPV法律问题研究197. 我国住房抵押贷款证券化发展问题研究198. 中国证券投资基金治理结构研究199. 证券投资基金监管法律问题研究200. 我国证券公司融资模式研究
数据挖掘得概念,关键技术及应用 数据挖掘的分类方法、概念、关键技术、图形图像得应用数据挖掘的关联规则、概念、算法(以两种算法规则为例)归纳算法过程
浅谈基于大数据时代的机遇与挑战论文推荐
在学习和工作中,大家总少不了接触论文吧,论文的类型很多,包括学年论文、毕业论文、学位论文、科技论文、成果论文等。为了让您在写论文时更加简单方便,以下是我精心整理的浅谈基于大数据时代的机遇与挑战论文,仅供参考,希望能够帮助到大家。
浅谈基于大数据时代的机遇与挑战论文
1、大数据的基本概况
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据,其具有以下四个基本特性,即海量性、多样性、易变性、高速性。同时数据类型繁多、数据价值密度相对较低、处理速度快、时效性要求高等也是其主要特征。
2、大数据的时代影响
大数据,对经济、政治、文化等方面都具有较为深远的影响,其可帮助人们进行量化管理,更具科学性和针对性,得数据者得天下。大数据对于时代的影响主要包括以下几个方面:
(1)“大数据决策”更加科学有效。如果人们以大数据分析作为基础进行决策,可全面获取相关决策信息,让数据主导决策,这种方法必将促进决策方式的创新和改变,彻底改变传统的决策方式,提高决策的科学性,并推动信息管理准则的重新定位。2009 年爆发的甲型H1N1 流感就是利用大数据的一个成功范例,谷歌公司通过分析网上搜索的大量记录,判断流感的传播源地,公共卫生机构官员通过这些有价值的数据信息采取了有针对性的行动决策。
(2)“大数据应用”促进行业融合。虽然大数据源于通信产业,但其影响绝不局限于通信产业,势必也将对其他产生较为深远的影响。目前,大数据正逐渐广泛应用于各个行业和领域,越来越多的企业开始以数据分析为辅助手段加强公司的日常管理和运营管理,如麦当劳、肯德基、苹果公司等旗舰专卖店的位置都是基于大数据分析完成选址的,另外数据分析技术在零售业也应用越来越广泛。
(3)“大数据开发”推动技术变革。大数据的应用需求,是大数据新技术开发的源泉。相信随着时代的不断发展,计算机系统的数据分析和数据挖掘功能将逐渐取代以往单纯依靠人们自身判断力的领域应用。借助这些创新型的大数据应用,数据的能量将会层层被放大。
另外,需要注意的是,大数据在个人隐私的方面,容易造成一些隐私泄漏。我们需要认真严肃的对待这个问题,综合运用法律、宣传、道德等手段,为保护个人隐私,做出更积极的努力。
3、大数据的应对策略
3.1 布局关键技术研发创新。
目前而言,大数据的技术门槛较高,在这一领域有竞争力的多为一些在数据存储和分析等方面有优势的信息技术企业。为促进产业升级,我们必须加强研究,重视研发和应用数据分析关键技术和新兴技术,具体可从以下几个方面入手:第一,夯实发展基础,以大数据核心技术为着手点,加强人工智能、机器学习、商业智能等领域的理论研究和技术研发,为大数据的应用奠定理论基础。二是加快基础技术(非结构化数据处理技术、可视化技术、非关系型数据库管理技术等)的研发,并使其与物联网、移动互联网、云计算等技术有机融合,为解决方案的制定打下坚实基础。三是基于大数据应用,着重对知识计算( 搜索) 技术、知识库技术、网页搜索技术等核心技术进行研发,加强单项技术产品研发,并保证质量的提升,同时促使其与数据处理技术的有机结合,建立科学技术体系。
3.2 提高软件产品发展水平。
一是促进以企业为主导的产学研合作,提高软件发展水平。二是运用云计算技术促进信息技术服务业的转型和发展,促进中文知识库、数据库与规则库的建设。三是采取鼓励政策引导软硬件企业和服务企业应用新型技术开展数据信息服务,提供具有行业特色的系统集成解决方案。四是以大型互联网公司牵头,并聚集中小互联网信息服务提供商,对优势资源进行系统整合,开拓与整合本土化信息服务。五是以数据处理软件商牵头,这些软件商必须具备一定的基础优势,其可充分发挥各自的数据优势和技术优势,优势互补,提高数据软件开发水平,提高服务内容的精确性和科学性。同时提高大数据解决方案提供商的市场能力和集成水平,以保障其大数据为各行业领域提供较为成熟的解决方案。
3.3 加速推进大数据示范应用。
大数据时代,我们应积极推进大数据的示范应用,可从以下几个方面进行实践:第一,对于一些数据量大的领域(如金融、能源、流通、电信、医疗等领域),应引导行业厂商积极参与,大力发展数据监测和分析、横向扩展存储、商业决策等软硬件一体化的行业应用解决方案。第二,将大数据逐渐应用于智慧城市建设及个人生活和服务领域,促进数字内容加工处理软件等服务发展水平的提高。第三,促进行业数据库(特别是高科技领域)的深度开发,建议针对不同的行业领域建立不同的专题数据库,以提供相应的内容增值服务,形成有特色化的服务。第四,以重点领域或重点企业为突破口,对企业数据进行相应分析、整理和清洗,逐渐减少和去除重复数据和噪音数据。
3.4 优化完善大数据发展环境。
信息安全问题是大数据应用面临的主要问题,因此,我们应加强对基于大数据的情报收集分析工作信息保密问题的研究,制定有效的防范对策,加强信息安全管理。同时,为优化完善大数据发展环境,应采取各种鼓励政策(如将具备一定能力企业的数据加工处理业务列入营业税优惠政策享受范围)支持数据加工处理企业的发展,促使其提高数据分析处理服务的水平和质量。三是夯实大数据的应用基础,完善相关体制机制,以政府为切入点,推动信息资源的集中共享。
做到上面的几点,当大数据时代来临的时候,面临大量数据将不是束手无策,而是成竹在胸,而从数据中得到的好处也将促进国家和企业的快速发展。
大数据为经营的横向跨界、产业的越界混融、生产与消费的合一提供了有利条件,大数据必将在社会经济、政治、文化等方面对人们生活产生巨大的影响,同时大数据时代对人类的数据驾驭能力也提出了新的挑战与机遇。面对新的挑战与发展机遇,我们应积极应对,以掌握未来大数据发展主动权。
结构
论文一般由名称、作者、摘要、关键词、正文、参考文献和附录等部分组成,其中部分组成(例如附录)可有可无。
1、论文题目
要求准确、简练、醒目、新颖。
2、目录
目录是论文中主要段落的'简表。(短篇论文不必列目录)
3、内容提要
是文章主要内容的摘录,要求短、精、完整。
4、关键词定义
关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。
主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语。(参见《汉语主题词表》和《世界汉语主题词表》)。
5、论文正文
(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。
(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:
a.提出问题-论点;
b.分析问题-论据和论证;
c.解决问题-论证方法与步骤;
d.结论。
6、参考文献
一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按进行。
7、论文装订
论文的有关部分全部抄清完了,经过检查,再没有什么问题,把它装成册,再加上封面。论文的封面要朴素大方,要写出论文的题目、学校、科系、指导教师姓名、作者姓名、完成年月日。论文的题目的作者姓名一定要写在表皮上,不要写里面的补页上。
本案例是基于水质图像来对水质进行分类,所以是图像分类问题,一般的,可以直接构建CNN深度模型来分析,效果会非常好,但此处我们首先从图像中提取特征,然后用SVM分类器来分类。 水色分类的类别分别为: 整个分析流程为: 数据的收集过程为:拍摄水样,采集水样图片,从图像中提取出关键特征指标。所以此处的图像特征提取是图像识别或分类的关键步骤。 图像特征有非常多,比如颜色特征,问你特征,形状特征,空间关系特征等,其中颜色特征处理中常用直方图法,颜色矩方法等。 其中颜色矩包含各个颜色通道的一阶矩,二阶矩,三阶矩,对于RGB图像,每个通道有三个矩,故而有9个分量。 本案例采用颜色矩的方法来对图像进行分类。 采集的图像中包含有容器等其他无关信息,所以要对图像进行切割,得到最终将的101x101的小图像。 分别计算小图像中每个像素点的每个通道的一阶颜色矩,二阶颜色矩,三阶颜色矩。 最终得到数据集。 最终得到的数据集为: 参考资料: 《Python数据分析和挖掘实战》张良均等
文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。
一、语料库(Corpus)
语料库是我们要分析的所有文档的集合。
二、中文分词
2.1 概念:
中文分词(Chinese Word Segmentation):将一个汉字序列切分成一个一个单独的词。
eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市
停用词(Stop Words):
数据处理时,需要过滤掉某些字或词
√泛滥的词,如web、网站等。
√语气助词、副词、介词、连接词等,如 的,地,得;
2.2 安装Jieba分词包:
最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。
后来在这里:下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。
然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图:
2.3 代码实战:
jieba最主要的方法是cut方法:
jieba.cut方法接受两个输入参数:
1) 第一个参数为需要分词的字符串
2)cut_all参数用来控制是否采用全模式
jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细
注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode
jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )
输出结果为: 我 爱
Python
工信处
女干事
每月 经过 下属 科室 都 要 亲口
交代
24 口 交换机 等 技术性 器件 的 安装
工作
分词功能用于专业的场景:
会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。
但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。
我们可以用jieba.load_userdict(‘D:PDM2.2金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。
2.3.1 对大量文章进行分词
先搭建语料库:
分词后我们需要对信息处理,就是这个分词来源于哪个文章。
四、词频统计
3.1词频(Term Frequency):
某个词在该文档中出现的次数。
3.2利用Python进行词频统计
3.2.1 移除停用词的另一种方法,加if判断
代码中用到的一些常用方法:
分组统计:
判断一个数据框中的某一列的值是否包含一个数组中的任意一个值:
取反:(对布尔值)
四、词云绘制
词云(Word Cloud):是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。
4.1 安装词云工具包
这个地址: ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。
在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。
五、美化词云(词云放入某图片形象中)
六、关键词提取
结果如下:
七、关键词提取实现
词频(Term Frequency):指的是某一个给定的词在该文档中出现的次数。
计算公式: TF = 该次在文档中出现的次数
逆文档频率(Inverse Document Frequency):IDF就是每个词的权重,它的大小与一个词的常见程度成反比
计算公式:IDF = log(文档总数/(包含该词的文档数 - 1))
TF-IDF(Term Frequency-Inverse Document Frequency):权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。
计算公式:TF - IDF = TF * IDF
7.1文档向量化
7.2代码实战
数据挖掘得概念,关键技术及应用 数据挖掘的分类方法、概念、关键技术、图形图像得应用数据挖掘的关联规则、概念、算法(以两种算法规则为例)归纳算法过程
您好,根据您的要求,以下是刘勰时序论文的题目:1.时序分析在社会网络分析中的应用2.时序分析在虚拟社会中的应用3.时序分析在智能家居中的应用4.时序分析在智能交通系统中的应用5.时序分析在智能医疗系统中的应用6.时序分析在智能安全系统中的应用7.时序分析在自然语言处理中的应用8.时序分析在智能商业系统中的应用9.时序分析在智能制造系统中的应用10.时序分析在智能环境监测系统中的应用
寿险行业数据挖掘应用分析寿险是保险行业的一个重要分支,具有巨大的市场发展空间,因此,随着寿险市场的开放、外资公司的介入,竞争逐步升级,群雄逐鹿已成定局。如何保持自身的核心竞争力,使自己始终立于不败之地,是每个企业必须面对的问题。信息技术的应用无疑是提高企业竞争力的有效手段之一。寿险信息系统经过了多年的发展,已逐步成熟完善,并积累了相当数量的数据资源,为数据挖掘提供了坚实的基础,而通过数据挖掘发现知识,并用于科学决策越来越普遍受到寿险公司的重视。数据挖掘数据挖掘(Data Mining,DM)是指从大量不完全的、有噪声的、模糊的、随机的数据中,提取隐含在其中的、有用的信息和知识的过程。其表现形式为概念(Concepts)、规则(Rules)、模式(Patterns)等形式。目前业内已有很多成熟的数据挖掘方法论,为实际应用提供了理想的指导模型。CRISP-DM(Cross-Industry Standard Process for Data Mining)就是公认的、较有影响的方法论之一。CRISP-DM强调,DM不单是数据的组织或者呈现,也不仅是数据分析和统计建模,而是一个从理解业务需求、寻求解决方案到接受实践检验的完整过程。CRISP-DM将整个挖掘过程分为以下六个阶段:商业理解(Business Understanding),数据理解(Data Understanding),数据准备(Data Preparation),建模(Modeling),评估(Evaluation)和发布(Deployment)。商业理解就是对企业运作、业务流程和行业背景的了解;数据理解是对现有企业应用系统的了解;数据准备就是从企业大量数据中取出一个与要探索问题相关的样板数据子集。建模是根据对业务问题的理解,在数据准备的基础上,选择一种更为实用的挖掘模型,形成挖掘的结论。评估就是在实际中检验挖掘的结论,如果达到了预期的效果,就可将结论发布。在实际项目中,CRISP-DM模型中的数据理解、数据准备、建模、评估并不是单向运作的,而是一个多次反复、多次调整、不断修订完善的过程。行业数据挖掘经过多年的系统运营,寿险公司已积累了相当可观的保单信息、客户信息、交易信息、财务信息等,也出现了超大规模的数据库系统。同时,数据集中为原有业务水平的提升以及新业务的拓展提供了条件,也为数据挖掘提供了丰厚的土壤。根据CRISP-DM模型,数据挖掘首先应该做的是对业务的理解、寻找数据挖掘的目标和问题。这些问题包括:代理人的甄选、欺诈识别以及市场细分等,其中市场细分对企业制定经营战略具有极高的指导意义,它是关系到企业能否生存与发展、企业市场营销战略制定与实现的首要问题。针对寿险经营的特点,我们可以从不同的角度对客户群体进行分类归纳,从而形成各种客户分布统计,作为管理人员决策的依据。从寿险产品入手,分析客户对不同险种的偏好程度,指导代理人进行重点推广,是比较容易实现的挖掘思路。由于国内经济发展状况不同,各省差异较大,因此必须限定在一个经济水平相当的区域进行分析数据的采样。同时,市场波动也是必须要考虑的问题,一个模型从建立到废弃有一个生命周期,周期根据模型的适应性和命中率确定,因此模型需要不断修订。挖掘系统架构挖掘系统包括规则生成子系统和应用评估子系统两个部分。规则生成子系统主要完成根据数据仓库提供的保单历史数据,统计并产生相关规律,并输出相关结果。具体包括数据抽取转换、挖掘数据库建立、建模(其中包括了参数设置)、模型评估、结果发布。发布的对象是高层决策者,同时将模型提交给应用评估子系统.根据效果每月动态生成新的模型。应用评估子系统可以理解为生产系统中的挖掘代理程序,根据生成子系统产生的规则按照一定的策略对保单数据进行非类预测。通过系统的任务计划对生产数据产生评估指标。具体包括核心业务系统数据自动转入数据平台、规则实时评估、评估结果动态显示、实际效果评估。规则评估子系统根据规则进行检测。经过一段时间的检测,可利用规则生成子系统重新学习,获得新的规则,不断地更新规则库,直到规则库稳定。目前比较常用的分析指标有: 险种、交费年期、被保人职业、被保人年收入、被保人年龄段、被保人性别、被保人婚姻状况等。实践中,可结合实际数据状况,对各要素进行适当的取舍,并做不同程度的概括,以形成较为满意的判定树,产生可解释的结论成果。