首页 > 学术发表知识库 > 锂离子电池学术论文

锂离子电池学术论文

发布时间:

锂离子电池学术论文

▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学

论文DOI:10.1038/s41467-020-15712-z

针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。

锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。

单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。

▲图一 单原子催化剂的合成过程。

单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。

▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。

▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。

N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。

▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。

受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。

▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。

为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。

▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。

单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。

▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。

N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。

单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。

参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.

徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。

在科研工作的完整生命周期里,筛选文献是费时同时也是可以省时的一环,筛选速度和效率对于做科研十分重要,需要快速了解全球热点,快速完成研究领域的调研,快速跟踪最新的科研进展。面对成千上万篇检索文献,如何快速筛选出高质量的目标文献?下面以锂离子电池为例,从五个方面为大家展示。首先,打开寻知学术文献数据检索平台(),在首页检索框输入检索式,即可检索出所有锂离子电池相关文献。在一万多的文献中,接下来可以采用以下方法,来筛选有价值的高质量文献1、综述文献(分面聚类项)在分面聚类项中的文献类型一栏,选择Review,即可检索出所有综述类文章。综述属三次文献,专题性强,具有一定的深度和时间性,能反映出这一专题的历史背景、研究现状和发展趋势,具有较高的情报学价值。2、核心期刊/中科院分区(分面聚类项/图标标注)利用分面聚类项的核心期刊和中科院分区,两者组合使用,可快速选出本领域的核心高质量期刊文献。如图,根据1区和核心期刊,精选出的5000篇文献,就是高质量的经典文献。3、文献作者(分面聚类项)每个领域内都有几个领军人物,他们所从事的方向往往代表目前的发展主流。因此,阅读这些作者的文献就可以把握目前的研究重点。在分面聚类项文献作者一栏,根据作者发文量即可快速找出发文量较高的重要研究员,点击后其发表的文章即可筛选出来。4、作者单位/基金资助单位(分面聚类项)利用分面聚类项的作者单位和基金资助单位,可以发现活跃于该研究领域的高产机构,以及资助强度大的重要基金赞助单位,找出有重要基金资助的高产机构的重要文献。5、引用排序和文献年份(分面聚类项)结合使用先在排序框选择引用从高到底排序,然后在分面聚类项选择出版年,根据自己需要输入。如图,检索出了近5年多的高被引的经典文献。高引用次数的文章,通常也是高影响力的文章,同时也是该领域比较基础的研究成果。利用以上方法或分面聚类项结合使用,就可以快速找到有价值的高质量文献,从而为自己的课题研究提供参考,希望对大家有所帮助。后期我将继续给大家分享《如何筛选最新和热门文献》,敬请关注。

锂离子电池论文文献

▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学

论文DOI:10.1038/s41467-020-15712-z

针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。

锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。

单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。

▲图一 单原子催化剂的合成过程。

单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。

▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。

▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。

N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。

▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。

受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。

▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。

为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。

▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。

单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。

▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。

N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。

单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。

参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.

徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。

尖晶石型锰酸锂正极材料的合成及电化学性能研究 在线阅读 整本下载 分章下载 分页下载 【英文题名】 The Study of Electrochemistry Performance for Synthesize Spinel Li-Mn-O Materials on the Lithium-ion Battery 【作者】 卢星河; 【导师】 唐致远; 【学位授予单位】 天津大学; 【学科专业名称】 应用化学 【学位年度】 2005 【论文级别】 博士 【网络出版投稿人】 天津大学 【网络出版投稿时间】 2007-07-10 【关键词】 锂离子电池; 正极材料; 尖晶石型锰酸锂; 阴阳离子复合掺杂; 包覆改性; 电化学性能; 高温性能; 【英文关键词】 lithium-ion battery; cathode material; spinel LiMn_2O_4; doping; surface modification; electrochemical performance; elevated temperature performance; 【中文摘要】 锂离子电池因质量比容量大、平均开路电压高和循环寿命长等优点已广泛应用于移动、便携式电器。目前锂离子电池的正极材料主要采用层状钴酸锂。由于钴资源的短缺、大电流充放电和高温环境使用的不安全因素,研究开发新一代高性能正极材料成为一项重要课题。尖晶石型LiMn_2O_4材料具有原料资源丰富、易制备和环境友好等优点,特别是因为充放电电压高、循环性能好、比容量高和使用安全等优良的电化学性能,该材料成为本研究的重点: 本研究首先对尖晶石型锰酸锂正极材料的研究现状、存在问题和解决方案等进行了较系统的探讨,先后制定了多项改善和提高尖晶石型锰酸锂电化学性能的措施。合成研究了分别和同时掺杂阴、阳离子正极材料Li_(1.02)M_xMn_(2-x)Q_yO_(4-y)的充放电比容量、循环性能、高温(55℃)性能和大电流充放电性能等,表征了合成材料的晶体结构、表观形态、粒径及粒径分布规律,进一步探讨了表面包覆(修饰)改性和电解液及其组成对锰酸锂正极材料的作用和影响。 以实验室合成的尖晶石型锰酸锂LiCo_xCr_yMn_(2-x-y)O_4材料为母体材料,以SiO_2... 【英文摘要】 The lithium-ion batteries have been widely used in portable electronic products such as, cell phones, notebook computers and cameras because of its high-capacity (2.5 times as large as the Ni-Cd batteries and 1.5 times as large as the Ni-MH batteries) and high average open voltage, that is, 3.7 V in contrast with the 1.2V of Ni-MH batteries. In the near future, the lithium-ion battery will used in the motive-batteries. As key parts of the battery,the anode and cathode have become one of the hott... 【DOI】 CNKI:CDMD:1.2007.078634 【更新日期】 2007-07-25 【相同导师文献】 导师:唐致远 导师单位:天津大学 学位授予单位:天津大学[1] 高飞.锂离子电池正极材料LiFePO_4的合成与电化学性能研究[D]. 中国博士学位论文全文数据库,2008,(08)[2] 黄娟.循环冷却水新型加酸工艺配方的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[3] 常林荣.铝轻型板栅在铅酸电池中的应用及聚苯胺的电化学合成[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[4] 穆雪梅.新型高效氧电极催化剂的研究与评价[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[5] 邱瑞玲.固相法合成LiFePO_4及其改性研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[6] 王倩.柔性纸质电池的研制[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[7] 赵松鹤.锂离子电池负极材料钛酸锂的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[8] 张联忠.两种锂离子电池负极材料的研究[D]. 中国优秀硕士学位论文全文数据库,2006,(08)[9] 肖成伟.车用锂离子动力电池循环性能的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)[10] 樊勇利.锂离子电池正极材料氧化镍钴锰锂的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)

喜欢就 关注我们吧,订阅更多最新消息

全文速览

针对锂金属不均匀沉积造成的锂枝晶生长以及死锂疯狂聚集等问题,本工作利用平行排列的具有多孔结构的轻质碳骨架,在电镀过程中为锂沉积提供足够的空间和连续的导电网络,从而来均匀化锂离子分布,使电极/电解液的界面处的电流密度分布均匀,达到抑制锂枝晶生长以及缓解金属锂循环过程中的体积膨胀的目的。作者对其复合金属负极进行了一系列电化学性能的测试,所测结果表明该复合锂金属负极所组成的对称电池在4.0 mAh cc,2.0 mAh cm -2 的条件下可稳定循环4800 h而没有明显的电压滞后现象。此外,以该复合锂电极为负极,NCM811为正极所组装的全电池也展现出了优异的循环稳定性以及高的倍率性能。更重要的是,低温性能测试结果表明,该复合金属锂负极在低温下依然具有优异的可逆性以及循环稳定性。在此基础上,作者还通过理论计算很好地验证了实验结果,进一步证明了该平行排列的多孔结构有利于促进锂离子的均匀沉积,实现锂金属负极的稳定循环

背景介绍

金属锂表现出的高理论比容量(3860 mAh g -1 )和超低电化学电势(-3.04 V),一直是二次电池领域人们为之神往的圣杯。然而,锂金属负极中的枝晶生长以及固态电解质界面的不稳定性成为它趋向完美的严重阻碍。锂枝晶的生长以及界面的不稳定会造成金属锂的可持续利用率降低,甚至会刺穿隔膜造成电池爆炸等安全性问题。因此,控制金属锂的均匀沉积是实现锂电池实际应用的重要途径之一。目前,已经有许多策略致力于稳定锂金属负极,其中一个重要的方向就是通过构建合适的功能性的3D集流体框架,促进锂离子的均匀沉积,实现无枝晶的锂金属负极。相比3D的金属集流体,碳集流体以其优异的的化学稳定性、柔韧性及可延展性而被广泛研究,但是其本身的疏锂性以及有限的比表面积阻止了其进一步的发展。因此,本工作从这两个方面出发设计了平行排列且具有多孔结构的碳骨架(PAPCFs)来稳定锂金属负极。

图文解析

图1展示了PAPCFs和CCFs上的结构和初始锂沉积的特性。(a-b) SEM 图像和 (c) 通过使用 PAPCFs 的 DFT 模型计算的 N2 吸附-解吸等温线和累积孔体积 (0.5-50 nm); (d-e) 在 PAPCFs 和 CCFs 电极上镀有 0.5 mA h cm -2 锂时的SEM 图,PAPCFs在镀锂后仍然显现出平整光滑的表面,而普通的CCFs则出现了疏松的锂枝晶,表明了PAPCFs对调控锂沉积有重要的意义。 PAPCFs 和 CCFs 电极界面信息的有限元模拟。(g) 分别用于 PAPCFs 和 CCFs 电极的 18 24 µm 2 半电池电沉积系统下具有恒定反应电流和电极表面的电流密度矢量分布,轮廓中的箭头代表锂离子的运动。 (h) 分别具有多孔结构和不具有多孔结构的 PAPCFs 电极在 18 24 µm 2 半电池电沉积系统下的平衡的锂离子浓度分布。在相同几何尺寸下,高比表面积将降低电极表面上的局部电流密度。因此,多孔电极上的电流密度设置为无孔电极上的一半。 (f) 多孔和非多孔电极中沿 Y 方向的一维横截面的锂离子浓度分布。 Y 方向表示垂直于电极。 (i) PAPCFs 在初始状态调节低浓度梯度和均匀的 Li + 通量分布,实现均匀的锂沉积的示意图。

Fig. 1 The structure and initial Li deposition characteristic on PAPCFs and contrastive CCFs. (a-b) SEM images and (c) N2 adsorption-desorption isotherm and cumulative pore volume (0.5-50 nm) calculated by the use of DFT-model of PAPCFs. (d, e) SEM images for Li deposition morphology with 0.5 mA h cm-2 of Li plated on PAPCFs and CCFs electrode. Finite element simulation for the interface information of PAPCFs and CCFs electrodes. (g) Current density vector profiles with constant-reaction-current electrode surfaces at 18 24 µm2 half cell electrodeposition system for PAPCFs and CCFs electrode, respectively. The arrows in the profiles stand for the movement of Li-ion. (h) Equilibrium Li-ion concentration profiles at 18 24 µm2 half cell electrodeposition system for PAPCFs electrode with and without porous structure, respectively. The high surface area will reduce the local current density on the electrode surface under the same geometry dimensions. Therefore, the current density on the porous electrode is set as a half of that on the non-porous electrode. (f) 1D cross-sectional Li-ion concentration profiles along Y direction in porous and non-porous electrodes. The Y direction is perpendicular to the electrode. (i) Schematic diagrams of PAPCFs to regulate low concentration gradient and even Li+ flux distribution for uniform Li deposition at initial state.

图2 展示了Li@PAPCFs复合负极的镀锂/脱锂稳定性与循环过程中的形貌演变。(a) 三种对称电池(Li@PAPCFs、Li@CCFs 和 Li 箔)在 1 mA cm -2 和 2 mA h cm -2 下的时间-电压曲线。(b-d) Li@PAPCFs 和 (e-g) Li@CCFs 在 200 次循环后的 SEM 图以及截面图(状态 A)。Li@PAPCFs 对称电池 (h) 在 4 mA cm -2 的电流密度下和 2 mA h cm -2 的容量下和 (i) 在 2 mA cm -2 的电流密度下和 4 mA h cm -2 的容量下的时间-电压图。 从所有的时间-电压曲线可知,该PAPCFs在不同的电流密度以及不同的容量下始终表现出最小的极化,说明具有平行排列且具有丰富孔结构的PAPCFs在重复的镀锂/脱锂循环过程中保持了优异的结构稳定性并始终维持着稳定的固体电解质膜。此外,其高的表面积很好地均匀了锂离子流,抑制了枝晶的生长。

Fig. 2 The Li plating/stripping stability and morphology evolution of Li@PAPCFs. (a) Voltage profiles in three types of symmetrical cells (Li@PAPCFs, Li@CCFs, and Li foil) at 1 mA cm-2 and 2 mA h cm-2. Insert: Magnified voltage profiles at the 100th, 200th, and 500th cycle, respectively. Top view and cross section of SEM images of (b-d) Li@PAPCFs and (e-g) Li@CCFs after 200 cycles (state A). Voltage profiles of Li@PAPCFs symmetrical cell (h) at 4 mA cm-2 and 2 mA h cm-2 and (i) at 2 mA cm-2 and 4 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles.

图3展示了NMC111-Li@PAPCFs、NMC111-Li@CCFs和NMC111-Li全电池的电化学性能。(a) 在电流密度为 1 C时,第 1 次和第 10 次循环的比容量-电压曲线。(b)GITT测试,从图中可以明显地看出NMC111-Li@PAPCFs的平均 D app, Li在相同的测试环境下最高,表明Li@PAPCFs具有更好的Li + /电子传导性以及更好的界面稳定性;(c)不同倍率下的电化学性能。 (d) 1 C下的长循环稳定性。

Fig. 3 The electrochemical performance of NMC111-Li@PAPCFs, NMC111-Li@CCFs, and NMC111-Li full cells. (a) Voltage profiles at 1 C for the 1st and 10th cycle. (b) GITT tests of the D app, Li along with the galvanostatic charge-discharge process of 4th cycle at 0.5 C. (c) Rate performance at the different rates. (d) Long-term cycle stability at 1 C.

图4是 Li@PAPCFs 和其对应的全电池的低温性能。 Li@PAPCFs 对称电池在(a)1 mA cm -2 和 2 mA h cm -2 下0 的时间-电压曲线,(b)0.25 mA cm -2 和 1 mA h cm -2 下-15 的时间-电压曲线。 PAPCFs 在预先镀有10 mA h cm -2 后(Li@PAPCFs)(c-e) 和在 0 电镀/剥离循环后的SEM图和截面图(f-h)。NMC111-Li@PAPCFs 在(i)不同倍率和温度下的容量保持率,(j) 0.5 C不同温度下的充放电曲线。(k) NMC111-Li@CCFs 与 NMC111-Li@PAPCFs 在不同倍率和温度下的容量保持率。 NMC111-Li@PAPCFs 在电流密度为1 C时,温度为 (l) 0 和 (m) -15 时的长循环稳定性。

Fig. 4 LT tolerance of Li@PAPCFs and the corresponding full cell. Voltage profiles of Li@PAPCFs symmetrical cell (a) for 0 at 1 mA cm-2 and 2 mA h cm-2 and (b) for -15 at 0.25 mA cm-2 and 1 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles. Top view and cross section of SEM images of Li@PAPCFs (c-e) after the initial Li plating of 10 mA h cm-2 and (f-h) after the plating/stripping cycles at 0 . (i) Capacity retention ( C r) of NMC111-Li@PAPCFs at different rates and temperatures vs. 25 . (j) Charge-discharge profiles at 0.5 C for different temperatures. (k) C r of NMC111-Li@CCFs vs. NMC111-Li@PAPCFs at different rates and temperatures. Long-term cycle stability of NMC111-Li@PAPCFs at (l) 0 for 1 C and (m) -15 for 0.1 C.

总结与展望

从商业无纺布中提取的可再生、可伸缩的3D轻质碳骨架可以很好地实现Li的均匀成核和沉积,使HLCA在长期循环甚至低温条件下依然能够实现保持完整的结构,同时也能维持稳定的电极/电解液界面。其中,碳骨架的平行排列可以均匀化Li + 分布;其大的比表面积可以大大降低有效电流密度,缓解电极界面的浓度梯度,从而形成稳定的富含LiF的 SEI 层。其对称电池和全电池的循环稳定性优于目前所报道的亲碳或亲锂修饰的碳宿主,表明HLCA的内在排列模式和微观结构对实现具有高稳定性以及高安全性的锂金属负极的重要性。本工作从实用角度出发,为一系列可充电金属电池提供了一种很有前途的碳主体材料。

作者介绍

吴兴隆 ,东北师范大学教授,教育部“青年长江学者”,课题组的研究领域包括纳米能源材料(用于锂离子电池、钠离子电池和电化学电容器等)、新型电化学储能器件、锂离子电池回收与再利用。已在《Adv. Mater.》(5篇)、《Energy Environ. Sci.》、《Sci. Bull.》、《Adv. Energy Mater.》(5篇)、《Adv. Funct. Mater.》、《Energy Storage Mater.》(2篇)、《Nano Energy》、《Small》(3篇)和《J. Mater. Chem. A》(12篇)等学术期刊发表通讯/第一作者论文110余篇。14篇论文被评选为ESI高引论文,文章被引用超过11000次,H指数为57;已获授权发明专利17项;负责了锂离子电池正极材料从实验室到中试,再到小规模工业化生产定型,开发了多款高性能锂离子电池产品。主持了国家自然科学基金委重大研究计划和吉林省省 科技 厅等十余项研究课题。曾获得教育部自然科学研究成果一等奖和中国科学院 科技 成果转化二等奖等 科技 奖励。

参考文献

Chao-Ying Fan, Dan Xie, Xiao-Hua Zhang, Wan-Yue Diao, Ru Jiang, Xing-Long Wu, Homogeneous Li + Flux Distribution Enables Highly Stable and Temperature-Tolerant Lithium Anode. Adv. Funct. Mater. 2021, 2102158.

锂离子电池参考文献论文

锂电池原理 锂离子电池的正极材料通常有锂的活性化合物组成,负极则是特殊分子结构的碳.常见的正极材料主要成分为 LiCoO2 ,充电时,加在电池两极的电势迫使正极的化合物释出锂离子,嵌入负极分子排列呈片层结构的碳中.放电时,锂离子则从片层结构的碳中析出,重新和正极的化合物结合.锂离子的移动产生了电流. 化学反应原理虽然很简单,然而在实际的工业生产中,需要考虑的实际问题要多得多:正极的材料需要添加剂来保持多次充放的活性,负极的材料需要在分子结构级去设计以容纳更多的锂离子;填充在正负极之间的电解液,除了保持稳定,还需要具有良好导电性,减小电池内阻. 虽然锂离子电池很少有镍镉电池的记忆效应,记忆效应的原理是结晶化,在锂电池中几乎不会产生这种反应.但是,锂离子电池在多次充放后容量仍然会下降,其原因是复杂而多样的.主要是正负极材料本身的变化,从分子层面来看,正负极上容纳锂离子的空穴结构会逐渐塌陷、堵塞;从化学角度来看,是正负极材料活性钝化,出现副反应生成稳定的其他化合物.物理上还会出现正极材料逐渐剥落等情况,总之最终降低了电池中可以自由在充放电过程中移动的锂离子数目. 过度充电和过度放电,将对锂离子电池的正负极造成永久的损坏,从分子层面看,可以直观的理解,过度放电将导致负极碳过度释出锂离子而使得其片层结构出现塌陷,过度充电将把太多的锂离子硬塞进负极碳结构里去,而使得其中一些锂离子再也无法释放出来.这也是锂离子电池为什么通常配有充放电的控制电路的原因. 不适合的温度,将引发锂离子电池内部其他化学反应生成我们不希望看到的化合物,所以在不少的锂离子电池正负极之间设有保护性的温控隔膜或电解质添加剂.在电池升温到一定的情况下,复合膜膜孔闭合或电解质变性,电池内阻增大直到断路,电池不再升温,确保电池充电温度正常. 而深充放能提升锂离子电池的实际容量吗?专家明确地告诉我,这是没有意义的.他们甚至说,所谓使用前三次全充放的“激活”也同样没有什么必要.然而为什么很多人深充放以后 Battery Information 里标示容量会发生改变呢 ? 后面将会提到. 锂离子电池一般都带有管理芯片和充电控制芯片.其中管理芯片中有一系列的寄存器,存有容量、温度、ID 、充电状态、放电次数等数值.这些数值在使用中会逐渐变化.我个人认为,使用说明中的“使用一个月左右应该全充放一次”的做法主要的作用应该就是修正这些寄存器里不当的值,使得电池的充电控制和标称容量吻合电池的实际情况. 充电控制芯片主要控制电池的充电过程.锂离子电池的充电过程分为两个阶段,恒流快充阶段(电池指示灯呈黄色时)和恒压电流递减阶段 ( 电池指示灯呈绿色闪烁.恒流快充阶段,电池电压逐步升高到电池的标准电压,随后在控制芯片下转入恒压阶段,电压不再升高以确保不会过充,电流则随着电池电量的上升逐步减弱到 0 ,而最终完成充电. 电量统计芯片通过记录放电曲线(电压,电流,时间)可以抽样计算出电池的电量,这就是我们在 Battery Information 里读到的 wh. 值.而锂离子电池在多次使用后,放电曲线是会改变的,如果芯片一直没有机会再次读出完整的一个放电曲线,其计算出来的电量也就是不准确的.所以我们需要深充放来校准电池的芯片. 参考文献:友人网

喜欢就 关注我们吧,订阅更多最新消息

全文速览

针对锂金属不均匀沉积造成的锂枝晶生长以及死锂疯狂聚集等问题,本工作利用平行排列的具有多孔结构的轻质碳骨架,在电镀过程中为锂沉积提供足够的空间和连续的导电网络,从而来均匀化锂离子分布,使电极/电解液的界面处的电流密度分布均匀,达到抑制锂枝晶生长以及缓解金属锂循环过程中的体积膨胀的目的。作者对其复合金属负极进行了一系列电化学性能的测试,所测结果表明该复合锂金属负极所组成的对称电池在4.0 mAh cc,2.0 mAh cm -2 的条件下可稳定循环4800 h而没有明显的电压滞后现象。此外,以该复合锂电极为负极,NCM811为正极所组装的全电池也展现出了优异的循环稳定性以及高的倍率性能。更重要的是,低温性能测试结果表明,该复合金属锂负极在低温下依然具有优异的可逆性以及循环稳定性。在此基础上,作者还通过理论计算很好地验证了实验结果,进一步证明了该平行排列的多孔结构有利于促进锂离子的均匀沉积,实现锂金属负极的稳定循环

背景介绍

金属锂表现出的高理论比容量(3860 mAh g -1 )和超低电化学电势(-3.04 V),一直是二次电池领域人们为之神往的圣杯。然而,锂金属负极中的枝晶生长以及固态电解质界面的不稳定性成为它趋向完美的严重阻碍。锂枝晶的生长以及界面的不稳定会造成金属锂的可持续利用率降低,甚至会刺穿隔膜造成电池爆炸等安全性问题。因此,控制金属锂的均匀沉积是实现锂电池实际应用的重要途径之一。目前,已经有许多策略致力于稳定锂金属负极,其中一个重要的方向就是通过构建合适的功能性的3D集流体框架,促进锂离子的均匀沉积,实现无枝晶的锂金属负极。相比3D的金属集流体,碳集流体以其优异的的化学稳定性、柔韧性及可延展性而被广泛研究,但是其本身的疏锂性以及有限的比表面积阻止了其进一步的发展。因此,本工作从这两个方面出发设计了平行排列且具有多孔结构的碳骨架(PAPCFs)来稳定锂金属负极。

图文解析

图1展示了PAPCFs和CCFs上的结构和初始锂沉积的特性。(a-b) SEM 图像和 (c) 通过使用 PAPCFs 的 DFT 模型计算的 N2 吸附-解吸等温线和累积孔体积 (0.5-50 nm); (d-e) 在 PAPCFs 和 CCFs 电极上镀有 0.5 mA h cm -2 锂时的SEM 图,PAPCFs在镀锂后仍然显现出平整光滑的表面,而普通的CCFs则出现了疏松的锂枝晶,表明了PAPCFs对调控锂沉积有重要的意义。 PAPCFs 和 CCFs 电极界面信息的有限元模拟。(g) 分别用于 PAPCFs 和 CCFs 电极的 18 24 µm 2 半电池电沉积系统下具有恒定反应电流和电极表面的电流密度矢量分布,轮廓中的箭头代表锂离子的运动。 (h) 分别具有多孔结构和不具有多孔结构的 PAPCFs 电极在 18 24 µm 2 半电池电沉积系统下的平衡的锂离子浓度分布。在相同几何尺寸下,高比表面积将降低电极表面上的局部电流密度。因此,多孔电极上的电流密度设置为无孔电极上的一半。 (f) 多孔和非多孔电极中沿 Y 方向的一维横截面的锂离子浓度分布。 Y 方向表示垂直于电极。 (i) PAPCFs 在初始状态调节低浓度梯度和均匀的 Li + 通量分布,实现均匀的锂沉积的示意图。

Fig. 1 The structure and initial Li deposition characteristic on PAPCFs and contrastive CCFs. (a-b) SEM images and (c) N2 adsorption-desorption isotherm and cumulative pore volume (0.5-50 nm) calculated by the use of DFT-model of PAPCFs. (d, e) SEM images for Li deposition morphology with 0.5 mA h cm-2 of Li plated on PAPCFs and CCFs electrode. Finite element simulation for the interface information of PAPCFs and CCFs electrodes. (g) Current density vector profiles with constant-reaction-current electrode surfaces at 18 24 µm2 half cell electrodeposition system for PAPCFs and CCFs electrode, respectively. The arrows in the profiles stand for the movement of Li-ion. (h) Equilibrium Li-ion concentration profiles at 18 24 µm2 half cell electrodeposition system for PAPCFs electrode with and without porous structure, respectively. The high surface area will reduce the local current density on the electrode surface under the same geometry dimensions. Therefore, the current density on the porous electrode is set as a half of that on the non-porous electrode. (f) 1D cross-sectional Li-ion concentration profiles along Y direction in porous and non-porous electrodes. The Y direction is perpendicular to the electrode. (i) Schematic diagrams of PAPCFs to regulate low concentration gradient and even Li+ flux distribution for uniform Li deposition at initial state.

图2 展示了Li@PAPCFs复合负极的镀锂/脱锂稳定性与循环过程中的形貌演变。(a) 三种对称电池(Li@PAPCFs、Li@CCFs 和 Li 箔)在 1 mA cm -2 和 2 mA h cm -2 下的时间-电压曲线。(b-d) Li@PAPCFs 和 (e-g) Li@CCFs 在 200 次循环后的 SEM 图以及截面图(状态 A)。Li@PAPCFs 对称电池 (h) 在 4 mA cm -2 的电流密度下和 2 mA h cm -2 的容量下和 (i) 在 2 mA cm -2 的电流密度下和 4 mA h cm -2 的容量下的时间-电压图。 从所有的时间-电压曲线可知,该PAPCFs在不同的电流密度以及不同的容量下始终表现出最小的极化,说明具有平行排列且具有丰富孔结构的PAPCFs在重复的镀锂/脱锂循环过程中保持了优异的结构稳定性并始终维持着稳定的固体电解质膜。此外,其高的表面积很好地均匀了锂离子流,抑制了枝晶的生长。

Fig. 2 The Li plating/stripping stability and morphology evolution of Li@PAPCFs. (a) Voltage profiles in three types of symmetrical cells (Li@PAPCFs, Li@CCFs, and Li foil) at 1 mA cm-2 and 2 mA h cm-2. Insert: Magnified voltage profiles at the 100th, 200th, and 500th cycle, respectively. Top view and cross section of SEM images of (b-d) Li@PAPCFs and (e-g) Li@CCFs after 200 cycles (state A). Voltage profiles of Li@PAPCFs symmetrical cell (h) at 4 mA cm-2 and 2 mA h cm-2 and (i) at 2 mA cm-2 and 4 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles.

图3展示了NMC111-Li@PAPCFs、NMC111-Li@CCFs和NMC111-Li全电池的电化学性能。(a) 在电流密度为 1 C时,第 1 次和第 10 次循环的比容量-电压曲线。(b)GITT测试,从图中可以明显地看出NMC111-Li@PAPCFs的平均 D app, Li在相同的测试环境下最高,表明Li@PAPCFs具有更好的Li + /电子传导性以及更好的界面稳定性;(c)不同倍率下的电化学性能。 (d) 1 C下的长循环稳定性。

Fig. 3 The electrochemical performance of NMC111-Li@PAPCFs, NMC111-Li@CCFs, and NMC111-Li full cells. (a) Voltage profiles at 1 C for the 1st and 10th cycle. (b) GITT tests of the D app, Li along with the galvanostatic charge-discharge process of 4th cycle at 0.5 C. (c) Rate performance at the different rates. (d) Long-term cycle stability at 1 C.

图4是 Li@PAPCFs 和其对应的全电池的低温性能。 Li@PAPCFs 对称电池在(a)1 mA cm -2 和 2 mA h cm -2 下0 的时间-电压曲线,(b)0.25 mA cm -2 和 1 mA h cm -2 下-15 的时间-电压曲线。 PAPCFs 在预先镀有10 mA h cm -2 后(Li@PAPCFs)(c-e) 和在 0 电镀/剥离循环后的SEM图和截面图(f-h)。NMC111-Li@PAPCFs 在(i)不同倍率和温度下的容量保持率,(j) 0.5 C不同温度下的充放电曲线。(k) NMC111-Li@CCFs 与 NMC111-Li@PAPCFs 在不同倍率和温度下的容量保持率。 NMC111-Li@PAPCFs 在电流密度为1 C时,温度为 (l) 0 和 (m) -15 时的长循环稳定性。

Fig. 4 LT tolerance of Li@PAPCFs and the corresponding full cell. Voltage profiles of Li@PAPCFs symmetrical cell (a) for 0 at 1 mA cm-2 and 2 mA h cm-2 and (b) for -15 at 0.25 mA cm-2 and 1 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles. Top view and cross section of SEM images of Li@PAPCFs (c-e) after the initial Li plating of 10 mA h cm-2 and (f-h) after the plating/stripping cycles at 0 . (i) Capacity retention ( C r) of NMC111-Li@PAPCFs at different rates and temperatures vs. 25 . (j) Charge-discharge profiles at 0.5 C for different temperatures. (k) C r of NMC111-Li@CCFs vs. NMC111-Li@PAPCFs at different rates and temperatures. Long-term cycle stability of NMC111-Li@PAPCFs at (l) 0 for 1 C and (m) -15 for 0.1 C.

总结与展望

从商业无纺布中提取的可再生、可伸缩的3D轻质碳骨架可以很好地实现Li的均匀成核和沉积,使HLCA在长期循环甚至低温条件下依然能够实现保持完整的结构,同时也能维持稳定的电极/电解液界面。其中,碳骨架的平行排列可以均匀化Li + 分布;其大的比表面积可以大大降低有效电流密度,缓解电极界面的浓度梯度,从而形成稳定的富含LiF的 SEI 层。其对称电池和全电池的循环稳定性优于目前所报道的亲碳或亲锂修饰的碳宿主,表明HLCA的内在排列模式和微观结构对实现具有高稳定性以及高安全性的锂金属负极的重要性。本工作从实用角度出发,为一系列可充电金属电池提供了一种很有前途的碳主体材料。

作者介绍

吴兴隆 ,东北师范大学教授,教育部“青年长江学者”,课题组的研究领域包括纳米能源材料(用于锂离子电池、钠离子电池和电化学电容器等)、新型电化学储能器件、锂离子电池回收与再利用。已在《Adv. Mater.》(5篇)、《Energy Environ. Sci.》、《Sci. Bull.》、《Adv. Energy Mater.》(5篇)、《Adv. Funct. Mater.》、《Energy Storage Mater.》(2篇)、《Nano Energy》、《Small》(3篇)和《J. Mater. Chem. A》(12篇)等学术期刊发表通讯/第一作者论文110余篇。14篇论文被评选为ESI高引论文,文章被引用超过11000次,H指数为57;已获授权发明专利17项;负责了锂离子电池正极材料从实验室到中试,再到小规模工业化生产定型,开发了多款高性能锂离子电池产品。主持了国家自然科学基金委重大研究计划和吉林省省 科技 厅等十余项研究课题。曾获得教育部自然科学研究成果一等奖和中国科学院 科技 成果转化二等奖等 科技 奖励。

参考文献

Chao-Ying Fan, Dan Xie, Xiao-Hua Zhang, Wan-Yue Diao, Ru Jiang, Xing-Long Wu, Homogeneous Li + Flux Distribution Enables Highly Stable and Temperature-Tolerant Lithium Anode. Adv. Funct. Mater. 2021, 2102158.

▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学

论文DOI:10.1038/s41467-020-15712-z

针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。

锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。

单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。

▲图一 单原子催化剂的合成过程。

单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。

▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。

▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。

N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。

▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。

受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。

▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。

为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。

▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。

单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。

▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。

N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。

单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。

参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.

徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:Nat.Commun.3篇、Nat.Energy 1篇、Angew.Chem.Int.Ed. 2篇、Adv.Mater.3篇、Energy Environ.Sci.1篇、ACS Nano 1篇、ACS Cent.Sci.1篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。

圆柱锂离子电池研究现状论文

现在新型的磷酸铁锂电池,安全性更好,而且成本更低。

圆柱形磷酸铁锂电池受到家储市场的青睐,一方面是得益于全极耳技术、制造工艺和材料体系优化,使得大圆柱磷酸铁锂产品在成本、容量、性能、循环和安全方面优势凸显;另一方面,自2021年以来,欧洲能源成本和电价持续攀升,叠加俄乌战争和海外大型停电事件,尤其是近年来极端天气频发,使得能源供给难度增加,居民用电需求和用电成本大增,户用储能市场超预期爆发。有机构预测,2022年全球将迎来户用储能爆发新阶段,到2025年,全球家储市场规模为60.3GWh,年复合增长率高达55.9%。

锂电池材料构成四大主材:正极材料、负极材料、隔膜、电解液辅材:NMP、铜箔、铝箔、铝壳盖板、导电剂、粘结剂、其他(EMD)等。锂电池的性能与制造工艺息息相关,3C锂电池的制作工艺分为四道程序,一是极片制作,二是电芯组装,三是电芯激活检测,四是电池封装。电极制片又包括正极片和负极片制作,主要环节包括配料、搅拌、涂布、辊压、分切和极耳等步骤。极片制作是3C锂电池制作工艺的基础,电芯组装则关系着3C锂电池的性能,是核心工序。而电芯激活包含着电池的化成、分容和测试,是3C锂电池制作完成后关键性工序,电池封装工艺是3C锂电池制作的最后一步,关系着电池的成品质量。3C锂电池的化成、分容完成后,还需要对其进行性能测试,测试中可用弹片微针模组作为电流传输的媒介,能起到稳定连接的作用。3C锂电池的性能测试包括基本性能、安全性能、环境性能、电化学性能几大类,弹片微针模组在测试中可通过1-50A范围内的电流,过流能力强大,还有着平均20W次的使用寿命,可有效提高3C锂电池测试效率,保障测试高效安全进行。

没分,你在说什么呀,笨蛋

关于锂离子电池研究的小论文

摘要:随着我国汽车保有量的持续增长,汽车排放污染跟能源问题将会越来越严峻。现在我们国家提 摘要 倡低碳生活和可持续发展,为了响应国家的政策。我们必须寻找一种对环境零污染或低污染的汽车,而目 前公认最为理想可行的就是纯电动汽车了。而作为内燃机跟纯电动汽车的过渡产物就是混合动力汽车,混 合动力汽车已经不是什么新鲜的产物了,目前已经有很多车企生产了。在近两年,我国的车企对纯电动汽 车的热情很高,可惜都只是雷声大雨点小。大都只是处于概念车的阶段。发动纯电动汽车还有一段很曲折 艰辛的路要走。 关键词:内燃机:混合动力: 电动汽车:汽车: 关键词 内燃机 像我们这代人,对于汽车并不会感到很陌生.特别是近几年中国车市出现井喷的现象,据保 守的估计,中国现在的机动车保有量已经超过两亿.而且还保持上升的趋势,去年的产销量达 1360 万辆,首次超过美国而位居世界第一.今年 1 到 9 月份的产销已经达到去年全年的水平了, 保守估计今年的产销量将达 1700 万辆.而且在接下来的几年会稳居榜首,产销量持续增长.在 这数据中,又有多少是属于电动汽车的呢?统计数据显示是非常非常的少,几乎可以被忽视. 汽车的产销量不断的增长,这也将引起一系列的问题.内燃机技术发展到今天已经可说是 炉火纯青的地步了,想到再进一步改善是非常的困难了.我们都是知道无论是汽油机还是柴油 机,都会排放一些对大气有害的气体,如:CO HC Nox 等.虽然说排放标准不断的在提高,但是污 染还是存在的.这将跟我们提倡的低碳生活有点格格不入,因此我们就必须找出其它代替品. 就目前而言,就有新燃料发动机,如:醇燃料 氢燃料 石油气燃料 天然气燃料 太阳能燃料混合动力汽车 电动车等等.在这些新能源汽车中,纯电动汽车将是我们发展的趋势.因为其它 的,不是技术太难攻关,就是使用经济性和燃料来源困难等等.电动汽车的优点是零排放 零污 染 燃料来源方便 动力性良好等.但就目前的现状而言,电动汽车的缺点也是显而易见的, 目 前电动汽车尚不如内燃机汽车技术完善,尤其是动力电源(电池)的寿命短,使用成本高。 电池的储能量小,一次充电后行驶里程不理想,电动车的价格较贵。但从发展的角度看,随 着科技的进步,投入相应的人力物力,电动汽车的问题会逐步得到解决。扬长避短,电动汽 车会逐渐普及, 其价格和使用成本必然会降低。 现在处于内燃机跟纯电动汽车的过渡产物是HEV 混合动力汽车, 混合动力汽车的种类目前主要有 3 种。一种是以发动机为主动力,电 动马达作为辅 串联混合动力电动汽车原理。 另外一种是, 在低速时只靠电动马达驱动行驶, 速度提高时发动机和电动马达相配合驱动的“串联、并联方式” 。还有一种是只用电动马达 驱动行驶的电动汽车“串联方式” ,发动机只作为动力源,汽车只靠电动马达驱动行驶,驱 动系统只是电动马达,但因为同样需要安装燃料发动机,所以也是混合动力汽车的一种。 现在车市的混合动力车主要有,PRIUS 思域 凯美瑞 凯越 LS600H S400 SMART F3DM 等等. 由于我们国家提倡低碳生活,国家的政策便大力的支持发展纯电动汽车.目前几乎所有的车企都积极的响应国家的号召,如:比亚迪的 E6 奇瑞 S18 众泰 2008EV 长安奔奔 MINI 日 产的 LEAF 通用的 VOLT 等等.虽然推出的车型很多,但也只是雷声大雨点小.技术都不啥的, 而且销量也是少之又少. 电动汽车并不是现代才有的产物, 早在 19 世纪后半叶的 1873 年,英国人罗伯特·戴维 森 (Robert Davidsson) 制作了世界上最初的可供实用的电动汽车。 这比德国人戴姆勒 (Gottlieb Daimler)和本茨(Karl Benz)发明汽油发动机汽车早了 10 年以上。戴维森发明的电动汽车 是一辆载货车,长 4800mm,宽 1800mm,使用铁、锌、汞合金与硫酸进行反应的一次电池。 其后,从 1880 年开始,应用了可以充放电的二次电池。从一次电子表池发展到二次电池, 这对于当时电动汽车来讲是一次重大的技术变革,由此电动汽车需求量有了很大提高。在 19 世纪下半叶成为交通运输的重要产品,写下了电动汽车需求量有了很大提高。在 19 世纪 下半叶成为交通运输的重要产品,写下了电动汽车在人类交通史上的辉煌一页。1890 年法 国和英伦敦的街道上行驶着电动大客车,当时电动汽车生产的车用内燃机技术还相当落后, 行驶里程短,故障多,维修困难,而电动汽车却维修方便. 电池是电动汽车发展的首要关键,汽车动力电池难在 “低成本要求”“高容量要求”及 、 “高安全要求”等三个要求上。要想在较大范围内应用电动汽车,要依靠先进的蓄电池经过 10 多年的筛选,现在普遍看好的氢镍电池,铁电池,锂离子和锂聚合物电池。氢镍电池单 位重量储存能量比铅酸电池多一倍, 其它性能也都优于铅酸电池。 但目前价格为铅酸电池的 4-5 倍,正在大力攻关让它降下来。铁电池采用的是资源丰富、价格低廉的铁元素材料,成 本得到大幅度降低,也有厂家采用。锂是最轻、化学特性十分活泼的金属,锂离子电池单位 重量储能为铅酸电池的 3 倍,锂聚合物电池为 4 倍,而且锂资源较丰富,价格也不很贵,是 很有希望的电池。 我国在镍氢电池和锂离子电池的产业化开发方面均取得了快速的发展。 电 动汽车其他有关的技术,近年都有巨大的进步,如:交流感应电机及其控制,稀土永磁无刷 电机及其控制,电池和整车能量管理系统,智能及快速充电技术,低阻力轮胎,轻量和低风 阻车身,制动能量回收等等,这些技术的进步使电动汽车日见完善和走向实用化。我国大城 市的大气污染已不能忽视,汽车排放是主要污染源之一,我国已有 16 个城市被列入全球大 气污染最严重的 20 个城市之中。我国现今人均汽车是每 1000 人平均 10 辆汽车,但石油资 源不足,每年已进口几千万吨石油,随着经济的发展,假如中国人均汽车持有量达到现在全 球水平---每 1000 人有 110 辆汽车, 我国汽车持有量将成 10 倍地增加, 石油进口就成为大问 题。因此在我国研究发展电动汽车不是一个临时的短期措施,而是意义重大的、长远的战略 考虑。 下面是一些专家对我国发展电动汽车的看法: 锂电池大规模用于电动车还需一定时间 河南环宇集团锂电池产业技术副总工程师邓伦浩 目前国内锂电池的研究工作和国外相比,差距主要体现在电池的控制系统和电源 管理系统上。邓伦浩对记者说,现在国内对锂电池的研究处于各自开发的状态。目前,有的公司已经能 够为电 动汽车提供相应 的锂电 池配套产品,配 套的锂 电池一般能跑 200~500 公里左右。 邓伦浩告诉记者,现在国内锂电池的价格太高,电源管理系统的问题还没得到很 好地解决。电动汽车还面临充电的问题。目前,家里的一般线路不能为电动汽车锂电 池充电,必须配一个小型的专用充电器,而且充电的时间很长,很麻烦。在国外,为 了解决这一问题,一般都把充电站和加油站放在一起。现在国内的充电站还没有大规 模地建立起来。 国内锂电池研究存在三大问题 中国汽车工程学会电动汽车分会主任陈全世 陈全世告诉记者,目前国内锂电池研究存在三大问题。首先是制造的一致性问题。 由于在锂电池的制造工艺和设备上存在差距,使得国内锂电池的生产工艺参差不齐, 制造标准还达不到一致性。电动汽车所用的锂电池都是串联或并联在一起,如果一致 性问题解决不好,那么所生产的锂电池也就无法大规模应用于电动汽车。 其次是知识产权问题。目前国内在磷酸铁锂电池的研究上已经取得突破,但是由 于美国在这方面有专利,所以虽然我们在一些环节上能够自主研发,但是在知识产权 问题上,还不知如何应对。 第三是原材料的筛选问题。现在用于锂电池生产的原材料不可能全部进口,主要 还是取自国内, 但是国内的原材料要通过国际认证, 生产出的锂电池才能被国际认可, 所以在原材料认证环节上目前还存在一些问题。 大力发展电动汽车将增加能源供需紧张形势 中国国际经济合作学会经济合作部副主任杨金贵 目前中国 80%的二氧化碳排放来自燃煤,超过 50%的煤炭消费用于火力发电,而同时, 火力发电量占到总发电量的 70%以上。加之目前我国煤炭发电平均效率只有 35%,在这样 的情况下,发展电动汽车,无异于增加电力消耗,同时也就意味着增加碳排放量。随着我国 城镇化、工业化步伐的加快,电力资法律论文 源将更为紧张。而在风能、核能发电尚在发展阶段的我 国而言,大力发展电动汽车,势必将增加能源供需紧张形势,相反不利于低碳产业的发展布 局。对于政府来说,在不遗余力地支持电动汽车发展、支持相关企业开发新产品的同时,更 需要解决源头问题。以电动汽车为例,用煤炭替换石油的作为并不可取,电动汽车成为低碳 经济时代先锋的前提是解决电力资源问题,否则,前景并不乐观。 从以上各个专家的看法,可以看出我国要发展电动汽车是非常艰辛的和曲折的。但这并 不代表不可能, 只是时间问题, 只要我们攻关了那些技术难题, 电动汽车将会造福我们国民, 甚至全人类。因此,发展纯电动汽车势不可挡。

1990年以来发表的论文(Eng.):新世纪1. Surface-modified Graphite as an improved intercalating Anode for Lithium ion Batteries,Y.Cao, L.Xiao, e t.a l,Electrochem. & Solid State Lett. , 6 (2003).A30-A332. Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries, Electrochem. Acta, (2003)3. Temperature Effects on the Electrodeposition of Zinc,J.X.Y u, L.Wang e t.a l ,J. Electrochem. Soc., 150 (2003) 1.4. Hydrogen production from catalyzed hydrolysis of sodium borohydride solution using nickel boride catalyst,H.Dong, H.Yang e t.a l,Int. J. Hydrogen Energy 28 (2003)10955. A Mechanistic Study of Electrocatalytic Reduction of Oxygen on Manganese Dioxides in Alkaline Aqueous Solution, Y. L. Cao, H. X. Yang*, X. P. Ai, and L .F .Xiao, J. Electroanal. Chem.,(2003) ,6. Structural and electrochemical characterization of calcium zincate mechanochemically synthesized as rechargeable anodic materials,X.Zhu, H. Yang, X. Ai, J. Yu and Y. Cao, J. Appl. Electrochem., 33(2003)6077. A study of calcium zincate as negative electrode materials for secondary batteries, J.Y u, H.Yang et.a l, J. Power Sources, 103 (2001) 938. Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode, J.Y u, H.Yang e t.a l,, Russ. J. Electrochemistry, 38 (2002) 321.9. Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms, H.Cao, J. Yu et al., Computer and Chem., 25(2001)251上世纪10. The influences of organic additives on Zinc electrocrystallization from KCl solution, J.X.Y u, Y.Y.Chen, H.X.Yang, et.a l, J. Electrochem. Soc., 146 (1999)178911. A new approach to the estimation of electrocrystallization parameters, J. Electroanal. Chem., 474 (1999)6912. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and LiOH.H2O, H.X.Yang, Q.F.Dong, X.H.H u, X.P.A i, J. Power Souces, 79(1999)25613. A study of LiMn2O4 synthesized from LiCO3 and MnCO3, X.H.H u, X.P.A i, H.X.Yang, S.X.L i, J. Power Sources, 74(1998)24014. The kinetic study on the electrolytic hydrogenation of nitrobenzene on the hydrogen-storage alloy electrode, S. Lu, Q.L i, C.L u, Q.L iu, H.Yang, J. Electroanal. Chem., 457(1998)14915. Initial activation of hydrogen storage alloy electrode by chemical modification, J. Rare earth metals, S. Lu, Q.L i, C.L u, Q.L iu, R.H u, H.Yang,J. Rare Earths,16( 4), 307(1998)16. Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode, J. L. Zhou, Y. H. Zhou , H. X. Yang , J. Power sources, 69,(1997)16917. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. C. S. Cha , X. P. Ai, and H. X. Yang , J. Power Sources , 54, (1995)25518. In-situ ESR study on electrochemical lithium intercalation into petrulum coke , L. Zhuang, J. Lu, X. Ai, H. Yang , J. Electroanal. Chem. , 397, (1995)31519. Powder Microelectrodes, C. S. Cha, C. M. Li , H. X. Yang , P. F. Liu , J. Electroanal. Chem. , 368, (1994)4720. Electrochemical and structural studies of the composite MnO2 cathode doped with metal oxides , H. X. Yang, X. P. Ai , M .Lei ,S. X. Li , J. Power sources , 43-44, (1993)53321. Recent advances in experimental methods applied to lithium battery researches , J. Power Sources , C. S. Cha , H. X. Yang, J. Power sources , 43-44, (1993)145.22. Fractal structure structure of colloidal silver and its effects on SERS intensities of crystal violet , Chinese Chem. Letters, 3, (1992)91923. The observation of enhanced RAMAN scattering of gaseous molecules by Hg microdroplets, Chinese Chem. Letters, 2, (1991)54924. A novel optically transparent thin layer electrode for in situ IR spectroelectrochemistry , Chinese Chem. Letters, 2, (1991)25. Fiber optic thin-layer electrode cell for in situ transmission spectro- electrochemistry , Chinese Chem. Letters, 2, (1991)329 1990年以来发表的论文(中文):21世纪1. 联苯用作锂离子电池过充保护剂的研究, 肖利芬, 艾新平, 曹余良, 杨汉西, 电化学, 9(1), 23(2003)2. 塑料化聚合物电解质的导电性质, 艾新平,董全峰,杨汉西, 电池,32(S1), 48(2002)3. 尖晶石型ZnMn_2O_4的合成及其电化学行为, 李升宪,李保旗,杨汉西,艾新平, 电池,32, 3( 2002)4. 锌酸钙的制备与电化学性能研究, 喻敬贤,杨汉西,朱晓明,艾新平, 电池, 31(2) 65(2001)5. 圆柱型锌空气电池研究, 李升宪,周贵茂,艾新平,杨汉西, 电化学,6(3), 341(2000).6. 塑料化薄膜锂离子电池的制造技术, 艾新平,洪昕林,董全峰,李升宪,杨汉西, 电化学, 6(2), 193(2000)上世纪90年代7. LiMn2O4正极在高温下性能衰退现象的研究, 胡晓宏,杨汉西,艾新平,李升宪,洪昕林, 电化学, 5(2), 224(1999)8. 纳米光亮镀锌层的结构研究, 喻敬贤,陈永言,黄清安,杨汉西, 高等学校化学学报,20(1),107 (1999)9. 添加剂对锌结晶行为的影响及参数的演化优化, 化学学报, 57,953(1999)10. 锡基非晶态材料的化学合成及其嵌锂性能的初步研究, 刘立,杨汉西,孙聚堂,艾新平, 电化学,4(4), 362 (1998)11. 石墨负极锂嵌碳机理的研究, 周震涛,黄静,汪国杰,艾新平,杨汉西,, 华南理工大学学报(自然科学版) 1998年07期12. 贮氢合金用作有机加氢反应新型催化剂研究进展, 卢世刚,杨汉西,杨聪智, 化学通报 12, 1(1998)13. 电阻应变法用于密封电池内压变化的动态检测, 杨汉西, 胡容辉,艾新平,杨聪智,李升宪, 电化学, 4(3), 318(1998)14. 薄膜塑料锂离子电池的初步研究, 董全峰, 杨汉西, 艾新平, 胡晓宏,李升宪, 电化学, 4(1), 9(1998)15. 电化学制备Ni-Cu/Cu超晶格多层膜, 喻敬贤,陈永言,黄清安,杨汉西, 武汉大学学报(自然科学版) 1998年06期16. 氢气在贮氢合金电极上析出反应机理的研究, 卢世刚,李群,刘庆国,路春,党兵,杨汉西, 电化学,4(3),265 (1998)17. 非水介质中Zn-MnO_2的可充性研究, 李保旗,杨汉西,李升宪,杜米芳,艾新平, 电化学,3(3), 277 (1997)18. 泡沫镍的电沉积制备技术, 何细华,胡蓉晖,杨汉西,左正忠, 电化学,2(1), 66 (1996)19. 微电极定量方法评价贮氢合金的电化学性质, 胡蓉晖,杨汉西,刘金成,李升宪,查全性, 电化学,2(4), 391(1996)20. 贮氢合金电极的活化方法和作用机理研究, 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智, 电化学,2(2), 170 (1996)21. 电沉积泡沫铜, 何细华,左正忠,杨汉西, 材料保护 1996年11期22. 无氟微酸性体系镀铅研究, 何细华,左正忠,杨汉西, 电镀与环保 1995年05期23. 贮氢合金用作硝基苯电解加氢的催化电极研究, 卢世刚,杨汉西,王长发, 电化学, 1(1), 15(1995)24. 金属氢化物-镍电池充电过程消气反应研究, 刘金城, 杨汉西, 胡蓉辉, 吴锋, 电源技术, 19(4), 1(1995)25. 超薄层红外光透电解池的设计和应用, 肖以金,杨汉西,查全性,, 分析化学 1994年02期26. 电化学石英晶体微天平对银电极氧化还原过程的研究, 陈胜利, 吴秉亮, 杨汉西, 高等学校化学学报, 15(1), 103(1994)27. 炭材料作为储锂负极的研究, 杨汉西, 雷鸣,李升宪,艾新平, 应用化学, 10(1), 113(1993)28. Li/SOCl2 电池的拉曼光谱电化学研究, 钟发平, 杨汉西, 查全性等, 高等化学学报, 14, 265(1993)29. 简易多功能光谱电化学池的设计, 肖以金, 杨汉西, 冯之刚, 伏亚萍, 光谱学与光谱分析, 13(6), 103(1993)30. 激光拉曼光谱的光纤采样技术, 钟发平, 吴国帧, 杨汉西等, 光谱学与光谱分析, 13(6), 29(1993)31. 甲基吡啶电氧化过程的表面增强RAMAN光谱研究, 钟发平, 杨汉西, 查全性, 化学学报, 51, 273(1993)32. 阴极限制型Li/SOCl2电池过放电产物的热分析, 肖以金, 杨汉西, 查全性, 应用化学, 10(3), 54(1993)33. C60 电化学还原的稳态性质研究,杨汉西, 肖以金, 朱凌等, 物理化学学报, 8, 580(1992)34. 微型拉曼电解池现场研究硫酰氯的电化学还原, 钟发平, 杨汉西, 徐知三, 查全性, 物理化学学报, 8, 266(1992)35. 锌离子在λ-MnO2中的电化学嵌入, 吴智远, 杜米芳, 杨汉西等, 应用化学, 9(2), 99(1992)36. 锂电化学嵌入尖晶石二氧化锰研究, 吴智远, 杨汉西, 石中等, 电池, 22(1), 13(1992)37. 锂离子电池炭负极研究, 杨汉西, 艾新平, 雷鸣, 李升宪, 电源技术, 5, 2(1992)38. MnO2作为二次锂电池阴极材料研究, 李升宪, 杨汉西, 吴智远, 汪振道, 电源技术, 4, 7(1991)39. AA-型Li/λ-MnO2 二次电池研究, 李升宪, 杨汉西, 吴智远等, 电池,21(5), 10(1991)40. 锂/硫酰氯电池体系的初步研究, 杨汉西,钟发平, 汪振道等, 电源技术, 2, 5(1990)41. 大功率锂/亚硫酰氯电池高效炭阴极研究, 汪振道, 杨汉西, 范玉章, 雷鸣, 电源技术, 1, 3(1990)

现在新型的磷酸铁锂电池,安全性更好,而且成本更低。

关于我国新能源汽车发展分析论文摘要:在全球能源短缺,提倡清洁能源的大背景下,新能源汽车是汽车行业发展的必然选择。从新能源汽车兴起的背景出发,提出我国新能源汽车发展的挑战和促进我国新能源汽车发展的相关措施,对我国新能源汽车的发展有重要意义。 论文关键词:新能源;汽车 1 新能源汽车发展的背景 1.1 新能源汽车的相关概念 新能源汽车是相对于传统汽车提出来的,传统的汽车是以汽油、柴油为燃料。按照国家发改委的公告定义,新能源汽车是指采用非常规的车用燃料作为动力来源(或使用常规的车用燃料、采用新型车载动力装置),综合车辆的动力控制和驱动方面的先进技术,形成的技术原理先进、具有新技术、新结构的汽车。目前在工程上可实现的新能源汽车技术包括以下种类:新型燃油汽车;燃气汽车;生物燃料;煤制醇醚燃料;电动汽车。 1.2 新能源汽车兴起的背景 1.2.1 全球石油价格上涨的推动 全球石油资源储量的稀缺性毋庸置疑,几个经济大国能源紧缺问题严重,现阶段仍以石油为主要燃料的汽车产业的发展受到极大威胁。因此,发展新能源汽车成为世界汽车工业持续发展的必然选择。在2008年上半年石油价格从80美元一路飘升到147美元,汽车燃料的使用成本也随之水涨船高。在这一轮石油价格上涨期间,部分新能源汽车显示出相对使用成本优势。部分消费者为免于负担过高的燃油费用而放弃原本欲购买的传统车型,而选择石油燃料消耗相对较低的新能源汽车。汽车制造厂商也看到了新能源汽车的发展空间,开始加大研发和推广的力度。各国政府也适时推出了一些优惠政策对新能源汽车的购买和销售予以补贴,新能源汽车行业获得了前所未有的发展良机。虽然近期石油价格受全球经济衰退影响出现严重下跌,但新能源汽车技术的不断发展仍可以使部分新能源汽车保持一定的使用成本优势。 1.2.2 各国石油自给率不足 世界上主要汽车消费国的石油自给率水平不高,石油的储备越来越不能满足各国消费的需要。全球汽车第一大消费国美国石油自给率仅为33%,而日本、德国、法国和意大利的自给率甚至都在10%以下,在当前世界政治和经济格局不确定性增加的情况下,保证石油供给安全己成为各国政府必须解决的难题。降低石油依赖己成必然选择。从政治和经济的角度考虑,鼓励发展新能源汽车、降低石油对外依赖度是各国政府制定汽车产业政策的必然选择。 1.2.3 世界各国家和地区汽车尾气排放标准越来越严格 1997年12月,旨在限制全球温室气体排放的《京都议定书》获得了149个国家和地区代表的通过,并于2005年2月16日正式生效。现今汽车尾气己成为组成温室气体的重要污染物。针对汽车污染问题,世界各个国家和地区针对汽车尾气排放的标准也越来越严格,而为了应对不断严格的汽车尾气排放标准,各大汽车厂商目前主要采取提高传统能源汽车发动机相关技术的方法,以提高排放质量,但技术提升的难度将会越来越大。此时,发展新能源汽车成为各大厂商的新选择,因为新能源汽车的生产和使用会从根本上解决汽车尾气排放问题。 2 我国新能源汽车发展的挑战 2.1 技术水平的制约 中国新能源汽车制造的技术水平远落后于日本和美国,企业需要至少掌握新能源汽车车载能源系统、驱动系统及控制系统三者之一的核心技术,才能进行新能源汽车的生产。在这方面,中国的新能源汽车制造商已被发展多年的日系、美系厂商远远落在后面。合资企业把新能源技术带到国内的态度一直不是很积极。即便有些车型已经在国内生产,但也相当于整车进口,技术保密相当严格。中资企业虽然在某些领域掌握了一定的新能源汽车技术,但是尚未能实现批量生产。在混合动力汽车技术上同日本、美国等国家相比仍然存在很大差距。没有掌握核心技术,就会被竞争对手夺走了制定行业标准的“优先权”,对之后的发展产生更加深远的影响。 2.2 新能源汽车的购置成本过高 在过去许多年,新能源汽车没有全面推广,一个很大原因在于,新能源车的购置成本较高。相比其节约的能源减少的能源消耗成本,推广新能源汽车,厂商与消费者都要付出更高的代价。国内厂商比亚迪内部人士透露,F3电动车F3e的成本价已达18万元,是市场销售汽油版F3车型的近3倍,当初比亚迪想把F3的售价压缩到15万元以内推向市场,但是这个售价不仅不能让市场接受而且又违背了政府的相关规定。一汽推出的混合动力版奔腾成本是现在市场上销售的汽油版奔腾的2~3倍。售价在25一30万不等的丰田普瑞斯混合动力车就是由于研发成本高导致价格过高而无法在中国进行大范围的推广。毫无疑问,对于国内大多数第一次购买轿车的消费者来说,新能源汽车由于其高昂的价格,让消费者也只能望而却步。2.3 政策优惠涉及范围单一 财政部下发的《关于开展节能与新能源汽车示范推广试点工作的通知》,出台了新能源汽车消费层面的补贴细则。但是只针对在公交、出租、公务、环卫和邮政等公共服务领域率先推广使用节能与新能源汽车的单位予以补贴,没有提及对个人购买新能源汽车的价格补贴问题,极大影响了个人购买新能源汽车的热情。 3 促进我国新能源汽车发展的措施 3.1 要全面拉动新能源汽车消费 一要积极创造优惠条件,鼓励消费者购买新能源汽车,提前更新老旧汽车,特别是那些排放超标的汽车。提前淘汰旧车鼓励更换新能源汽车,如此既有利于环保,又能拉动消费。我国有3000多万的汽车保有量,如果十分之一更新汽车的车主选择新能源汽车,对新能源汽车市场的拉动效应就相当巨大。二要为新能源汽车提供使用便利,提高服务水平。北京LPG出租车退出市场就是由于成本和便利性双重制约的结果。三是继续推行对购买新能源汽车消费者的补贴活动。比如可以增加开展节能与新能源汽车示范推广试点工作的城市数量,扩展对节能与新能源汽车的补贴领域,将受益人群从集体扩展到个人等。 3.2 大力发展新能源汽车技术 传统汽车已经发展了100多年,再去搞创新,空间很小,而新能源汽车刚刚起步,创新的空间很大。即使企业的核心技术很难突破,也不能把资金当做唯一的借口,作为车企要积极筹谋,多方应对。中国在传统汽车发展上同发达国家相差20年,但是在新能源汽车上只相差10年,车企应该抓住机遇,持续并且深入的研究下去,就可以不被汽车大国前进的步伐抛下而越落越远,我们也可以在市场上占有一席之地。与此同时,我国的车企应该尽全力保住自己在某个新能源汽车技术领域的优势,不断创新和进步。比如比亚迪的双模技术,在世界上也只有通用、丰田和比亚迪三家拥有,一定要保持住并扩大该技术上的优势。 3.3 加大政府政策支持力度 《关于开展节能与新能源汽车示范推广试点工作的通知》的推出和汽车产业振兴规划的顺利通过,都表明国家越来越关注新能源汽车的发展,并且采取了实际措施对新能源汽车的发展予以政策支持。但是《通知》和“规划”的政策力度和影响范围尚不够强力和广泛。例如,《通知》只是涉及了13个城市,范围也只局限于公共服务领域;而本次规划也没有能出台像减免购置税这样的政策来鼓励新能源车的消费,使得一汽丰田、比亚迪等已经推出新能源车的厂家的希望落空。新能源汽车研发费用大,成本较高。为了扶持新能源汽车发展,美国、日本等国家政府采取了减免购置税、消费税、个人所得税等多种措施,鼓励消费者优先购买新能源汽车。国家没有价格上的补贴使得奇瑞、吉利、长安、比亚迪等中国自主品牌厂家研发的新能源汽车,虽然制造成本比国外低很多,但其售价仍然比传统能源汽车起码高出20%以上。没有国家的政策和财政支持,国产新能源汽车价格过高严重减缓了新能源汽车进入中国老百姓的家庭进程。希望国家能尽快通过减免混合动力车、电动车等新能源汽车购置税的方案,以鼓励个人消费者购买,使新能源汽车的销量得到大幅度的提升。

  • 索引序列
  • 锂离子电池学术论文
  • 锂离子电池论文文献
  • 锂离子电池参考文献论文
  • 圆柱锂离子电池研究现状论文
  • 关于锂离子电池研究的小论文
  • 返回顶部