首页 > 学术发表知识库 > 锆合金的研究现状论文

锆合金的研究现状论文

发布时间:

锆合金的研究现状论文

纯锆就其强度和抗蚀性能来说,都不能满足核燃料包壳和压力管的要求。20世纪40年代末,美国为了探索锆在水冷反应堆中的应用,着手研究锆基合金。到50年代中期,研制成具有优良综合性能的Zr-2合金 (Zirca-loy-2),并用作世界第一艘核潜艇“舡鱼”号的核燃料包壳材料,后来又制成Zr-4(Zircaloy-4),Zr-1Nb和Zr-2.5Nb合金。二十多年来,各国也研究了许多其他锆合金,但因综合性能不如上述合金,因而应用不多。目前,从海绵锆到锆合金,已实现工业化生产的国家有美国、俄罗斯、法国、德国、加拿大和中国等。

品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为23.2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

元素符号Zr原子序数40,晶体结构密排六方,熔点1852℃,海绵锆是制备锆合金、锆粉的主要原料。金属锆是一种广泛用于原子能工业中的难熔金属材料。用途:海绵锆的90%以上是作为核反应堆中结构和包壳材料的锆基合金的原料。金属锆在化工、农药、印染等行业中可用来制造耐腐蚀的反应塔、泵、热交换器、阀门、搅拌器、喷嘴、导管和容器衬里等,它还可作为炼钢过程中的脱氧、脱氮剂,铝合金的晶粒细化剂。锆丝可作为栅板支架、阴极支架和栅板材料,以及作为空气等离子切割机的电极头。锆粉主要在军火工业上用作爆燃剂,在电子器件内可作为消气剂,它也可制作引火物、烟花和闪光粉。随着新兴材料的迅速发展及核能领域应用需求的增加,锆行业开始迎来投资的黄金期。锆作为重要的稀有金属,由于具有惊人的抗腐蚀性能,极高的熔点,超高的硬度和强度及有突出的核性能等特性,随着新兴材料的迅速发展及核能领域应用需求的增加,需求量迅速增长,锆行业开始迎来投资的黄金期。“十二五”期间,锆产业发展和结构调整的主要任务是以核级锆材为主,同时兼顾民用锆和高纯锆的需求,首先解决核级高纯海绵锆的有无问题;充分利用引进的国外先进技术,进行消化、吸收和再创新;将锆产业纳入核燃料体系,在该体系内建立核级高纯锆材的检测、评估及质保体系。

锆铝合金的组织性能研究现状论文

一、防锈铝合金防锈铝合金包括铝-镁系和铝-锰系合金以及工业纯铝。防锈铝合金的牌号及化学成分见表6-2。这类铝合金的主要性能特点是具有优良的耐蚀性能,因而得名防锈铝合金,简称为防锈铝。此外,还具有良好的塑性与焊接性,适宜压力加工和焊接。这类合金不能进行热处理强化,力学性能比较低。为了提高其强度,可用冷加工方法使其强化。但由于防锈铝的切削加工工艺性差,故适用制作焊接管道、容器、铆钉以及其他冷变形零件。1.铝-镁系合金铝-镁系合金的化学成分中,镁是合金的主要组成元素,此外,还加入少量锰、钛等其他元素。镁含量对合金力学性能的影响是随着镁含量的增加,合金的强度、塑性亦相应提高。但是,当合金中的镁含量超过5%Mg时,合金的抗应力腐蚀性能降低;当镁含量超过7%时,合金的塑性降低,焊接性能也变坏。这可能是与镁含量增加使合金在液态结晶时成分偏析倾向增大有关。由于合金不平衡结晶的结果,合金组织中出现脆性的β(Mg2Al3)相,而导致铝-镁合金性能变坏。实验指出,在镁含量较低的5A02和5A03合金中没有发现β(Mg2Al3)相,随着镁含量的增加,在5A05中可以看到少量β(Mg2Al3)相,而在5A06 合金中,由于镁含量增加,β(Mg2Al3)相的数量亦相应的增加。铝-镁合金中加入少量(0.3%~0.8%)锰,不仅能改善合金的耐蚀性,而且还能提高合金的强度。少量的钛或钒主要是起细化晶粒的作用,少量硅可以改善合金的焊接性能。在铝-镁系防锈铝中,铁、铜和锌等是有害的杂质元素,它们能使合金的耐蚀性能与工艺性能恶化,故其含量应严格控制。在铝-镁合金中,镁在固态铝中虽然有较大的溶解度,且随温度变化亦比较大,但由于铝-镁合金淬火后,在时效过程中形成的过渡相β′与基体不发生共格关系,其时效强化效果甚微,故铝-镁系合金含7%以下的防锈铝均不采用时效处理来提高强度。为了提高铝-镁系防锈铝的强度,可以采用冷加工硬化的方法使其强度提高。但是,含镁高的铝-镁系防锈铝在冷加工硬化后,随着在室温放置时间的增长,合金的强度、特别是屈服强度明显下降,而延伸率显著提高。而且,这种软化现象随着合金的镁含量和变形度增加而表现得更明显。为了防止高镁防锈铝冷加工后的软化现象,冷变形后应进行稳定化处理,即加热到150℃保温3小时,使之在室温下力学性能稳定化。2.铝-锰系防锈铝铝-锰系防锈铝中常见的合金牌号是3A21。锰是该合金的主要组成元素,锰含量在1.0%~1.6%范围内的合金具有较高的强度,同时具有较高的塑性、焊接性以及优良的耐蚀性。当锰的含量超过1.6%时,由于形成大量的脆性化合物MnAl6,虽然强度有所提高,但合金的塑性显著降低,压力加工工艺性能变坏,故防锈铝中锰含量一般不超过1.6%。铁和硅是合金中的主要杂质。铁降低锰在铝中的溶解度,并能溶于MnAl6中,形成(FeMn)Al6,这是硬而脆的难溶相。实践证明,合金中含有少量铁能细化合金组织,但铁含量过高时,则由于形成大量的(FeMn)Al6相,而显著降低合金的力学性能与工艺性能,降低铸造性,故应严格控制其含量,一般控制在0.6%以下。铝-锰系防锈铝因其时效强化效果不佳,故不采用时效处理。3A21合金制品的热处理主要是退火。但3A21合金退火时,极易产生晶粒粗大,导致合金半制品在深冲或弯曲时表面粗糙或产生裂纹。为了保证获得细晶粒的3A21合金制品,应提高退火时的加热速度,或在合金中加入少量钛的同时,加入0.4%铁来细化合金组织。或者将铸锭在600~620℃进行均匀化退火,消除锰在晶内和晶间的严重偏析。从而获得均匀细小的晶粒,以改善压力加工工艺性能。二、硬铝合金铝-铜-镁系合金是使用较早,用途很广的铝合金。它有强烈的时效强化作用,经时效处理后具有很高的硬度、强度,故铝-铜-镁系合金总称为硬铝合金。此外,这类合金还具有优良的加工工艺性能,可以加工成板、棒、管、线、型材及锻件等半成品,广泛应用在国民经济和国防建设中。硬铝合金的主要合金元素是铜、镁,此外还含有锰和一些杂质元素铁、硅、镍、锌等。硬铝合金的牌号及化学成分见表6-2。不同牌号的硬铝合金具有不同的化学成分,其性能特点亦不同。含铜、镁量低的硬铝强度较低而塑性高;含铜、镁量较高的硬铝则强度高而塑性较低。硬铝合金的成分与力学性能的关系,是由合金中形成的强化相所决定的。硬铝合金中铜与镁比值不同,形成的强化相亦不同,其强化相与强化效果亦不同。镁含量低时,形成的主要强化相是θ相(CuAl2),当镁量增加时,θ相减少,而形成强化效果比θ相更大的、并具有一定耐热性的S(Al2CuMg)相。进一步增加镁含量,则相继形成强化效果较差的T(Al6CuMg4)相与β(Al3Mg2)相。当铜与镁的比值一定时,铜和镁总量愈高,强化相数量愈多,强化效果愈大。在硬铝合金中除主要元素铜和镁外,还加入一定量的锰。锰能改善硬铝的耐蚀性,细化合金组织,淬火是锰溶于固溶体起固溶强化作用,使淬火硬铝的强度提高30~70MPa。但含锰量过高时塑性显著降低,因此,硬铝合金中的锰含量控制在0.3%~1.0%。此外,锰还能提高硬铝的耐热性能和削弱杂质铁的有害作用。硬铝合金中的锰含量控制在0.3%~1.0%。铁是硬铝中的有害元素,它不仅能与铝形成金属间化合物FeAl3,降低合金的塑性与耐蚀性能,而且还能夺取合金中的铜形成Cu2FeAl7难溶化合物,减少强化相θ和S的数量,降低时效强化效果。此外,铁还能与硅、锰等元素形成粗大的脆性化合物,使工艺性能变差。因此,在硬铝合金中铁含量一般都控制在0.5%以下。硅在硬铝中亦是以杂质存在。当合金中铁含量较低时,硅与镁优先形成Mg2Si化合物,消耗一部分镁,使强化相S(Al2CuMg)相减少。从而降低硬铝的自然时效强化效果。硅对硬铝的塑性没有太大的影响,相反当合金中有铁存在时,硅与铁形成Fe2SiAl2相,可以减少由于形成粗大片状的(FeMn)Al2相的是有害元素,作用。在硬铝中硅的含量一般控制在0.5%~0.7%。镍在硬铝合金中亦是有害杂质。镍能与铜形成AlCuNi难溶化合物,从而减少了强化相θ(CuAl2)、S(Al2CuMg)相的数量,使硬铝的时效强化效果降低,因此镍含量应限制在0.1%以下。锌在硬铝中以杂质存在,它对硬铝的室温力学性能没有影响,但降低硬铝的热硬性,并增加焊接时形成裂纹的倾向,也需严加控制。硬铝合金按其合金元素含量及性能不同,可分为三种类型:即低强度硬铝,如2A01、2A03、2A10等合金;中强度硬铝如2A11 等合金;高强度硬铝,如2A12等合金。1.低强度硬铝这类硬铝合金镁含量较低(2A10)或含铜、镁量都比较低(2A01)。其主要强化相是θ(CuAl2)相,所以时效强化效果较小,强度比较低,具有较高的塑性,而且时效硬化速度比较缓慢。时效强化后具有较高的剪切抗力,适宜作铆接材料。2.中强度硬铝中强度硬铝亦称标准硬铝。这类合金的铜、镁含量都比较高。它在图6-9中(如2A11合金)处于α(Al)+θ(CuAl2)+S(Al2CuMg)相区左侧,主要强化相亦是θ(CuAl2)相,其次是S(Al2CuMg)相。但铜和镁总量较高,镁量较低,因此具有较高的强度和较好的塑性。退火后工艺性能良好,可进行冷弯、冲压等工艺过程焊接性能良好,耐蚀性中等。被切削加工性在退火状态比较差,但时效硬化状态被切削加工性良好。主要用作中等载荷的结构零件。3.高强度硬铝为了提高硬铝合金的强度和屈服极限,在中强度硬铝的基础上,同时提高铜和镁的含量或单独提高镁的含量而形成高强度硬铝。,如2A12合金。它在图6-9中处于α(Al)+θ(CuAl2)+S(Al2CuMg)相区的右侧。其主要强化相是S(Al2CuMg)相,其次是θ(CuAl2)相。由于S相的自然时效强化效果比θ相强,故2A12合金具有比2A11更高的强度和屈服极限以及良好的耐热性,但塑性和某些工艺性能较差些。2A12合金是工业中应用最广泛的一种高强度硬铝合金。硬铝合金的耐蚀性比防锈铝要差的多,特别是在海水中的耐蚀性更差。所以凡需要在腐蚀环境中工作的硬铝合金零件,其表面都要包一层高纯度铝,以提高其抗蚀能力,但是,包铝的硬铝材料热处理后的力学性能要比未包铝的低些。硬铝淬火加热的过烧敏感性很大,为获得最大固溶度的过饱和固溶体,2A12合金最理想的淬火温度为500±3℃,但实际生产条件下很难办到,所以2A12合金常用的淬火温度为495~500℃。硬铝合金淬火加人工时效状态比淬火加自然时效具有更大的晶间腐蚀倾向,所以除高温工作的构件外,一般采用自然时效。2A12合金淬火后自然时效与力学性能的关系。 淬火冷却速度对硬铝合金的强度及耐蚀性都有强烈的影响。当淬火冷却速度低时,由于淬火过程中强化相,如θ(CuAl2)相沿晶界大量析出,而降低自然时效强化效果和增大晶间腐蚀倾向。因此硬铝合金淬火时,在保证不变形开裂的前提下,冷却速度愈快愈好。对于2A11和2A12合金,淬火冷却速度分别不小于20℃/s和14℃/s,通常采用清水作淬火介质。三、超硬铝合金铝-锌-镁-铜系合金是目前室温强度最高的一类铝合金,其强度达500~700 MPa,超过高强度的硬铝2A12合金(400~430 MPa),故称为超硬铝合金。超硬铝合金的牌号及化学成分见表6-2。超硬铝合金中,主要合金元素是锌、镁、铜,有时还加入少量锰、铬、钛等元素。锌和镁是合金的主要强化元素,在合金中形成强化相η(MgZn2)和T(Al2Mg3Zn3)相,它们在铝中都有很大的溶解度变化,具有显著的时效强化效果。但含锌、镁量过高时,虽然合金强度很高,但塑性和抗应力腐蚀性能降低。在合金中加入一定量铜,可以改善超硬铝的抗应力腐蚀性能,同时铜还能形成θ(CuAl2)和S(Al2CuMg)相起补充强化作用,提高合金强度。但铜含量超过3%时,合金的耐蚀性反而降低,故超硬铝合金中的铜含量应控制在3%以下。在超硬铝中加入锰和铬可以提高合金在淬火状态下的强度和人工时效强化效果,同时改善合金的抗应力腐蚀性能。铁和硅都是有害杂质,。铁与锰形成难溶的复杂化合物相,降低合金的力学性能,并使铆接性能变差。硅在合金中夺取镁形成Mg2Si相,使合金中主要强化相η(MgZn2)和T(Al2Mg3Zn2)相的数量减少,降低时效强化效果。铁和硅同时存在时,对超硬铝合金的性能影响比单独存在时要小。如铁和硅的含量均低于0.5%。时,实际上对合金的力学性能没有影响。7A04合金的主要强化相是η相和T相,其次为S相,若在7A04合金的基础上稍提高锌、镁、铜含量,如7A06合金的组织中,η相与T相数量增多,而S相减少,则合金具有更强烈的时效强化效果,故7A06比7A04合金热处理后具有更高的强度,Rm可达600~700 MPa。超硬铝和硬铝比较,淬火温度范围比较宽。对于6%Zn和含3%Mg以下的合金,淬火温度为450~480℃。但淬火温度不宜超过480℃,否则会降低合金的耐蚀性能。合金淬火时应尽量缩短淬火转移时间,以防止含铜相析出,降低合金时效效果。超硬铝热处理与硬铝不同,超硬铝自然时效的时间很长,要经50~60天才能达到最大强化效果;此外自然时效的超硬铝比人工时效的具有更大的应力腐蚀倾向,因此超硬铝均采用人工时效处理。为了进一步提高合金的抗应力腐蚀性能,可采用分级人工时效,即在120℃时效6小时,然后再在160℃时效3小时,以进一步消除内应力。超硬铝若退火后空冷,有淬火效应。因此,退火冷却速度不易过快,一般不大于30℃/h,炉冷至150℃出炉空冷。超硬铝合金的主要缺点是耐蚀性差。为了提高合金的耐蚀性能,一般板材表面包含有1%Zn的包铝层。此外,超硬铝的室温强度虽比硬铝高得多,但耐热强度不如硬铝,当温度升高时,超硬铝合金中固溶体迅速分解,强化相聚集长大,而使得强度急剧降低。故超硬铝合金不宜在120~130℃温度以上工作。超硬铝主要用作受力较大的结构零件。四、锻铝合金铝-镁-硅-铜系合金具有优良的锻造工艺性能,主要用作制造外形复杂的锻件,故称为锻铝合金。锻铝合金的牌号及化学成分见表6-2。锻铝合金是在铝-镁-硅系合金的基础上发展起来的。铝中加入镁和硅能形成Mg2Si化合物,它在铝中有较大的固溶度,且随温度降低而急剧减小。当Mg2Si相从过饱和固溶体中析出时引起晶格严重崎变,故Mg2Si相是一个极有效的强化相。但是,Mg2Si相具有一定的自然时效强化倾向,若淬火后不立即时效处理,则会降低人工时效强化效果。为了弥补这种强度损失,在铝-镁-硅系中同时加入铜和少量锰。在铝-镁-硅-铜系中,锰的主要作用不仅是阻止在结晶退火时晶粒粗大,而且还能提高合金的淬火温度上限,从而提高合金在淬火态的强度。加入铜,可显著地改善热加工塑性和提高热处理强化效果,并且还能抑制挤压效应,降低因加入锰而引起的各向异性。铝-镁-硅-铜系锻铝合金的相组成主要是a、Mg2Si、W(Cu4Mg5Si4Alx)相,当合金中铜含量较高时,亦有θ(CuSi2)和S(Al2CuMg)相。锻铝合金的热处理由于共同的强化相Mg2Si和W(Cu4Mg5Si4Alx)相在室温下析出缓慢,所以在自然时效时很难达到最大的强化效果,必须采用人工时效。锻铝合金热处理的共同缺点是淬火后在室温下的停留时间不宜过长,否则显著降低人工时效强化效果。而且停留时间愈长,人工时效强化效果愈差。因此,锻铝合金淬火后应立即进行时效处理。 铸造铝合金铸造铝合金除要求具备一定的使用性能外,还要求具有优良的铸造工艺性能。成分处于共晶点的合金具有最佳铸造性能,但由于此时合金组织中出现大量硬脆的化合物,使合金的脆性急剧增大。因此,实际使用的铸造合金并非都是共晶合金,它与变形铝合金相比较只是合金元素含量高一些。铸造铝合金的牌号按着GB/T8063-1994标准,用“ZAl+主加元素符号和百分比含量+辅加元素符号和百分比含量+辅加元素符号和百分比含量……”表示。铸造铝合金的代号用“铸造”二字的汉语拼音第一个大写字母“ZL”加三位数字表示。第一位数表示合金系别:1表示为铝硅系合金;2表示为铝铜系合金;3表示为铝镁系合金;4表示为铝锌系合金;如ZL110表示10号铝硅系合铸造铝合金,一、铝-硅铸造合金铝-硅合金具有极好的流动性,铸造收缩性和线膨胀系数小,优良的焊接性、耐蚀性以及足够的力学性能。但合金的致密度较小,适宜制造致密度要求不太高的、形状复杂的铸件。在简单的二元铝-硅合金中,加入某些强化元素后组成的多元铝-硅合金称为特殊铝-硅合金。1.简单的铝-硅合金简单的二元铝-硅合金(ZL102)是硅含量11%~13%的合金。铸造后的组织为粗大的针状硅与铝基固溶体组成的共晶体和少量的板块状初晶硅。由于组织中粗大的针状共晶硅的存在,合金的力学性能不高,抗拉强度Rm不超过140 MPa,延伸率A不小于3%。若浇注前在熔融合金中加入2%~3%的变质剂,进行变质处理,则可以细化组织。常用的变质剂为2/3NaF+1/3 NaCl或25% NaF+62.5%NaCl+12%KCl混合物,经搅拌均匀后浇入铸型。经变质处理后的ZL02合金的抗拉强度Rm达180MPa,延伸率A可达8%。铝-硅合金变质处理虽能细化组织,改善力学性能,但由于变质剂钠易与熔融合金中的气体起反应,使变质处理后的铝合金铸件产生气孔(亦称针孔)等铸造缺陷,为了消除这种铸造缺陷,浇注前必须进行精炼脱气,致使铸造工艺复杂化。故目前对于硅含量小于7%~8%的合金一般都不进行变质处理。简单的铝-硅合金经变质处理后,可以提高力学性能。但由于硅在铝中的固溶度变化不大,且硅在铝中的扩散速度很快,极易从固溶体中析出,并聚集长大,时效处理时不能起强化作用,故简单铝-硅合金的强度不高。为了进一步提高铝-硅合金的力学性能,常加入铜、镁等合金元素,形成时效强化相,并通过热处理强化,进一步提高力学性能,以扩大其应用范围。2.含镁特殊铝-硅合金若在铝-硅合金中加入适量的镁,能形成Mg2Si相,它在α固溶体中的固溶度随温度降低而显著减小。在固溶处理时能全部溶入α固溶体,经时效处理能产生显著的强化效果。但镁的加入量过高时,固溶处理后尚有一部分未溶解的过剩相Mg2Si存在,使合金变脆。常用的特殊铝-硅合金有ZLl04、ZLl01等合金。例如,ZL104合金的成份标于图中所示位置,在室温时的平衡组织为α固溶体与(α+ Si)二元共晶体以及自α固溶体中析出的Mg2Si相。热处理后的抗拉强度Rm达240 MPa,延伸率为3.6%。铸造、焊接、耐蚀性能等均较高。3.含铜特殊铝-硅合金在铝-硅合金中加入铜能形成θ (CuAl2)强化相,通过热处理能进一步提高合金强度。常用的含铜特殊铝-硅合金有ZL107合金, ZL107经热处理后抗拉强度达260MP,延伸率为3%。4.含铜、镁特殊铝-硅合金铝-硅合金中同时加铜、镁形成的多元合金。.其组织中除Mg2Si、CuAl2等相外,还有Al2CuMg、W(AlxCu4Mg5Si)等强化相。常用的合金有ZL103、ZL105、ZL110等合金。多元特殊铝-硅合金,因其热处理后具有更高的力学性能,故可用作受力较大的内燃机零件,如缸体、缸盖、曲轴箱等。二、铝-铜铸造合金铝-铜铸造合金的最大特点是耐热性高,是所有铸造铝合金中最高的一类合金。其高温强度随铜含量的增加而提高,而合金的收缩率和形成裂纹的倾向则减小。但由于铜含量增加,使合金的脆性增加,故铸造铝台金的铜含量一般不超过14%。铝-铜合金的最大缺点是耐蚀性差,且随铜含量的增加耐蚀性降低。铜含量不同,铝-铜铸造合金的性能特点不同,其用途并不一样。铜含量4%~5%的合金热处理强化效果最好,具有高的强度和塑性,但铸造性能较差。例如ZL203合金适宜制造形状比较简单强度要求较高的铸件。中等铜含量(8%~10%左右)的合金热处理强化效果较差,但铸造性能较好,例如ZL202合金适宜铸造形状复杂,但强度和塑性要求不太高的大型铸件。铜含量高的合金具有高的耐热性能和优良的铸造性能。适宜铸造形状复杂和在高温工作的铸件,如汽车、摩托车发动机的活塞等。三、铝-镁铸造合金铝-镁铸造合金是密度最小(2.55)、耐蚀性最好、强度最高(抗拉强度可达350MP)的铸造铝合金。但由于结晶温度范围宽,故流动性差,形成疏松倾向大,其铸造性能不如铝-硅合金好,且熔化浇铸过程中易形成氧化夹渣,使铸造工艺复杂化。此外,由于合金的熔点较低,故热强度较低,工作温度不超过200℃。常用的铝-镁铸造合金有ZL301、ZL302合金。ZL301合金由α固溶体及其析出的Mg5Al8相所组成。由于铝-镁合金时效处理过程中不经历GP区阶段,而直接析出Mg5Al8相,故时效强化效果较差,且强烈降低合金的耐蚀性和塑性。因此ZL301合金常以淬火状态使用。ZL301合金经固溶处理后抗拉强度Rm达350MPa,延伸率达10%。铝-镁铸造合金常用做制造承受冲击、振动载荷和耐海水或大气腐蚀、外形较简单的重要零件和接头等。四、铝-锌铸造合金锌在铝中的溶解度很大,极限溶解度为32%。铝中加入10%以上的锌能显著提高合金的强度,故铝锌铸造合金具有较高的强度,是最便宜的一种铸造铝合金,其主要缺点是耐蚀性差。常用的铝-锌铸造合金是ZL401合金。由于这种合金含有较高(6.0%~8.0%)的硅,又称含锌特殊铝-硅合金。在合金中加入适量的锰、铁和镁,可以显著提高合金的耐热性能。主要用于制作工作温度不超过200℃,结构形状复杂的汽车、飞机零件、医疗机械和仪器零件等。五、铸造铝合金的热处理特点及代号铸造铝合金中除了铝-硅合金ZL102、铝-镁合金ZL302外,所有其他合金均能热处理强化。铸造铝合金与变形铝合金比较,其组织粗大,有严重的晶内偏析和粗大的针状化合物。此外,铸件的形状亦比较复杂。因此,铸造铝合金的热处理除了具有一般变形铝合金的热处理特性外,淬火加热温度一般比较高,保温时间比较长,一般均在15~20小时左右。其次,由于铸件的形状比较复杂,壁厚不均匀,为了防止淬火时引起变形开裂,一般采用温度较高(60~100℃)的水作淬火冷却介质。此外,为了保证铸件的耐蚀性以及组织与性能和尺寸稳定性,凡是需要时效处理的铸件,一般都采用人工时效。铸造铝合金的热处理可根据铸件的工作条件和性能要求,选择不同的热处理方法。能力知识点6 耐热铝合金一、耐热铝合金的合金化耐热铝合金的合金化与耐热钢相类似,主要也是通过固溶强化、过剩相强化和晶界强化等几方面来提高其热强性的。1.固溶强化耐热铝合金的固溶强化,要求加入的合金元素与形成的固溶体具有高的热强性,而不显著降低合金的熔点,以保证合金具有较高的再结晶温度。其次,加入的合金元素要能增大原子间的结合力,减慢原子的扩散过程和固溶体分解速度。耐热铝合金通常采用多种合金元素进行合金化。这些合金元素加入后一般降低合金的熔点很少。它们多数是一些熔点比铝高的过渡族元素,常用的合金元素有锰、铁,铜、锂以及稀士元素等。2.过剩相强化耐热铝合金大多是多相合金,一定数量的耐热性能好的过剩相是耐热铝合金不可缺少的,熔点高的、成分和结构复杂、并在高温下与共存的固溶体互相作用微弱的过剩相,具有高的热稳定性。铝合金中热稳定性好的过剩相有A12CuMg(S)、AI6Cu3Ni(T),、Al.xCu,4Mg5Si4(W)、AI2FeSi等。3.晶界强化在铝合金中加入钛、锆和稀土元素等都能有效地强化晶界。特别是稀土元素能与铝中的多种杂质元素起作用,清除晶界处的杂质、达到净化晶界与提高晶界抗蠕变的目的,从而显著地提高铝合金的耐热性能。二、耐热铝合金牌号耐热铝合金根据加工工艺特点不同可分为耐热变形铝合金和耐热铸造铝合金。常用耐热变形铝合金牌号有:2A02、2A16、2A17、2A70、2A80、2A90等;常用耐热铸造铝合金牌号有:ZL110、ZL108、ZL109等,1.耐热变形铝合金1).耐热硬铝合金耐热硬铝合金为铝-铜-锰系合金,常用的有2A02、2A16、2A17合金。铜和锰是这类合金的重要组成元素。铜含量为6.0%~6.5%的合金具有高的再结晶温度,因此耐热性能高;同时铜的加入能形成CuAl2强化相,通过人工时效可使合金强化。锰在铝中的扩散系数小,并降低铜在铝中的扩散速度,减慢α固溶体的分解和减小强化相在高温下聚集长大倾向,是保证合金耐热性的主要元素。合金的锰含量在0.4%~0.5%时,能形成细小弥散的T (CuMn2Al12)相,提高合金的耐热性。但锰含量超过1.2%时,由于T相数量增多,相界面增加,加速了扩散过程,使合金耐热性降低。因此,在耐热硬铝合金的锰含量应控制在0.4%~0.8%。合金中加入少量钛能细化组织且提高合金的再结晶温度,因而提高合金的耐热性。但钛含量超过0.2%时,反而使合金耐热性降低,故钛含量应控制在0.1%~0 .2%。2A17合金是在2A16 的基础上加入0.25%~0.45% Mg的合金。镁能提高合金的室温强度,有利于提高合金在150~250℃下的耐热性能,但它使合金的焊接性能变坏,故应控制在0.5%以下。耐热硬铝主要用于制作挤压和模锻的半制品,制造在200~300℃下工作的零件,如压缩机叶片盘或加工成板材用作常温和高温下工作的焊接容器。2).耐热锻铝合金耐热锻铝合金属于铝-铜-镁-铁-镍系合金,铝-铜-镁-铁-镍系合金属于耐热锻铝合金,常用的牌号是2A70,2A80、2A90合金。这类合金中的主要耐热相为S(A12CuMg)相,因此,合金中应力求使S(A12CuMg)相的数置达到极限值。为此,合金中应相对地降低铜含量,而适当提高镁含量,以保证获得最大数量的S(A12CuMg)相,从而获得优良的耐热性能。铁和镍按1:1的比例同时加入合金时,能形成FeNiAl9,对提高合金的耐热性有良好的作用。但合金中单独加入铁或镍时,都使合金的耐热性降低。耐热锻铝合金除了具有较好的耐热性外,还具有小的热膨胀系数,良好的导热性以及加工工艺性能。可加工成各种棒材、锻件以及制作在150~225℃下工作的结构零件。2.耐热铸造铝合金活塞是发动机中传递能量的一个重要零件,它在工作时承受高温、高压、并高速地往复运动。因此,作为活塞材料,除了要求密度小、导热性好外,还要求具备优良的耐热性和耐磨性以及良好的加工工艺性。活塞铝合金是典型的耐热铸造铝合金。它是在二元铝-硅合金ZL102的基础上,分别加入一定量的铜、镁、镍、锰及稀土元素等,组成的多元铝-硅铸造合金。其中铝-硅-铜-镁系的ZL110和ZL108以及铝-硅-铜-镁-镍系的ZL109合金,是最常用的耐热铸造铝合金,主要用于制造活塞。铝-硅合金中加入铜和镁能形成CuAI2和Mg2Si以及W(AI5Mg5Cu4Si4)相,起强化作用,但镁量过高会出现粗大的过剩相Mg2Si,使合金变脆,并使合金的吸气性增加。锰能提高合金的耐热性。它在固溶体中的扩散系数很小,当合金凝固时锰被保留在固溶体中,起固溶强化作用,提高了固溶体在高温下的稳定性,从而提高合金的耐热性。锰还能形成具有高温硬度的T(CuMn2Al12)相,显著提高合金的热硬性。镍在合金中能形成具有热硬性的AI3Ni或〔CuNi)2AI3相,提高合金的热强度。在ZL109合金组织中主是α, Si, Mg2Si, AI3Ni等相。耐热铝合金的热处理必须保证在工作温度下具有高的组织与性能稳定性。因此,耐热铝合金固溶处理后,均采用人工时效处理。

GH684是一种高温合金。GH684的碳、硅含量极低,降低了焊接热影响区碳和其它杂质相的析出,因此其焊缝也具有足够的抗腐蚀性。GH684在还原性介质中具有很好的抗腐蚀性,如各种温度和浓度的盐酸溶液。在中等浓度的溶液(或者含有一定量的氯离子)中也具有很好的抗腐蚀性。同时也能用于醋酸和磷酸环境。合金材料只有在适宜的金相状态和纯净的晶体结构时才能具有好的耐腐蚀性。在化学、石化、能源制造和污染控制领域中有着广泛的应用,尤其是在、盐酸、磷酸、醋酸等工业中。GH684化学成份执行标准:GB/T 14992-2005

硅铝合金是用量最大的硅合金。硅铝合金是一种强复合脱氧剂,在炼钢过程中代替纯铝可提高脱氧剂利用率,并可净化钢液,提高钢材质量。硅铝合金密度小,热膨胀系数低,铸造性能和抗磨性能好,用其铸造的合金铸件具有很高的抗击冲击能力和很好的高压致密性,可大大提高使用寿命,常用其生产航天飞行器和汽车零部件。

高温合金GH4648镍基合金

GH4648应用概况及特性:

合金已用于制作先进航空发动机燃烧室部件及其他热端部件,批产和使用情况良好。相近牌号在国外航空发动机中已获得了极为广泛的应用。

合金的综合性能优于国内GH3044和GH3128性能水平。优于GH4648具有较GH3044更小的比重,所以该合金具有更高的比强度。

GH4648对应牌号:

GH4648  GH648  эп648

GH4648执行标准:

GB/T 14992 高温合金和金属间化合物高温材料的分类和牌号

HB/Z140  航空用高温合金热处理工艺

辽新 7-0085 GH648合金饼材新产品技术条件

辽新 7-0068 GH648合金锻制和轧制棒材新产品技术条件

辽新 7-0079 GH648合金冷轧板材新产品技术条件

辽新 7-0084 GH648合金板材和带材新产品技术条件

Q/GYB 05061 GH648环坯技术协议

Q/3B 1143 GH4648合金焊丝

GH4648热处理制度:

摘自HB/Z140,辽新7-0085、辽新7-0068、辽新70079、辽新7-0084和Q/GYB 5061,各品种的标准热处理制度为:

a)锻制和轧棒材,1150℃士20℃X1h/AC+900℃士20℃X16h/AC;

b)板材和带材,1140℃士10℃/AC+900℃土20℃X6h/AC,其中固溶保温时间为(1~2)min/mm;

c)饼材,环形件,1140℃士20℃X1h/AC+900℃士20℃X16h/AC。

GH4648物理性质:

密度:ρ=8.28g/cm3

GH4648熔化温度范围:

1336~1353℃

GH4648主要规格:

GH4648无缝管、GH4648钢板、GH4648圆钢、GH4648锻件、GH4648法兰、GH4648圆环、GH4648焊管、GH4648钢带、GH4648直条、GH4648丝材及配套焊材、GH4648圆饼、GH4648扁钢、GH4648六角棒、GH4648大小头、GH4648弯头、GH4648三通、GH4648加工件、GH4648螺栓螺母、GH4648紧固件。

铝合金时效研究现状论文

汽车工业中的能源材料 高强度铝合金 通过节能降低环境污染具有重要意义。在汽车材料领域,除了依靠零件薄壁化、中空化及小型化等方法节能外,主要的方法是材料的轻量化,所以轻量化材料的研究是目前国际上汽车材料领域最活跃的研究方向之一。 目前轻量化材料主要采用各种高强度钢,能够降低汽车重量15%-20%。九十年代以来国外广泛采用高比强度Al合金、Mg合金和塑料,其中最重要的轻量化材料是铝合金,它具有塑性好、比强度高、耐腐蚀性好、韧性好、加工成本低和可延长使用寿命等优点,每使用1Kg的Al,可降低汽车重量2.25Kg。 美国每台车的Al合金重量已经从70年代的30Kg增至90年代的90Kg。1996年Audi公司生产的全铝A8轿车,采用Al合金挤压车架,重量降低了35%,抗扭刚度增加了50%;1997年又生产了全Al车身的双座敞篷汽车和双座轿车。BMW公司1996年生产的5系列全铝轿车,其车身、车架、桥壳、齿轮箱箱体和双联前轴都是由Al合金制造,整体刚度增加80%,据德国铝业人士估计,仅使用Al车身,一年就可节约运行费用2.5万马克。 另外,Honda、Nissan、Chrysler、BMW和Audi等公司都生产了全铝发动机,它采用具有低热膨胀系数、良好的高温机械性能和耐磨性的过共晶铝硅合金活塞;缸体、连杆和曲轴采用压力铸造纤维增强和颗粒增强铝合金复合材料;车身采用Al-1%Si-0.5%Mg合金。这种合金在深冲成型时呈固溶态,塑性好;时效后,通过析出Mg2Si而增加强度。此外,采用管状铝材构成“空间立体构架”,其重量比钢车身降低40%,成本只增加20%,汽车总重量和燃料费都降低10%以上。 通过改变合金组织提高铝合金的强度,能够降低铝合金成本,使其得到更广泛的应用。由于我国以生产低中档轿车为主,所以这一点对我国的汽车工业具有特殊的意义。 此类合金的重要特征是强度高、耐腐蚀和韧性好。非晶和纳米晶高强度铝合金通常采用粉末冶金方法制造(冷速为40K/s),采用真空或氢气保护,在过冷液态温度下压制成型,制成的样品密度接近100%。例如Al94V4Fe2合金,其基体中含有高密度晶界和过饱和Fe和V。由于Fe阻碍晶粒长大,其组织为纳米晶+非晶。 在成型过程中,合金表面的氧化铝膜被挤碎,在合金中呈弥散分布,因此该合金同时具有缺陷强化、固溶强化和弥散强化几个方面的强化机制,而组织中的非晶则有力的改善了合金的韧性,该合金最高强度达到1390MPa,其它合金也存在类似的性能。这些合金的铝含量在85%-94%之间,铝含量越低,合金韧性越好,成本越高。由于上述合金需要在压力下成型,所以用这些合金制造的零件应具有较简单的形状。 现在汽车发动机连杆使用的材料主要是中碳碳素钢和合金钢,其强度在600-1000MPa之间。如果高强度铝合金的强度达到700-900MPa,则铝合金的比强度是中碳钢的3倍,而其重量只有原有重量的1/3,这不但能够提高发动机的工作效率和节约能源,而且由于连杆重量的减轻可降低发动机工作时的振动,从而提高发动机的使用寿命和可靠性。 2、储氢合金 估计到2020年石油作为能源的比例将由目前的40%降至20%,所以需要研究替代能源。汽车未来能源除采用天然气和液化气以及各种双燃料外,可采用太阳能、电能和氢能。 太阳能电池从材料角度出发,要解决非晶硅的低成本制造(本世纪末只能达到1w/0.2$)和光电转换率低的问题(24%);电池储能需要解决高效电池(低成本、储电的高比能量和比功率及高储电次数)的问题;而氢能则需要解决低成本分解水和氢气储存问题。 对于氢气储存问题通常采用储氢合金解决,目前主要是镧系(LaNi5),钛系(TiFe和TiFeV)和镁系(Mg2Ni)金属间化合物,一般能够储存比本身体积大1000倍以上的氢量。 这些合金的缺点是储氢次数低(储氢和放氢使其体积反复膨胀和收缩,导致合金粉化)、容易中毒和储氢密度低。如果采用锆镍和铜钛非晶合金储氢,则由于它的非晶结构,不容易发生晶界开裂,从而避免形成粉末。但是一般非晶合金在制造过程中需要急冷,因此很难制成大块样品,需要研制出具有高非晶形成能力的合金。 我们根据80年代末国外的文献报道,研究了在镧系、锆系和镁系非晶合金中加入其它组元(Al、Y和Co等)后的非晶形成能力。虽然不能达到文献报道的通过压力铸造制成直径10mm左右的铸件的水平,但铸造出了直径大于5mm的非晶合金。以这些合金为基础,有可能研究出长寿命的储氢非晶合金,其性能指标预期可达到: a.储氢能力达到200mm3/g; b.放电量50W/Kg; c.充放电次数大于500次; d.在100-150℃氢的蒸气压大于5MPa; e.压力平台温度范围在20-30℃之间。 通过解决水的低成本分解(目前也可通过电厂电力输出低谷时富余的电力电解水)或由于汽油的价格的上涨(石油短缺),都可以导致氢燃料汽车的应用。因为氢燃烧后生成无害的水,所以该研究对于环境保护有着重要意义。 以上是一片参考文献,仅供参考

碳化硅颗粒增强铝基复合材料的研究现状及发展趋势摘要:综述了铝基复合材料的发展历史及国内外研究现状,重点阐述了碳化硅颗粒增强铝基复合材料制备工艺的发展现状。同时说明了碳化硅颗粒增强铝基复合材料研究中仍存在的问题,在此基础上展望了该复合材料的发展前景。关键词:SiCp /Al 复合材料; 制备方法中图分类号:TB333 文献标识码:A 文章编号:1001-3814(2011)12-0092-05Research Status and Development Trend of SiCP/Al CompositeZHENG Xijun, MI Guofa(College of Material Science and Engineer, Henan Polytechnic University, Jiaozuo 454000, China)Abstract:The development history, domestic and foreign research present situation of SiCP /Al composite wasintroduced, the research progress of preparation process for SiCP /Al composite were elaborated, the research on SiCP /Alcomposite was analyzed and the development prospect of the composite was put forward.Key words:SiCp /Al composite; preparation methods收稿日期:2010-11-20作者简介:郑喜军(1982- ),男,河南西平人,硕士研究生,研究方向为材料加工工程;电话:;E-mail:《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术应用进行了广泛的关注和研究,从材料的制备工艺、组织结构、力学行为及断裂韧性等方面做了许多基础性的工作, 取得了显著的成绩。在美国和日本等国,该类材料的制备工艺和性能研究已日趋成熟,在电子、军事领域开始得到实际应用。SiC 来源于工业磨料,可成百吨的生产,价格便宜,SiC 颗粒强化铝基复合材料被美国视为有突破性进展的材料, 其性能可与钛合金媲美,而价格还不到钛合金的1/10。碳化硅颗粒增强铝基复合材料是最近20 年来在世界范围内发展最快、应用前景最广的一类不连续增强金属基复合材料,被认为是一种理想的轻质结构材料,尤其在机动车辆发动机活塞、缸头(缸盖)、缸体等关键产品和航空工业中具有广阔的应用前景[5-7]。在1986 年,美国DuralAluminumComposites 公司发明了碳化硅颗粒增强铝硅合金的新技术, 实现了铸造铝基复合材料的大规模生产, 以铸锭的形式供给多家铸造厂制造各种零件[8-9]。美国Duralcan 公司在加拿大己建成年产11340 t 的SiC/Al 复合材料型材、棒材、铸锭以及复合材料零件的专业工厂。目前,Duralcan 公司生产的20%SiCp /A356Al 复合材料的屈服强度比基体铝合金提高75%、弹性模量提高30%、热膨胀系数减小29%、耐磨性提高3~4倍。美国DWA 公司生产的碳化硅增强复合材料随碳化硅含量的增加,只有伸长率下降的,其他性能都得到了很大提高。到目前为止,SiCp/Al 复合材料被成功用于航空航天、电子工业、先进武器系统、光学精密仪器、汽车工业和体育用品等领域,并取得巨大经济效益。表1 列举了一些SiCp/Al 复合材料的力学性能。目前国内从事研制与开发碳化硅颗粒增强铝复合材料工作的科研院所与高校主要有北京航空材料研究院、上海交通大学、哈尔滨工业大学、西北工业大学、国防科技大学等。哈尔滨工业大学研制的SiCw/Al 用于某卫星天线丝杆,北京航空材料研究院研制的SiCp/Al 用于某卫星遥感器定标装置[10-11]。国内到目前为止还没有出现高质量高性能的碳化硅颗粒增强铝基复合材料, 虽然部分性能已达到国外产品的指标, 但在产品的尺寸精度上还存在不小的差距,另外制造成本太高,离工业化生产还有一段距离要走。2 铝基复合材料的性能特征(1)高比强度、比模量由于在金属基体中加入了适量的高强度、高模量、低密度的增强物,明显提高了复合材料的比强度和比模量, 特别是高性能连续纤维,如硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,他们具有很高的强度和模量[1]。(2)良好的高温性能,使用温度范围大增强纤维、晶须、颗粒主要是无机物,在高温下具有很好的高温强度和模量, 因此金属基复合材料比基体金属有更高的高温性能。特别是连续纤维增强金属基基复合材料,其高温性能可保持到接近金属熔点,并比金属基体的高温性能高许多。(3)良好的导热、导电性能金属基复合材料中金属基体占有很高的体积百分数, 一般在60%以上,因此仍保持金属的良好的导热、导电性能。(4)良好的耐磨性金属基复合材料,特别是陶瓷纤维、晶须、颗粒增强金属基复合材料具有很好的耐磨性。这是由于在基体中加入了大量细小的陶瓷颗粒增强物,陶瓷颗粒硬度高、耐磨、化学性能稳定,用它们来增强金属不仅提高了材料的强度和刚度,也提高了复合材料的硬度和耐磨性。(5)热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强相碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等均具有很小的热膨胀系数,特别是超高模量的石墨纤维具有负热膨胀系数, 加入相当含量的此类增强物可降低材料膨胀系数, 从而得到热膨胀系数小于基体金属、尺寸稳定性好的金属基复合材料。(6)良好的抗疲劳性和断裂韧性影响金属基复合材料抗疲劳性和断裂韧性的因素主要有增强物与复合体系制备工艺增强体含量(vol,%)拉伸强度/MPa弹性模量/GPa伸长率(%)SiCP /2009Al 粉末冶金20 572 109 5.3SiCP/2124Al 粉末冶金20 552 103 7.0SiCP/6061Al 粉末冶金20 496 103 5.5SiCP/7090Al 粉末冶金20 724 103 2.5SiCP/6061Al 粉末冶金40 441 125 0.7SiCP/7091Al 粉末冶金15 689 97 5.0SiCP/A356Al 搅拌铸造20 350 98 0.5SiCP/A359Al 无压浸渗30 382 125 0.4表1 碳化硅颗粒增强铝基复合材料的力学性能[1]Tab.1 Mechanical properties of aluminum matrixcomposite reinforced by SiC particle93Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月金属基体的界面结合状态、金属基体与增强物本身的特性以及增强物在基体中的分布等。特别是界面结合强度适中,可以有效传递载荷,又能阻止裂纹扩展,从而提高材料的断裂韧性。(7)不吸潮、不老化、气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,在空间使用不会分解出低分子物质而污染仪器和环境,有明显的优势。(8)较好的二次加工性能可利用传统的热挤压、锻压等加工工艺及设备实现金属基复合材料的二次加工。由于铝基复合材料不但具有金属的塑性和韧性,而且还具有高比强度、比模量、对疲劳和蠕变的抗力大、耐热性好等优异的综合性能。尤其在最近20 年以来, 铝基复合材料获得了惊人的发展速度,表2 列举了一些铝基复合材料的力学性能。3 主要应用领域3.1 在航空航天及军事领域的应用美国ACMC 公司和亚利桑那大学光学研究中心合作,研制成超轻量化空间望远镜和反射镜,该望远镜的主镜直径为0.3m,仅重4.54kg。ACMC 公司用粉末冶金法制造的碳化硅颗粒增强铝基复合材料还用于激光反射镜、卫星太阳反射镜、空间遥感器中扫描用高速摆镜等;美国用高体积分数的SiCp/Al代替铍材,用于惯性环形激光陀螺仪制导系统、三叉戟导弹的惯性导向球及管型测量单元的检查口盖,成本比铍材降低2/3;20 世纪80 年代美国洛克希德.马丁公司将DWA 公司生产的25%SiCp /6061Al 用作飞机上承载电子设备的支架,其比刚度比7075 铝合金约高65%;美国将SiCp/6092Al 用于F-16 战斗机的腹鳍, 代替原有的2214 铝合金蒙皮, 刚度提高50%,寿命从几百小时提高到8000 小时左右,寿命提高17 倍,可大幅度降低检修次数,提高飞机的机动性,还可用于F-16 的导弹发射轨道;英国航天金属及复合材料公司(AMC)采用高能球磨粉末冶金法研制出高刚度﹑ 耐疲劳的SiCp/2009Al, 成功用于Eurocopter 公司生产的N4 及EC-120 新型直升机[12];采用无压浸渗法制备的高体积分数SiCp/Al 作为印刷电路板芯板用于F-22“猛禽”战斗机的遥控自动驾驶仪、发电元件、飞行员头部上方显示器、电子计数测量阵列等关键电子系统上, 以代替包铜的钼及包铜的锻钢,可使质量减轻70%,同时降低了电子模板的工作温度;SiCp/Al 印刷电路板芯板已用于地轨道全球移动卫星通信系统; 作为电子封装材料,还可用于火星“探路者”和“卡西尼”土星探测器等航天器上。美国采用高体积分数SiCp /Al 代替Cu-W 封装合金作为电源模块散热器,已用于EV1 型电动轿车和S10 轻型卡车上;美国将氧化反应浸渗法制备的SiC-Al2O3/Al 作为附加装甲,用于“沙漠风暴”地面进攻的装甲车;美国GardenGrove 光学器材公司用SiCp/Al 制备Leopardl 坦克火控系统瞄准镜。3.2 在汽车工业中的应用由山东大学与曲阜金皇活塞有限公司联合研制的SiCp /Al 活塞已用于摩托车及小型汽车发动机;自20 世纪90 年代以来, 福特和丰田汽车公司开始采用Alcan 公司的20%SiC/Al-Si 来制作刹车盘;美国Lanxide 公司生产的SiCp/Al 汽车刹车片于1996年投入批量生产[13];德国已将该材料制作的刹车盘成功应用于时速为160km/h 的高速列车上。整体采用锻造的SiCp/Al 活塞已成功用于法拉利生产的一级方程式赛车。3.3 在运动器械上的应用BP 公司研制的20%SiCp/2124Al 自行车框架已在Raleigh 赛车上使用;SiCp /Al 复合材料可应用于自行车链轮、高尔夫球头和网球拍等高级体育用品;在医疗上用于假体的制造。4 制备及成型方法一般来说, 根据铝基体状态的不同,SiCp/Al 的制备方法大致可分为固态法和液态法两类。目前主要有粉末冶金法、喷射沉积法、搅拌铸造法和挤压铸造法。4.1 粉末冶金法粉末冶金法又称固态金属扩散法,该方法由于克增强相/ 基体增强相含量拉伸强度/MPa弹性模量/GPa伸长率(%)SiC/Al-4Cu 15 476 92 2.3SiCp /ZL101 20 375 101 1.64SiCp /ZL101A 20 330 100 0.5SiCp /6061 25 517 114 4.5SiCp /2124 25 565 114 5.6Al2O3 /Al-1.5Mg 20 226 95 5.9Cf /Al 26 387 112 -表2 金属基复合材料的力学性能[1]Tab.2 Mechanical properties of metal matrix composite[1]94《热加工工艺》2011 年第40 卷第12 期下半月出版Material & Heat Treatment 材料热处理技术服了碳化硅颗粒与铝合金熔液润湿困难的缺点,因而是最先得到发展并用于SiCp/Al 的制备方法之一。具体制备SiCp/Al 的粉末冶金工艺路线有多种,目前最为流行和典型的工艺流程为:碳化硅粉末与铝合金粉末混合一冷模压(或冷等静压)一真空除气一热压烧结(或热等静压)一热机械加工(热挤、轧、锻)。粉末冶金法的优点在于碳化硅粉末和铝合金粉末可以按任何比例混合,而且配比控制准确、方便。粉末冶金法工艺成熟,成型温度较低,基本上不存在界面反应、质量稳定,增强体体积分数可较高,可选用细小增强体颗粒。缺点是设备成本高,颗粒不容易均匀混合,容易出现较多孔隙,要进行二次加工,以提高机械性能,但往往在后续处理过程中不易消除;所制零件的结构、形状和尺寸都受到一定的限制,粉末冶金技术工艺程序复杂,烧结须在在密封、真空或保护气氛下进行, 制备周期长, 降低成本的可能性小,因此制约了粉末冶金法的大规模应用。4.2 喷射沉积法喷射沉积法是1969 年由Swansea 大学Singer教授首先提出[14],并由Ospray 金属有限公司发展成工业生产规模的制造技术。该方法的基本原理是:对铝合金基体进行雾化的同时,加入SiC 增强体颗粒,使二者共同沉积在水冷衬板上, 凝固得到铝基复合材料。该工艺的优点是增强体与基体熔液接触时间短,二者反应易于控制;对界面的润湿性要求不高,可消除颗粒偏析等不良组织, 组织具有快速凝固特征;工艺流程短、工序简单、效率高,有利于实现工业化生产。缺点是设备昂贵,所制备的材料由于孔隙率高而质量差必须进行二次加工, 一般仅能制成铸锭或平板; 大量增强颗粒在喷射过程中未能与雾化的合金液滴复合, 造成原材料损失大, 工艺控制较复杂,增强体颗粒利用率低、沉积速度较慢、成本较高。4.3 搅拌铸造法搅拌铸造法的基本原理[15-17]:依靠强烈搅拌在合金液中形成涡漩的负压抽吸作用, 将增强体颗粒吸入基体合金液体中。具体工艺路线:将颗粒增强体加入到基体金属熔液中, 通过一定方式的搅拌与一定的搅拌速度使增强体颗粒均匀地分散在金属熔体中,以达到相互混合均匀与浸润的目的,复合成颗粒增强金属基复合材料熔体。然后可浇铸成锭坯、铸件等使用。该方法的优点是:工艺简单、设备投资少、生产效率高、制造成本低、可规模化生产。缺点是:加入的增强体颗粒粒度不能太小, 否则与基体金属液的浸润性差, 不易进入金属液或在金属液中容易团聚和聚集;普遍存在界面反应,强烈的搅拌容易造成金属液氧化,大量吸气及夹杂物混入,颗粒加入量也受到一定限制,只能制成铸锭,需要二次加工。4.4 挤压铸造法挤压铸造法是首先把SiC 颗粒用适当的粘结剂粘结,制成预制块放入浇注模型中,预热到一定的温度,然后浇入基体金属液,立即加压,使熔融的金属熔液浸渗到预制块中,最后去压、冷却凝固形成SiCp/Al。该方法的优点是:设备较简单且投资少,工艺简单且稳定性较好,生产周期短,易于工业化生产,能实现近无余量成型,增强体体积分数较高,基本无界面反应。缺点是容易出现气体或夹杂物,缺陷比较多,需增强颗粒需预先制成预成型体, 预成型体对产品质量影响大,模具造价高,而且复杂零件的生产比较困难。5 SiCp /Al 复合材料发展的建议与对策SiCp /Al 复合材料作为一种新的结构材料有着广阔的发展前景, 但要实现产业化还需做大量的研究工作。除了要对SiCp/Al 复合材料的制备工艺、界面结合状态、增强机制等方面的内容做进一步研究,其相关领域的研究及发展也应给予重视。5.1 现有制备工艺进一步完善和新工艺的开发现有工艺制备方法虽然已经成功制造了复合材料,但很难用于工业化生产且尚处于实验室研究阶段[18]。SiC 颗粒存在于铝液中,使金属液粘度提高,流动性降低,铸造时充填性变差,当颗粒含量增加至20%或在较低温度(<730℃)时,流动性急剧降低以致于无法正常浇注。另外,SiC颗粒具有较大的表面积, 表面能较大,易吸附气体并带入金属液中,而金属液粘度大也易卷入气体并难以排出,产生气孔缺陷。因此,对现有工艺的进一步完善和新工艺的开发成为下一步研究工作的主要任务。5.2 后续加工工艺的研究金属基复合材料的切削加工、焊接、热处理等后续加工工艺的研究较少,成为限制其应用的瓶颈。高强度、高硬度增强体的加入使金属基复合材料成为难加工材料[18-19],而由于增强体与基体合金的热膨胀系数差异大引起位错密度的提高, 也使金属基复合95Hot Working Technology 2011, Vol.40, No.12材料热处理技术Material & Heat Treatment 2011 年6 月材料的时效行为与基体合金有所不同[20]。另外,增强体影响焊接熔池的粘度和流动性, 并与基体金属发生化学反应限制了焊接速度, 给金属基复合材料的焊接造成了极大困难。因此, 解决可焊性差的问题也成为进一步研究的主要方向。5.4 环境性能方面的改善金属基复合材料的环境性能方面的研究, 即如何解决金属基复合材料与环境的适应性, 实现其废料的再生循环利用也引起了一些学者的重视, 这个问题关系到有效利用资源,实现社会可持续发展,因此, 关于环境性能方面的研究将是该领域今后研究的热点。由于铝基复合材料是由两种或两种以上组织结构、物理及化学性质不同的物质结合在一起形成一类新的多相材料, 其回收再利用的技术难度要比传统的单一材料大得多。随着铝基复合材料的批量应用,必然面临废料回收的问题,通过对复合材料的回收再利用, 不但可减少废料对环境的污染还可减低铝基复合材料的制备成本、降低价格,增加与其他材料的竞争力,有利于促进自身的发展。文献[21]配制了混合盐溶剂, 采用熔融盐法成功地分离出颗粒增强铝基复合材料中的增强材料,研究结果表明,利用该技术处理颗粒增强铝基复合材料, 其回收利用率可达85%。6 结语与铝合金基体相比, 铝基复合材料具有更高的使用温度、模量和强度,热稳定性增加及更好的耐磨损性能,它的应用将越来越广泛。然而,在目前的研究中仍然存在许多疑问和有待解决的问题, 例如怎样去克服铝基复合材料突出的界面问题, 并且力求研究结果有助于改善生产应用问题; 在制备过程前后, 怎样通过热处理手段来改善成品的各方面性能;如何利用由于热失配造成的内、外应力使材料服役于各种环境。此外,原位反应中仍不免其他副反应夹杂物存在, 同时对增强体的体积分数也难以精确控制,这些都是亟待研究解决的问题。参考文献:[1] 于化顺.金属基复合材料及其制备技术[M].北京:化学工业出版社,2006.241.[2] 吴人洁.复合材料[M].天津:天津大学出版社,2000.[3] 沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.[4] 毛天祥.复合材料的现状与发展[M].合肥:中国科学技术大学出版社,2000.[5] 赫尔(Hull, D).复合材料导论[M].北京:中国建设工业出版社,1989.[6] 尹洪峰,任耘,罗发.复合材料及其应用[M].陕西:陕西科学技术出版社,2003.[7] 汤佩钊.复合材料及其应用技术[M].重庆:重庆大学出版社,1998.[8] 张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料[J].兵器材料科学与工程,1997,20(6):35-391.[9] 韩桂泉,胡喜兰,李京伟.无压浸渗制备结构/ 功能一体化铝基复合材料的性能及应用[J].航空制造技术,2006(01):95.[10] 李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,2(1):9-161.[11] 桂满昌,吴洁君,王殿斌,等.铸造ZL101A/SiCp复合材料的研究[J].铸造,2001,50(6):332-3361.[12] 任德亮,丁占来,齐海波,等.SiCp /Al 复合材料显微结构与性能的研究[J].航空制造技术,1999,(5):53-551.[13] Clyne T W,Withers P J.An Introduction to Metal MatrixComposites [M].London:Cambridge University Press,1993.[14] Lee Konbae.Interfacial reaction in SiCp /Al composite fabricatedby pressureless infiltration [J].Scripta. Materialia,1997,36(8):847.[15] 张淑英, 张二林. 喷射共沉积金属基复合材料的发展现状[J].宇航材料工艺,1996,(4):4-5.[16] Clegg A J.Cast metal matrix and composites [J].TheFoundryman,1991,8:312-3191.[17] Mortensen A, Jim I.Solidification processing of metal matrixcomposites [J].Inter. Mater. Rews.,1992,37(3):101-128.[18] Lloyd D J.Particle reinforced aluminium and magnesiummatrix composites [J].Inter. Mater. Rews,1994,39(1):218-231.[19] Quigleg O, Monagham M, O'Reilly P.Factors effecting themachinability of Al/SiC metal matrix composite [J].J. Mater.Process.Tech.,1994,43:21-23.[20] Looney L A, Monagham M, O'Reilly P.The turning of anAl/SiC metal-matrix composite [J].J. Mater. Process. Tech.,1992,33:553-557.[21] 费良军,朱秀荣,童文俊,等.颗粒增强铝基复合材料废料回收的试验研究[J].复合材料学报,2001,18(1):67-70.

铝合金研究现状及应用的论文

硅铝合金是用量最大的硅合金。硅铝合金是一种强复合脱氧剂,在炼钢过程中代替纯铝可提高脱氧剂利用率,并可净化钢液,提高钢材质量。硅铝合金密度小,热膨胀系数低,铸造性能和抗磨性能好,用其铸造的合金铸件具有很高的抗击冲击能力和很好的高压致密性,可大大提高使用寿命,常用其生产航天飞行器和汽车零部件。

合金是由金属与其它一种以上的金属或非金属所组成的具有金属通性的物质。我国是世界上最早研究和生产合金的国家之一,在商朝(距今3000多年前)青铜(铜锡合金)工艺就已非常发达;公元前6世纪左右(春秋晚期)已锻打(还进行过热处理)出锋利的剑(钢制品)。铝是分布较广的元素,在地壳中含量仅次于氧和硅,是金属中含量最高的。纯铝密度较低,为2.7 g/cm3,有良好的导热、导电性(仅次于Au、Ag、Cu),延展性好、塑性高,可进行各种机械加工。铝的化学性质活泼,在空气中迅速氧化形成一层致密、牢固的氧化膜,因而具有良好的耐蚀性。但纯铝的强度低,只有通过合金化才能得到可作结构材料使用者选用根据铝合金的成分和生产工艺特点,通常分为形变与铸造铝合金两大类.工业上应用的主要有铝-锰,铝-镁,铝-镁-铜,铝-镁-硅-铜,铝-锌-镁-铜等合金.变形铝合金也叫熟铝合金,据其成分和性能特点又分为防锈铝,硬铝,超硬铝,锻铝和特殊铝等五种.。铝合金的突出特点是密度小、强度高。铝中加入Mn、Mg形成的Al-Mn、Al-Mg合金具有很好的耐蚀性,良好的塑性和较高的强度,称为防锈铝合金,用于制造油箱、容器、管道、铆钉等。硬铝合金的强度较防锈铝合金高,但防蚀性能有所下降,这类合金有Al-Cu-Mg系和Al-Cu-Mg-Zn系。新近开发的高强度硬铝,强度进一步提高,而密度比普通硬铝减小15%,且能挤压成型,可用作摩托车骨架和轮圈等构件。Al-Li合金可制作飞机零件和承受载重的高级运动器材。 各种飞机都以铝合金作为主要结构材料。飞机上的蒙皮、梁、肋、桁条、隔框和起落架都可以用铝合金制造。飞机依用途的不同,铝的用量也不一样。着重于经济效益的民用机因铝合金价格便宜而大量采用,如波音767客机采用的铝合金约占机体结构重量 81%。军用飞机因要求有良好的作战性能而相对地减少铝的用量,如最大飞行速度为马赫数 2.5的F-15高性能战斗机仅使用35.5%铝合金有些铝合金有良好的低温性能,在-183~-253[2oc]下不冷脆,可在液氢和液氧环境下工作,它与浓硝酸和偏二甲肼不起化学反应,具有良好的焊接性能,因而是制造液体火箭的好材料。发射“阿波罗”号飞船的“土星” 5号运载火箭各级的燃料箱、氧化剂箱、箱间段、级间段、尾段和仪器舱都用铝合金制造。 航天飞机的乘员舱、前机身、中机身、后机身、垂尾、襟翼、升降副翼和水平尾翼都是用铝合金制做的。各种人造地球卫星和空间探测器的主要结构材料也都是铝合

镁合金研究现状和发展论文

近十年来,中国镁的产量大幅度增长,据统计,2011年中国镁产量占全球总产量的80%以上,镁的生产工艺逐步成熟、完善,镁的应用开发也取得不小进展,在一些应用领域甚至还出现了与铝竞争的现象。这种情况下,以镁替代铝的话题也不时付出水面,有段时间甚至甚嚣尘上,一度引起社会的广泛关注。那么镁在未来能否替代铝,镁业分会会长徐晋湘在一次采访中纠正“替代”概念,他表示,镁和铝不存在替代的问题,它俩各自的应用角色与其它材料一样,都是在历史发展过程中逐渐形成的,这些角色可能在某些领域的某段时间出现相互转换,但不是“代替”而是“接替”。从理论上讲,任何材料都有其独有的、别的材料无法替代的性能,人类使用数千年的陶土和木材至今仍不能被别的材料所完全替代,更何况性能极其优越的铝及铝合金材料。角色的定位应是在“正视现实”、着眼发展”的辩证基础上用“两点论”而不能用“一点论”来定义。徐会长并谈到,从消费量来看,目前全球铝年产消费量超过5000万吨,在人类生活的各个领域都得到了广泛的应用,而全球镁的产量才有区区的80万吨,因此用镁代替铝是不现实的,也不是镁业发展追求的方向,但从市场的角度,镁和铝在某些领域内即便出现一定竞争也是正常的,因镁及镁合金材料各自有其独特的性能优势。

一、镁合金新材料特点

(一)镁合金是最轻的结构材料之一

镁合金有着其它金属不可比拟的优越性。镁及镁合金的特殊性能,重量轻、产品集成化高,其导热性能和强度尤为突出,在同样的强度零部件的情况下,镁合金的零部件能做得比塑料的而且轻等使其在移动通信、手提计算机等的壳体结构件上以及在汽车、电子、电器等领域都具有重要的应用价值和广阔的应用前景。镁合金相对比强度最高。镁合金冲击韧性好、抗弯强度大、机械性能的各向异性不明显、塑性好、容易变形加工、容易焊接成形、比热容量大、导热性低。事实上,轻量化的好处,并不仅仅是提升马力重量比这个与加速能力息息相关的参数,更对汽车的操控大有影响。实践证明,镁合金是实现汽车轻量化不仅是节油节能、提高效率、降低污染的有效途径,也对提高汽车安全性能、加强环境保护等有着重要的意义。

(二)镁是工程应用中最轻的金属结构材料

镁合金是活泼金属,所以制造设备和环境有更高的要求,导致制造成本高涨,所以镁合金的价格也会高于铝合金。同等体积的条件下镁合金比铝合金质量轻,这是镁合金的优势。其密度仅为1.8克/厘米 3,是钢的1/4,铝的2/3。在汽车结构材料应用中,有时比铝和塑料更有应用价值。镁合金板材及板坯具有密度小、比强度高、电磁屏蔽性好、易于加工、减震性能好的优点。镁合金具有较高的抗振能力和吸热性能,因而是制造飞机轮毂的理想材料。镁合金AZ31B在汽油、煤油和润滑油中很稳定,适于制造发动机齿轮机匣、油泵和油管。还具有良好的电磁屏蔽特性和阻尼减震能力、成 形性能优良及回用处理方便等一系列性能,符合对材料的轻量化和绿色化的要求。另外,镁合金在电子工业中具有十分广阔的应用前景。镁合金将能够满足汽车非结构件和结构件的性能和使用要求,具有耐高温、抗蠕变和抗腐蚀性能。

(三)镁合金相对比强度最高

随着能源、资源问题的日渐突出,以镁、钛金属及其合金为代表的轻合金材料应用越来越广泛,镁合金的强度高、机械性能好.是实用金属中的最轻的金属,高强度、高刚性。另外,还具有良好的吸震性及耐冲击性。镁合金产品吸震性及耐冲击性强,对外界的碰撞具有很好的防震作用,因而就能对内部机体有很好的保护作用。具有吸声性能,广播室和现代大建筑物目前多采用镁合金做室内天花板。铝在碰击情况下不产生火花,可应用于防止火花产生的场合。镁合金具有良好的散热性。镁合金的热传导性与热扩散性都比较好,而铝合金热传快但扩散慢,它不能有效及时地把热散掉。“十二五”期间,新型轻合金材料主要以大规格、轻质、高强、耐高温、耐腐蚀、耐疲劳为发展方向,大力发展高性能镁合金是必然趋势。

二、镁合金新材料加工工艺分析

(一)强烈塑性变形技术

镁合金在塑性变形时由于强烈的变形织构存在,变形后容易产生各向异性,影响进一步的加工。通过工艺控制与优化,调控材料的织构类型和数量,是提高或改善镁合金加工性能的重要途径,所以成为材料科学工作者不断探索与研究的领域之一。强烈塑性变形技术是制备超细晶金属材料的有效方法。一系列通过强烈塑性变形来制备超细晶材料的工艺技术被提出,包括等通道角挤压、累积轧合法、高压扭转法、震波冲击法、反复折皱-压直法、扭转挤压法、大挤压比挤压法、多向锻造法等等。由于镁合金是六方结构,塑性变形能力较差,传统的单一的塑性变形方法难以进一步提高其力学性能。针对这一难点,采用大塑性变形技术,发挥其强烈的晶粒细化效果,可以直接将材料的内部组织细化到亚微米乃至纳米级。大塑性变形技术包括等通道转角挤压、累积叠轧等。采用大塑性变形制备的 Mg-Y-Zn 合金在 250℃时获得抗拉强度为400 MPa,屈服强度为340 MPa,伸长率达20% 的综合力学性能。

(二)铸造技术

一般来讲,镁合金锻件的性能岁碧昂型程度的增大而提高;而随着变形温度的升高,其力学性能逐渐降低。近年来变形镁合金得到了广泛的研究和应用,连续铸造技术为新型变形镁合金提供合格的铸坯。压铸是镁合金最主要、应用最广泛的成形工艺。因镁合金热流动性好,很适合于薄壁件的压铸生产。 镁合金锻件替代铝合金作为汽车轮毂是镁合金的另一重要应用,但这对其安全性及性能提出了很高的要求。从镁合金的性能上来看,完全可以满足方向盘的性能要求,而且采用一片式的压铸成型 工艺,为安全气囊,多功能开关在方向盘上实现提供了可靠保证。

(三)锻造技术

锻造技术是汽车工业的重要支撑工业之一,一直以来与汽车业的发展密切相关。近年来汽车业的迅猛发展带动了锻造市场的扩大。锻造工艺按方式可分为自由锻造和模锻,按锻造温度可分为热锻,温锻和冷锻,由于镁合金冷加工性能差,所以一般采用热锻。由此可见,锻造是高性能镁合金产品成形的有效方法之一。采用铸造技术生产出的铸件尺寸精度、表面质量比其他镁合金铸造方法要高,复杂、耐高温、不易加工的铸件均可用熔模精密铸造。

结语

我国镁的蕴藏也十分丰富,菱镁矿资源占全球总量的22.15%,原镁产量已占全球产量的64%,是名副其实的镁金属生产大国。随着对镁合金需求的不断增加,市场认可度逐渐增强。因此,镁合金材料加工需从技术、人员、管理等方面进行全面的整合,才能不断扩大镁合金市场规模,实现镁合金加工工艺技术的不断提高。

  • 索引序列
  • 锆合金的研究现状论文
  • 锆铝合金的组织性能研究现状论文
  • 铝合金时效研究现状论文
  • 铝合金研究现状及应用的论文
  • 镁合金研究现状和发展论文
  • 返回顶部