首页 > 学术发表知识库 > 聚羧酸减水剂研究进展论文

聚羧酸减水剂研究进展论文

发布时间:

聚羧酸减水剂研究进展论文

现在民用的已经开始使用聚羧酸减水剂了。他的减水效果,混凝土的和易性等都要比萘系的好,成本并不比萘系高。但他对材料的要求较严格。粉煤灰等级,砂石料的含泥量等都回影响减水性能及和易性。应用前景还是比较不错的

聚羧酸高性能减水剂的制备、性能与应用1、聚羧酸高性能减水剂的现状 混凝土技术发展离不开化学外加剂,如泵送混凝土、自流平混凝土、水下不分散混凝土、喷射混凝土、聚合物混凝土、高强高性能混凝土等新材料的发展,高效减水剂都起到了关键作用。高效减水剂又称超塑化剂,用于混凝土拌合物中,主要起三个不同的作用[1]: ①在不改变混凝土强度的条件下,改善混凝土工作性; ②在给定工作性条件下,减少水灰比,提高混凝土的强度和耐久性; ③在保证混凝土浇注性能和强度的条件下,减少水和水泥用量, 减少徐变、干缩、水泥水化热等引起的混凝土初始缺陷的因素。 萘系高效减水剂的应用大约有20多年历史,是目前工程应用中的主要高效减水剂品种。研究表明,聚羧酸系高效减水剂是比萘系性能更好的新型减水剂,在相同用量下,聚羧酸系减水剂能获得更好的减水率和塌落度保持能力[2-5]。日本是研究和应用聚羧酸系减水剂最多也是最成功的国家,1998年以后聚羧酸系减水剂在日本的使用量超过了萘系减水剂[5]。近年来,北美和欧洲的一些研究者的论文中,也有许多关于研究开发具有优越性能的聚羧酸系的报道,研究重点也从磺酸系超塑化剂改性逐渐移向对聚羧酸系的研究。日本和欧美一些国家的学者发表的有关聚羧酸系减水剂的研究论文呈现大量增多趋势,大多数正在开发研究聚羧酸类减水剂,方向主要偏重于开发聚羧酸系减水剂及研究有关的新拌混凝土工作性能和硬化混凝土的力学性能及工程使用技术等。国内聚羧酸系减水剂几乎都未达到实用化阶段。合成聚羧酸系减水剂可供选择的原材料也极为有限,从减水剂原材料选择到生产工艺、降低成本、提高性能等许多方面都需要系统研究[4]。2、聚羧酸高性能减水剂的性能及作用机理聚羧酸高性能减水剂与其它高效减水剂相比,有许多突出的性能[6]: 低掺量(0.2%--0.5%)而发挥高的分散性能; 保坍性好,90分钟内坍落度基本无损失; 在相同流动度下比较时,延缓凝结时间较少; 分子结构上自由度大,外加剂制造上可控制的参数多,高性能化的潜力大; 由于合成中不使用甲醛,因而对环境不造成污染; 与水泥相容性好; 可用更多地利用矿渣或粉煤灰等混合材,从而整体上降低混凝土的成本。 聚羧酸系列高效减水剂的作用机理,国内这方面的研究较少[7]。从聚羧酸系高效减水剂的红外谱图可见[8],有羧基、酯基、醚键,它们的波数分别是3433cm-1,1721cm-1,1110cm-1。 由于分子中同时有羧基和酯基,使其既可以亲水,又具有一定的疏水性,由于聚羧酸系列具有羧基,同萘系减水剂一样,DLVO[5]理论仍适用。羧基负离子的静电斥力对水泥粒子的分散有贡献。同样,相对分子质量的大小与羧基的含量对水泥粒子的分散效果有很大的影响。由于主链分子的疏水性和侧链的亲水性以及侧基—(OCH2CH2)—的存在,也提供了一定的立体稳定作用,即水泥粒子的表面被一种嵌段或接枝共聚物所稳定,以防发生无规则凝聚,从而有助于水泥粒子的分散。它的稳定机理是所谓的‘空间稳定理论’[9],‘空间稳定理论’是指由聚合物(减水剂)分子之间因占有空间或构象所引起的相互作用而产生的稳定能力,这种稳定作用同一般的静电稳定作用的差别在于:它不存在长程的排斥作用,而只有当聚合物构成的保护层外缘发生物理接触时,粒子之间才产生排斥力,导致粒子自动弹开,文献给出了两种不同厚度保护层的热能、距离曲线[16],如图2,3。 在介质中,聚合物的溶解热通常大于零,因此从焓的角度看,由粒子相互靠近造成的局部分散剂浓度上升是有利的,但是,这同时又引起了熵的减小,而体系中后者往往是占主要地位的,于是,立体稳定作用主要取决于体系的熵变,因而,也有人称之为‘熵稳定作用’。 从文献[16]的2种不同厚度保护层的势能 距离曲线可以看到,分散体系中任意2个粒子之间总的相互作用能VT,是由2部分构成的,一部分是范德华吸引位能VA,另一部分是立体作用位能VS,于是有: VT=VA+VS. 当2个粒子的分散剂层外缘发生物理接触,也就是2个粒子间的距离h小于分散剂层厚度δ的2倍,即h<2δ时,由于体积效应及界面层中的溶剂分子受到‘排斥’,就会导致溶解链段的构象扰动,从而使局部的自由能上升,这时,VS可以用下式表达: VS=2πakTV2τ22(0.5-x)Smix+2πakTτ2Se1, 式中,a为粒子半径,V2为溶解链段的摩尔体积,τ2为粒子表面上单位面积分散剂链的数目,x为Flory溶液理论中聚合物/溶剂的相互作用参数,Smix和Sel分别是由粒子表面链段浓度分布所决定的函数。上式中前一项是溶剂渗透产生的混合项,后一项是由于粒子受到压缩产生的弹性项。实际上,混合项总是远远大于弹性项,而且,当混合项趋近于零时,往往导致体系不稳定,发生凝聚。混合项为零的条件是:溶解链段与分散介质构成θ溶液,此时,x=0.5.所以,实际应用中,应选择合适的聚合物,使介质大大优于θ溶剂。由上式的混合项中还可以看出,粒子表面覆盖的溶解链越多,即τ2越大,体系越稳定,因此,减水剂中的溶解链段最好是牢牢地固定在粒子表面。当然,最好的方法是将减水剂做成接枝或嵌段共聚物,使其中的锚系链段不溶于介质,且与水泥粒子有良好的相容和结合,这样,即能保证体系有足够的稳定性而又不至于产生凝聚。同时,—(OCH2CH2)—中的氧 原子可以和水分子形成强的氢键,形成立体保护膜,据估计也具有高分散性和分散稳定性。以上分析表明,可以通过调节—COO-的量和带—(OCH2CH2)—的 酯的量,以及—(OCH2CH2)—中m的数目来调节相对分子质量,而取得良好的分散效果。 另外,温度,环境,PH值,离子等,都对聚羧酸高性能减水剂的性能有影响,文献[10]对此进行了详细研究。3、聚羧酸高效减水剂的制备 根据减水剂的作用机理,通过调节酸和酯的比例,可以调节分子的亲水亲油值(HLB),从分子设计的角度,来合成新型的聚羧酸高效减水剂。高性能减水剂的分子结构设计趋向是在分子主链或侧链上引入强极性基团羧基、磺酸基、聚氧化乙烯基等,使分子具有梳形结构。通过极性基与非极性基比例调节引气性,一般非极性基比例不超过30%;通过调节聚合物分子量增大减水性、质量稳定性;调节侧链分子量,增加立体位阻作用而提高分散性保持性能。从文献看目前合成聚羧酸系减水剂所选的单体主要有四种:(1) 不饱和酸———马来酸酐、马来酸和丙烯酸、甲基丙烯酸;(2) 聚链烯基物质———聚链烯基烃及其含不同官能团的衍生物;(3) 聚苯乙烯磺酸盐或酯;(4) (甲基)丙烯酸盐、酯或酰胺等。 常见的合成方法:(1) 首先,合成所需结构的单体的物质———反应性活性聚合物单体,如用壬基酚或月桂醇和烯丙醇缩水甘油醚反应制备烯丙基壬基酚或聚氧乙烯醚羧酸盐,或用环氧乙烷、聚乙二醇等合成聚链烯基物质———聚链烯基烃、醚、醇、磺酸,或合成聚苯乙烯磺酸盐、酯类物质;第二步,在油溶剂或水溶液体系引入具有负电荷的羧基、磺酸基和对水有良好亲和作用的聚合物侧链,反应最终获得所需性能的产品。实际的聚羧酸系减水剂可以是二元、三元或四元共聚物[11]。(2) 原料:丙烯酸,甲基丙烯酸,马来酸酐,衣康酸,丙烯酸羟基酯,甲基丙烯酸羟基酯,乙烯基磺酸钠,丙烯基磺酸钠,2- 丙烯酰胺 2- 甲基丙基磺酸钠(AMPS),单羟基聚乙二醇醚(PEG 600,PEG 1000,PEG 1500),过硫酸钠,过硫酸铵,双氧水等,以上原料均为市售的工业级化工产品。合成方法:按照分子设计的要求配合各种单体的比例,分步加入反应瓶中,同时加入分子量调节剂和溶剂,用氮气置换反应瓶内的空气,并在氮气保护下升温到75~90℃,同时滴加含有引发剂的溶液和其它共聚单体组分1~2h,搅拌下进行聚合反应6~8h.聚合完成后得到粘稠状共聚羧酸溶液.用稀碱溶液调整pH值到中性,并调配溶液含固量在30%左右[12,13]。(3) 聚羧酸系减水剂的分子结构呈梳型,侧链也带有亲水性的活性基团,并且链较长,数量多。根据这种原理选择了三种不同的单体,不饱和酸为马来酸酐,链烃基物质为乙烯基磺酸盐,非离子单体选的是丙烯酸甲酯,以上原料经过必要的纯化手段,引发剂为K2SO4。共聚物合成在装有温度计,滴液漏斗,回流冷凝管的四颈烧瓶中加入蒸馏水,开动搅拌器开始加热,在回流条件下,按配方混合单体加入滴液漏斗中,反应4小时,得到产品,测净浆流动度。影响共聚反应的主要因素有乙烯基磺酸盐、丙烯酸甲酯、马来酸酐及引发剂K2SO4用量[14]。(4) 原料:顺丁烯二酸酐,酰胺类单体,过硫酸铵, 30%过氧化氢,氢氧化钠,化学纯。合成方法:本合成为自由基共聚合反应,采用过硫酸铵 30%双氧水复合引发体系,水溶液聚合法,在102~110℃反应约8小时,产品为浅黄色透明溶液[15]。4、结论 系统研究新型高性能减水剂仍存在很多困难,但研究新型高性能减水剂仍具有重要的理论意义和实用价值。对聚羧酸系减水剂的合成、作用机理和应用等方面的研究都存在一些尚待进一步深入的问题:第一,由于减水剂大多数在水体系中合成,难以了解不同单体间复杂的相互作用;第二,表征对减水剂分子的方法存在局限性,尚不能清楚解释减水剂化学结构与性能的关系,缺乏从微结构方面的研究;第三,虽然聚羧酸系减水剂与水泥的相容性比其它种类减水剂更好,但在混凝土流动性方面,当水泥和外加剂共同使用时,往往发生混凝土塌落度损失太快及快硬等现象,仍存在水泥和化学外加剂相容性问题,还未完全搞清减水剂是怎样工作的;第四,在使用高性能减水剂的混凝土中,当单位水量减少,塌落度增大时,常常发生混凝土粘性太大、出现离析泌水现象等问题。 高性能减水剂的研究已成为混凝土材料科学中的一个重要分支,并推动着整个混凝土材料从低技术向高技术发展。研究聚羧酸系减水剂将更多地从混凝土的强度、工作性、耐久性、价格等方面综合考虑。接枝共聚的聚羧酸类减水剂则主要通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效减水、控制塌落度损失和抗收缩、不影响水泥的凝结硬化等作用。展望未来,每一项混凝土技术的特殊要求都需要开发最优的外加剂,每一系列有很多不同的化学组成。随着合成与表征聚合物减水剂及其化学结构与性能关系的研究不断深入,聚羧酸系减水剂将进一步朝高性能多功能化、生态化、国际标准化的方向发展。聚羧酸系减水剂能获得更好的减水率和更小的塌落度损失,特别是在制备高流动性和低水灰比的混凝土方面具有其它传统的高效减水剂无可比拟的优点,聚羧酸系减水剂将是21世纪减水剂系列中的主要品种。

聚碳酸酯研究进展综述论文

聚碳酸酯是非结晶性聚合物,但是非结晶性性聚合物局部也会有取向结晶。

全国高分子材料学术论文报告篇二 浅析高分子材料成型加工技术 【摘要】高分子材料成型加工技术在工业上取得的飞速发展,介绍高分子材料成型加工技术的发展情况,探讨其创新研究,并详细阐述高分子材料成型加工技术的发展趋势。 【关键词】高分子材料;成型加工;技术 近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的效能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。 一、高分子材料成型加工技术发展概况 近50年来,高分子合成工业取得了很大的进展。例如,造粒用挤出机的结构有了很大的改进,产量有了极大的提高。20世纪60年代主要采用单螺杆挤出机造粒,产量约为3t/h;70年代至80年代中期,采用连续混炼机+单螺杆挤出机造粒,产量约为10t/h;80年代中期以来。采用双螺杆挤出机+齿轮泵造粒,产量可以达到40-45t/h,今后的发展方向是产量可高达60t/h。在l950年,全世界塑料的年产量为200万t。20世纪90年代。塑料产量的年均增长率为5.8%,2000年增加至1.8亿t至2010年,全世界塑料产量将达3亿t,此外。合成工业的新近避震使得易于璃确控制树脂的分子结构,加速采用大规模进行低成本的生产。随着汽车工业的发展,节能、高速、美观、环保、乘坐舒适及安全可靠等要求对汽车越来越重要.汽车规模的不断扩大和效能的提高带动了零部件及相关材料工业的发展。为降低整车成本及其自身增加汽车的有效载荷,提高塑料类材料在汽车中的使用量便成为关键。 据悉,目前汽车上100kg的塑料件可取代原先需要100-300kg的传统汽车材料***如钢铁等***。因此,汽车中越来越多的金属件由塑料件代替。此外,汽车中约90%的零部件均需依靠模具成型,例如制造一款普通轿车就需要制造1200多套模具,在美国、日本等汽车制造业发达的国家,模具产业超过50%的产品是汽车用模具。目前,高分子材料加工的主要目标是高生产率、高效能、低成本和快捷交货。制品方面向小尺寸、薄壁、轻质方向发展;成型加工方面,从大规模向较短研发周期的多品种转变,并向低能耗、全回收、零排放等方向发展。 二、现今高分子材料成型加工技术的创新研究 ***一***聚合物动态反应加工技术及装置 聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。国外的Berstart公司已开发出作为连续反应和混炼的十螺杆挤出机,可以解决其它挤出机***包括双螺杆和四螺杆挤出机***作为反应器所存在的问题。国内反应成型加工技术的研究开发还处于起步阶段,但我国的经济发展强烈要求聚合物反应成型加工技术要有大的发展。指交换法聚碳酸酯***PC***连续化生产和尼龙生产中的比较关键的技术是缩聚反应器的反应挤出装置,我国每年还有数以千万吨计的改性聚合物及其合金材料的生产。关键技术也是反应挤出技术及装置。 目前国内外使用的反应加工装置从原理上看都是传统混合、混炼装置的改造产品,都存在传热、传质过程、混炼过程、化学反应过程难以控制、反应产物分子量及其分布不可控等问题.另外装置投资费用大、能耗高、噪音大、密封困难等也都是传统反应加工装置的缺陷。聚合物动态反应加工技术及装置与传统技术无论是在反应加工原理还是装置的结构上都完全不同,该技术是将电磁场引起的机械振动场引入聚合物反应挤出全过程,达到控制化学反应过程、反应生成物的凝聚态结构和反应制品的物理化学效能的目的。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了装置结构整合化问题。新装置具有体积重量小、能耗低、噪音低、制品效能可控、适应性好、可靠性高等优点,这些优点是传统技术与装置无法比拟或是根本没有的。该项新技术使我国聚合物反应加工技术直接切人世界技术前沿,并在该领域处于技术领先地位。 ***二***以动态反应加工装置为基础的新材料制备新技术 1.资讯储存光碟盘基直接合成反应成型技术。此技术克服传统方式的中间环节多、周期长、能耗大、储运过程易受污染、成型前处理复杂等问题,将光碟级PC树脂生产、中间储运和光碟盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究酯交换连续化生产技术,研制开发精密光碟注射成型装备,达到节能降耗、有效控制产品质量的目的。 2.聚合物/无机物复合材料物理场强化制备新技术。此技术在强振动剪下力场作用下对无机粒子表面特性及其功能设计***粒子设计***,在设计好的连续加工环境和不加或少加其它化学改性剂的情况下,利用聚合物使无机粒子进行原位表面改性、原位包覆、强制分散,实现连续化制备聚合物/无机物复合材料。 3.热塑性弹性体动态全硫化制备技术。此技术将振动力场引入混炼挤出全过程,控制硫化反直程序,实现混炼过程中橡胶相动态全硫化.解决共混加工过程共混物相态反转问题。研制开发出拥有自主智慧财产权的热塑性弹性体动态硫化技术与装置,提高我国TPV技术水平。 三、高分子材料成型加工技术的发展趋势 近年来,各个新型成型装备国家工程研究中心在出色完成了国家级火炬计划预备专案和国家“八五”、“九五”重点科技计划***攻关***等专案同时,非常注重科技成果转化与产业化,完成产业化工程配套专案20多项,创办了广州华新科机械有限公司和北京华新科塑料机械有限公司,使其有自主智慧财产权的新技术与装备在国内外推广应用。塑料电磁动态塑化挤出装置已形成了7个规格系列,近两年在国内20多个省、市、自治区推广应用近800台***套***。销售额超过1.5亿元,还有部分新装置销往荷兰、泰国、孟加拉等国家.产生了良好的经济效益和社会效益。例如PE电磁动态发泡片材生产线2000年和2001年仅在广东即为国家节约外汇近1600万美元,每条生产线一年可为制品厂节约21万k的电费。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。并逐步推向市场目前新装置的市场需求情况很好,聚合物新型成型装备国家工程研究中心正在对广州华新科机械有限公司进行重组。将技术与资本结合,引入新的管理、市场等机制,争取在两三年内实现新装置年销售额超亿。我国已加入WTO,各个行业都将面临严峻挑战。 综上所述,我国必须走具有中国特色的发展高分子材料成型加工技技术与装备的道路,打破国外的技术封锁,实现由跟踪向跨越的转变;把握技术前沿,培育自主智慧财产权。促进科学研究与产业界的结合,加快成果转化为生产力的程序,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。 参考文献: [1]Chris Rauwendaal,Polymer Extrusion,Carl Hanser Verlag,Munich/FkG,l999. [2]瞿金平,聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005 427435. [3]瞿金平,聚合物电磁动态塑化挤出方法及装置[J].中国专利9O101034.0,I990;美国专利5217302,1993.

支链氨基酸添加剂的研究进展论文

最佳的支链氨基酸食物来历有哪些?

支链氨基酸(BCAA)在成为弥补剂之前,就现已是极为重要的营养成分了。本文将分析一些存在于氨基酸里的重要蛋白源。

2013年2月22日

我喜爱支链氨基酸弥补剂,可是我晓得许多食物也相同包括必需氨基酸。那么,最佳的支链氨基酸食物来历有哪些呢?

支链氨基酸弥补剂除了能为肌肉生成供给亮氨酸,在运动过程中及运动后,还对推进蛋白组成起着极其重要的效果。可是跟着支链氨基酸弥补剂的日益盛行,食物中的支链氨基酸往往被咱们无视了。

人体吸收氨基酸绝不仅仅是将药粉泡在水中服下这么简略,并且咱们也不大概只依赖于弥补剂。以下是蛋白源中的支链氨基酸含量表。

食物中的支链氨基酸含量

表格中显现的一些信息很有意思。比方:每盎司(oz)火鸡胸肉的总蛋白质含量比其他食物都要多(除了鸡蛋和蛋白,它们不以盎司为单位来衡量),可是其总的支链氨基酸的含量却最低。经过比拟,6盎司的干烤花生所含的亮氨酸和总的支链氨基酸比一切肉类都要高,可是蛋白质含量却要低许多。

为了使咱们理解,我列出最右边两纵列,这样更便于比拟各类蛋白源。注重每克蛋白质中,鸡蛋和蛋白所供给的支链氨基酸的量是最高的,并且鸡蛋的亮氨酸水平也是最高的。你可能会对此感兴趣,由于亮氨酸是肌肉蛋白组成的首要驱动力。这就意味着:在食物中,亮氨酸的数量与每克总蛋白含量是相对应的。

我大概挑选啥?

以上列出的食物都是支链氨基酸的优质来历。研讨显现:每餐饭大概需要3g亮氨酸来推进肌肉蛋白的组成,所以每餐食用咱们列出的任何一种肉类6盎司,就能够满意你的需要。

若是你能吃下8个鸡蛋或许9个蛋白,就能够帮你完成3克的亮氨酸方针了。此外,6盎司的花生听上去并不多,可是一把花生大概即是1盎司,所以6盎司现已富含许多蛋白质了。

下一步,你要检查理个人的饮食方案和热量摄入,再看看你能否食用了足够多的这类食物。若是不行,且为了操控热量思考,也不能再添加食用这类含蛋白质食物时,你能够思考添加支链氨基酸弥补剂的摄入。

氨基酸是含有碱性氨基和酸性羧基的有机化合物,是构成动物营养所需蛋白质的基本物质。至今发现的氨基酸品种有22种,分别是:色氨酸,蛋氨酸,苏氨酸,缬氨酸,赖氨酸,组氨酸,亮氨酸,异亮氨酸,丙氨酸,苯丙氨酸,胱氨酸,半胱氨酸,精氨酸,甘氨酸,丝氨酸,酪氨酸,谷氨酸,天门冬氨酸,脯氨酸,羟脯氨酸,瓜氨酸,鸟氨酸,这些氨基酸广泛的存在于自然界中。  这些氨基酸按照人体需要可分为必须氨基酸和非必须氨基酸。必须氨基酸有八种即:色氨酸,苏氨酸,蛋氨酸,缬氨酸,赖氨酸,亮氨酸,异亮氨酸,和苯丙氨酸。必须氨基酸是人体自身不能合成的,须由食物提供。其他属于非必须氨基酸,人体能够自身合成。氨基酸根据侧链基团极性可分为:极性氨基酸和非极性氨基酸。按化学结构可分为:脂肪蔟氨基酸,芳香蔟氨基酸,杂环氨基酸和杂环亚氨基酸。     氨基酸的应用也非常广泛。可用作食品和动物饲料的添加剂,医药制剂,化妆品,合成塑料和洗涤剂。还可在农业上用作除草剂,杀菌剂,生长调节剂和肥料。以及作表面活性剂,马达燃料添加剂,电化学生产等。如谷氨酸,赖氨酸,苏氨酸,用作食品增鲜剂,甜味剂,以及食品保鲜剂。甲硫氨酸(蛋氨酸)等必须氨基酸可用作动物饲料。谷氨酸碱盐,精氨酸碱盐等可用作农用保湿地膜以及作为洗涤剂,废水处理及工业产品。胱氨酸,半胱氨酸,精氨酸,谷氨酸等可用于医药制剂。现用于临床的有胱氨酸片可治疗脱发。精氨酸可用于治疗肝性脑病。复方氨基酸188A用于营养不良的患者。此外氨基酸的衍生物治疗癌症也出现了希望。氨基酸中的甘氨酸它可以增加植物叶绿素的含量,促进作物对二氧化碳的吸收利用。为光合作用增加动力,使光合作用更加旺盛。   最早发现氨基酸的是1806年法国化学家路易斯·尼古拉斯·沃克林(Louis nicolas vauguelin)和皮埃尔·简·罗伯奎特(Pierre jean robiquet)通过从芦笋中分离出一种化合物(后来称为天冬酰胺),发现了第一个氨基酸,而这一发现立即激起了科学界对整个生命构成要素的兴趣。并促使人们寻找其他氨基酸。在随后的几十年中化学家陆续在肾结石中发现了胱氨酸(1810年)和单体半胱氨酸(1844年)。又在1820年从肌肉组织中提取到了亮氨酸(最重要的氨基酸之一)与甘氨酸。由于在肌肉中的这一发现,因此亮氨酸与缬氨酸和异亮氨酸一起被认为是肌肉蛋白质合成所必须氨基酸。化学家又分别在1850年发现丙氨酸,1861年发现谷氨酸,1865年发现丝氨酸,又在1879年苯丙氨酸和缬氨酸。1886年发现精氨酸,1896年组氨酸,1901年色氨酸,1921年甲硫氨酸,1935年发现最后一种氨基酸苏氨酸。氨基酸正式命名是1900年化学家通过实验室水解不同蛋白,得到多种不同氨基酸。就是都有一个氨基一个羧基和一个侧链结构的物质。即把这些不同时期发现的氨基酸正式命名为氨基酸即至今22种。最早从事氨基酸工业化生产的是日本味之素公司的创造人菊地重雄,在20世纪40年代从海带中找到谷氨酸的一种钠盐,最后又以小麦粉加工淀粉后剩下的面筋为原料,然后加入纯碱中和即得到食品级的谷氨酸钠,谷氨酸是世界第一个工业化生产的氨基酸产品。此后科学家利用水解法将羽毛,人发,猪毛等为原料水解成氨基酸。这些氨基酸多为DL混合型氨基酸。在60年代确立的工业微生物发酵法使氨基酸工业开始起飞。  我国氨基酸工业化生产只有近50年的开展历程。从20世纪60年代开始逐步开展起来。1965年发酵法生产味精的成功,带动了氨基酸的研究开发。目前我国已能工业化生产的氨基酸品种有谷氨酸,亮氨酸,缬氨酸,脯氨酸,天冬氨酸,胱氨酸,半胱氨酸,精氨酸,苯丙氨酸,酪氨酸,丙氨酸,赖氨酸,苏氨酸等。我国氨基酸产品中谷氨酸,赖氨酸,苏氨酸等低值大宗氨基酸占主导地位。大宗氨基酸产品产量大,附加值低,节能减排压力大。分支链氨基酸色氨酸,精氨酸,组氨酸,谷氨酸,丝氨酸,半胱氨酸等高附加值小品种氨基酸产品开发加快。除了参与蛋白质组织成的氨基酸外,瓜氨酸,鸟氨酸,茶氨酸等非蛋白氨基酸和D型氨基酸,多聚氨基酸,短肽酸脱氨脱羧产物,氮化物等氨基酸衍生物需求旺盛。 我国经过近几十年的开展。氨基酸产业规模生产厂家已达近百家。年产值近500亿元。其中谷氨酸与赖氨酸产量居世界第一位。虽然产量已居世界前列,生产工艺,技术水品和节能环保都已比似成熟,有氨基酸“世界工厂”的称号。但主导产品种类并没有明显改变。我国拥有自主知识产权的新型氨基酸产品相对较少,新产品产业化能力较弱。由于技术水平的不足,对于纯度要求较高的医药类氨基酸还需要国外进口。   氨基酸虽然能广泛应用于医药,化妆品,保健品,饲料,肥料,化学品等领域,而氨基酸生产在我国尚未进行准确的行业定位。仅处于一般工业品或者化学品的产业归类中,极大限制了氨基酸企业的发展。氨基酸要进入食品,医药,保健品领域,在国内外获得高端市场的认可必须获得相应的资质和认可。但由于国内目前没有完善的行业标准对其进行规定,国内众多氨基酸生产企业不得将单一的氨基酸原料以饲料级出口到国外。在国外被加工成各种氨基酸产品。因此我国必须加大政策支持,建立行业标准,增加高端氨基酸产品的种类和产量。 虽然目前我国氨基酸行业的压力和问题并存,但整个行业的发展也面临着新的契机。针对我国氨基酸行业的发展现状,通过加大政策引导、完善技术体系,使菌种高产稳定、工艺高效清洁、装备节能环保、产品高端优质,从而降低生产过程中的能耗、水耗、物耗,减少废水排放量和降低废水中污染物含量,实现氨基酸清洁生产,开源节流,促进产业链可持续和谐发展。  相信在国家产业政策的指引下,在全行业建设者共同努力下。中国氨基酸产业发展的道路会越来越顺畅,前景越来越宽广。编辑:鸿雁 2022年5月18日于天门。

卤代芳烃水解催化剂研究进展论文

卤代烃的水解反应是怎样的

催化剂定义:又叫触媒。根据国际纯粹与应用化学联合会(IUPAC)于1981年提出的定义,催化剂是一种物质,它能够改变反应的速率而不改变该反应的标准Gibbs自由焓变化。这种作用称为催化作用。涉及催化剂的反应为催化反应。催化剂(catalyst)会诱导化学反应发生改变,而使化学反应变快或减慢或者在较低的温度环境下进行化学反应。催化剂在工业上也称为触媒。初中书上定义:在化学反应里能改变其他物质的化学反应速率,而本身的质量和化学性质在反应前后都没有发生变化的物质叫做催化剂,又叫触媒。催化剂在化学反应中所起的作用叫催化作用。我们可在波兹曼分布(Boltzmann distribution)与能量关系图(energy profile diagram)中观察到,催化剂可使化学反应物在不改变的情形下,经由只需较少活化能(activation energy)的路径来进行化学反应。而通常在这种能量下,分子不是无法完成化学反应,不然就是需要较长时间来完成化学反应。但在有催化剂的环境下,分子只需较少的能量即可完成化学反应。催化剂有三种类型,它们是:均相催化剂、多相催化剂和生物催化剂。均相催化剂和它们催化的反应物处于同一种物态(固态、液态、或者气态)。例如:如果反应物是气体,那么催化剂也会是一种气体。笑气(一氧化二氮)是一种惰性气体,被用来作为麻醉剂。然而,当它与氯气和日光发生反应时,就会分解成氮气和氧气。这时,氯气就是一种均相催化剂,它把本来很稳定的笑气分解成了组成元素。多相催化剂和它们催化的反应物处于不同的状态。例如:在生产人造黄油时,通过固态镍(催化剂),能够把不饱和的植物油和氢气转变成饱和的脂肪。固态镍是一种多相催化剂,被它催化的反应物则是液态(植物油)和气态(氢气)。酶是生物催化剂。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。催化剂分均相催化剂与非均相催化剂。非均相催化剂呈现在不同相(Phase)的反应中(例如:固态催化剂在液态混合反应),而均相催化剂则是呈现在同一相的反应(例如:液态催化剂在液态混合反应)。一个简易的非均相催化反应包含了反应物(或zh-ch:底物;zh-tw:受质)吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。目前已知许多表反应发生吸附反应的不同可能性的结构位置。仅仅由于本身的存在就能加快或减慢化学反应速率,而本身的组成和质量并不改变的物质就叫催化剂。催化剂跟反应物同处于均匀的气相或液相时,叫做单相催化作用;催化剂跟反应物属不同相时,叫做多相催化作用。人们利用催化剂,可以提高化学反应的速度,这被称为催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,酯和多糖的水解,常用无机酸作正催化剂;二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入0.01%~0.02%没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。

卤化反应又称卤代反应,是指有机化合物中的氢或其他基团被卤素取代生成含卤有机化合物的反应。

常见的卤化反应有烷烃的卤化,芳烃的芳环卤化和侧链卤化,醇羟基和羧酸羟基被卤素取代,醛、酮等羰基化合物的α-活泼氢被卤素取代,卤代烃中的卤素交换等。除用氯、溴等卤素直接卤化外,常用的卤化试剂还有氢卤酸、氯化亚砜、五氯化磷、三卤化磷。

卤化反应在有机合成中占有重要地位,通过卤化反应,可以制备多种含卤有机化合物。

卤代烃可在碱性水溶液中水解生成醇。

卤代烃可在碱性水溶液中水解生成醇,碱性醇溶液中发生消去反应生成烯,芳香族卤代烃则较为困难。

例如:卤代烃与水作用可生成醇。在反应中,卤代烃分子中的卤原子被水分子中的羟基所取代

化学方程式:R—X+HOH®R—OH+HX

该反应进行比较缓慢,而且是可逆的。如果用强碱的水溶液来进行水解,这个反应可向右进行,原因是在反应中产生的卤化氢被碱中和掉,而有利于反应向水解方向进行。

R—X+NaOH®R—OH+NaX:卤素与苯环相连的卤代芳烃,一般比较难水解。如氯苯一般需要高温高压条件下才能水解。

脱氧剂的研究进展论文

我看春旺的脱氧剂是这么介绍的,通过铁粉氧化原理,吸收包装容器中的氧,在0.5-2个工作日内迅速将氧的浓度降到0.01%一下。从而保障物品不被氧化变质

想要qq空间人气爆满,那就用流量神器吧,网上找一下“流量神器” 3w liuliangshen 点C哦M

脱氧剂是一种利用的是铁和氧的化学反应,以水和盐作为触媒,在促进本身反应的同时,因利用的是还原铁粉,所以能强效地吸收食品包装袋中的氧气.对铁的氧化反应具有强力的催化作用,从而大大提升了除氧效力,可达到快速、有效的除氧效果。 脱氧剂可广泛应用于烘焙食品以及坚果炒货,宠物饲料,药材等进行防霉保鲜,能抑制食品氧化变质,从而保持食品的有效营养成分及色、香、味。

  • 索引序列
  • 聚羧酸减水剂研究进展论文
  • 聚碳酸酯研究进展综述论文
  • 支链氨基酸添加剂的研究进展论文
  • 卤代芳烃水解催化剂研究进展论文
  • 脱氧剂的研究进展论文
  • 返回顶部