首页 > 学术发表知识库 > 超级电容论文的参考文献

超级电容论文的参考文献

发布时间:

超级电容论文的参考文献

【嵌牛导读】 :现在已经步入智能机的时代,相比以前的手机,现在的智能机屏幕大、功能多,但是电量始终是个大问题,电池续航能力不行、寿命短,怎么办呢?黑科技新型超级电容器,让手机瞬间满电。 【嵌牛鼻子】 :超级电容器、手机、快速充电 【嵌牛提问】 :超级电容器性能如何?能如何运用? 【嵌牛正文】 :         美国范德比尔特的研究人员表示,他们已经首次成功打造出具有超级电容器这项技术的功能健全的原型机。其中一名研究人员卡里-宾特说:“据我们所知,这些装置首次证明了我们可以制造一种能在储存和释放大量电流的同时,又能经受住振动或冲击等现实存在的静载荷和动力考验的材料。”宾特和安德鲁-威斯多弗研制的这种新装置是一种超级电容器,它储存电流的方式是通过让带电离子聚集到多孔材料表面,而非像现在的电池一样通过化学反应储存这些离子。因此这些超级电容器能在几分钟内储满电,并不需要几小时,而且它能循环使用数百万次,并不像现在的电池一样只能使用数千次。         宾特说:“当你能把能量与建设系统的成分结合在一起时,它就打开了科技可能性的全新世界的大门。突然间,以健康、娱乐、 旅行 和社交为基础设计的科技产品的能力,将不再受到插座和外部电源的限制。”超级电容器只储存比当前电池少10倍的电量,但是它们的续航时间却比后者长一千倍,这意味着可以把它们建在墙体和汽车底盘里。他说:“当你把电能储存在需要结构整体性的重型材料里时,电池的性能指标会发生变化。超级电容器储存的电能比当前使用的锂离子电池少10倍,但是它们的续航时间却比后者长一千倍,也就是说它们更适合于结构应用。如果它们很快就会失去作用,每隔几年就需要更换一次,把它们当做建设住宅、汽车底盘或者飞行器的材料就没有什么意义了。”         宾特和威斯多弗发表在在线杂志《纳米快报(NanoLetters)》上的一篇论文中称,他们的新结构的超级电容器在压强高达44磅/平方英尺(约合6千帕)和振动加速度超过80g(比喷气发动机涡轮叶片承受的压力和振动明显更大)的环境下,在储藏电荷和释放电荷方面的操作堪称完美。此外,该装置的机械强度并不会影响它的电能储存能力。宾特说:“我们的超级电容器在未被拆封、结构完整的情况下,能储存更多电能,而且与已拆封的、现货供应的商用超级电容器相比,它能在更高的电压下正常运行,并且在强烈的动态和静态压力下也不例外。”         目前OPPO的VOOC闪充是大家所熟知的手机快速充电的技术,VOOC闪充创新性改变电路拓扑结构,降低温度,同时首次打造从适配器到接口再到手机的全端式五重防护技术,将最快充电速度提升四倍以上。其本质上并没有在传统充电方式上做出改变,而超级电容器是利用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量的。         超级电容器利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电 ,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程。        由于其充电技术不同,超级电容器具备了以下特点: 1、充电速度快,充电 10 秒 ~10 分钟可达到其额定容量的 95 %以上; 2、循环使用寿命长,深度充放电循环使用次数可达 1~50 万次; 3、能量转换效率高,过程损失小,大电流能量循环效率 ≥ 90% ; 4、功率密度高,可达 300W/KG~5000W/KG ,相当于电池的 5~10 倍; 5、产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源; 6、安全系数高,长期使用免维护; 7、超低温特性好,可工作于零下 30 ℃ 的环境中; 这些特点可以说特别适合目前的智能手机,充电速度、使用时间、体积、安全性和低温时的工作状态,几乎能够弥补现在智能机电池的所有缺陷。期待其大规模生产并运用的那一天的到来,那时智能手机会迈出的一大步。

成果简介

具有高比表面积的多孔碳纳米片已经成为超级电容器最有希望的电极材料,但是它们的高孔体积导致相对较低的密度和较差的体积电容。 本文,苏州大学Chong Chen等研究人员 在《Carbon》期刊发表名为“Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances”的论文, 研究通过新型的D-葡萄糖酸钙爆炸技术成功地按比例合成了支撑氮掺杂的分层多孔碳纳米片(SNPCNS),该碳纳米管具有通过支撑支撑的三维非聚集结构。

调节热解温度和时间,以及D-葡萄糖酸钙和脲甲醛树脂的质量比,以优化SNPCNS的比表面积,孔体积和电容性能。经过优化的SNPCNS具有高比表面积(539 m2g -1),表面杂原子丰富(N为8.1 at。%)和高密度(1.11 g cm -3)。因此,由SNPCNS电极组装的超级电容器具有非常高的重量/体积电容,分别为286Fg-1/317Fcm-3(在6MKOH中)和355Fg-1 / 394Fcm-3(在1 MH 2中)所以4)。重要的是,实现了重离子/体积能量密度(在离子液体中)为40.5 W h kg -1 /44.9 W h L -1(在离子液体中),优于先前报道的基于碳纳米片的对称超级电容器。这项工作为大规模和低成本生产用于能量存储的高性能多孔碳纳米片提供了新的策略。

图文导读

图1。氮掺杂分层多孔碳纳米片的合成示意图。

图2。SNPCNS-1:1-800-2h的(ab)SEM图像,(ce)TEM图像,(f)AFM图像和(gi)EDX元素映射图像。

图3。(a)XPS调查,(b)SNPCNS-1:1-800-2h的C1s,(c)N1s和(d)O1s光谱。

图4。SNPCNS材料通过热膨胀和热解转化制备过程的示意图。

图5。(a)20 mV s -1时的CV曲线,(b)1 A g -1时的GCD曲线,以及(c)SNPCNS样品在6 M KOH溶液中的体积电容。(d)在6 M KOH溶液中SNPCNS-1:1-800-2h的GCD曲线。(e)SNPCNS-1:1-800-2h在1 MH 2 SO 4和6 M KOH溶液中的奈奎斯特图。(f)SNPCNS-1:1-800-2h电极的重量/体积电容与其他报道的碳电极的比较。

图6。SNPCNS-1:1-800-2h在6 M KOH和[EMIm] NTf 2电解质中的电化学性能。

小结

总之,开发了一种D-葡萄糖酸钙爆炸技术,可以轻松而可规模地合成一种支链的氮掺杂分层多孔碳材料。 SNPCNS的高产量生产和出色的电容性能使其能够在超级电容器中进行大规模应用。

文献:

碳基超级电容器论文参考文献

成果简介

具有高比表面积的多孔碳纳米片已经成为超级电容器最有希望的电极材料,但是它们的高孔体积导致相对较低的密度和较差的体积电容。 本文,苏州大学Chong Chen等研究人员 在《Carbon》期刊发表名为“Scalable synthesis of strutted nitrogen doped hierarchical porous carbon nanosheets for supercapacitors with both high gravimetric and volumetric performances”的论文, 研究通过新型的D-葡萄糖酸钙爆炸技术成功地按比例合成了支撑氮掺杂的分层多孔碳纳米片(SNPCNS),该碳纳米管具有通过支撑支撑的三维非聚集结构。

调节热解温度和时间,以及D-葡萄糖酸钙和脲甲醛树脂的质量比,以优化SNPCNS的比表面积,孔体积和电容性能。经过优化的SNPCNS具有高比表面积(539 m2g -1),表面杂原子丰富(N为8.1 at。%)和高密度(1.11 g cm -3)。因此,由SNPCNS电极组装的超级电容器具有非常高的重量/体积电容,分别为286Fg-1/317Fcm-3(在6MKOH中)和355Fg-1 / 394Fcm-3(在1 MH 2中)所以4)。重要的是,实现了重离子/体积能量密度(在离子液体中)为40.5 W h kg -1 /44.9 W h L -1(在离子液体中),优于先前报道的基于碳纳米片的对称超级电容器。这项工作为大规模和低成本生产用于能量存储的高性能多孔碳纳米片提供了新的策略。

图文导读

图1。氮掺杂分层多孔碳纳米片的合成示意图。

图2。SNPCNS-1:1-800-2h的(ab)SEM图像,(ce)TEM图像,(f)AFM图像和(gi)EDX元素映射图像。

图3。(a)XPS调查,(b)SNPCNS-1:1-800-2h的C1s,(c)N1s和(d)O1s光谱。

图4。SNPCNS材料通过热膨胀和热解转化制备过程的示意图。

图5。(a)20 mV s -1时的CV曲线,(b)1 A g -1时的GCD曲线,以及(c)SNPCNS样品在6 M KOH溶液中的体积电容。(d)在6 M KOH溶液中SNPCNS-1:1-800-2h的GCD曲线。(e)SNPCNS-1:1-800-2h在1 MH 2 SO 4和6 M KOH溶液中的奈奎斯特图。(f)SNPCNS-1:1-800-2h电极的重量/体积电容与其他报道的碳电极的比较。

图6。SNPCNS-1:1-800-2h在6 M KOH和[EMIm] NTf 2电解质中的电化学性能。

小结

总之,开发了一种D-葡萄糖酸钙爆炸技术,可以轻松而可规模地合成一种支链的氮掺杂分层多孔碳材料。 SNPCNS的高产量生产和出色的电容性能使其能够在超级电容器中进行大规模应用。

文献:

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

1.1原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

1.2PANIF的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

1.4PANIF/rGO复合材料制备

按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

1.5仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

2.1形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

2.2FTIR分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

2.4电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

2.1 研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

2.2 试验与研究

2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

2.3 产品的性能

2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

2.4 产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

超级电容器研究前沿论文

【嵌牛导读】 :现在已经步入智能机的时代,相比以前的手机,现在的智能机屏幕大、功能多,但是电量始终是个大问题,电池续航能力不行、寿命短,怎么办呢?黑科技新型超级电容器,让手机瞬间满电。 【嵌牛鼻子】 :超级电容器、手机、快速充电 【嵌牛提问】 :超级电容器性能如何?能如何运用? 【嵌牛正文】 :         美国范德比尔特的研究人员表示,他们已经首次成功打造出具有超级电容器这项技术的功能健全的原型机。其中一名研究人员卡里-宾特说:“据我们所知,这些装置首次证明了我们可以制造一种能在储存和释放大量电流的同时,又能经受住振动或冲击等现实存在的静载荷和动力考验的材料。”宾特和安德鲁-威斯多弗研制的这种新装置是一种超级电容器,它储存电流的方式是通过让带电离子聚集到多孔材料表面,而非像现在的电池一样通过化学反应储存这些离子。因此这些超级电容器能在几分钟内储满电,并不需要几小时,而且它能循环使用数百万次,并不像现在的电池一样只能使用数千次。         宾特说:“当你能把能量与建设系统的成分结合在一起时,它就打开了科技可能性的全新世界的大门。突然间,以健康、娱乐、 旅行 和社交为基础设计的科技产品的能力,将不再受到插座和外部电源的限制。”超级电容器只储存比当前电池少10倍的电量,但是它们的续航时间却比后者长一千倍,这意味着可以把它们建在墙体和汽车底盘里。他说:“当你把电能储存在需要结构整体性的重型材料里时,电池的性能指标会发生变化。超级电容器储存的电能比当前使用的锂离子电池少10倍,但是它们的续航时间却比后者长一千倍,也就是说它们更适合于结构应用。如果它们很快就会失去作用,每隔几年就需要更换一次,把它们当做建设住宅、汽车底盘或者飞行器的材料就没有什么意义了。”         宾特和威斯多弗发表在在线杂志《纳米快报(NanoLetters)》上的一篇论文中称,他们的新结构的超级电容器在压强高达44磅/平方英尺(约合6千帕)和振动加速度超过80g(比喷气发动机涡轮叶片承受的压力和振动明显更大)的环境下,在储藏电荷和释放电荷方面的操作堪称完美。此外,该装置的机械强度并不会影响它的电能储存能力。宾特说:“我们的超级电容器在未被拆封、结构完整的情况下,能储存更多电能,而且与已拆封的、现货供应的商用超级电容器相比,它能在更高的电压下正常运行,并且在强烈的动态和静态压力下也不例外。”         目前OPPO的VOOC闪充是大家所熟知的手机快速充电的技术,VOOC闪充创新性改变电路拓扑结构,降低温度,同时首次打造从适配器到接口再到手机的全端式五重防护技术,将最快充电速度提升四倍以上。其本质上并没有在传统充电方式上做出改变,而超级电容器是利用活性炭多孔电极和电解质组成的双电层结构获得超大的电容量的。         超级电容器利用双电层原理的电容器。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电 ,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷相应减少。与利用化学反应的蓄电池不同,超级电容器的充放电过程始终是物理过程。        由于其充电技术不同,超级电容器具备了以下特点: 1、充电速度快,充电 10 秒 ~10 分钟可达到其额定容量的 95 %以上; 2、循环使用寿命长,深度充放电循环使用次数可达 1~50 万次; 3、能量转换效率高,过程损失小,大电流能量循环效率 ≥ 90% ; 4、功率密度高,可达 300W/KG~5000W/KG ,相当于电池的 5~10 倍; 5、产品原材料构成、生产、使用、储存以及拆解过程均没有污染,是理想的绿色环保电源; 6、安全系数高,长期使用免维护; 7、超低温特性好,可工作于零下 30 ℃ 的环境中; 这些特点可以说特别适合目前的智能手机,充电速度、使用时间、体积、安全性和低温时的工作状态,几乎能够弥补现在智能机电池的所有缺陷。期待其大规模生产并运用的那一天的到来,那时智能手机会迈出的一大步。

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

1.1原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

1.2PANIF的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入1.82 g CTAB,0.63 g 草酸以及0.9 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 1.3GO的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

1.4PANIF/rGO复合材料制备

按照一定比例将含一定量的PANIF液与一定量的6.8 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为0.5 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

1.5仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为-0.2~0.8V.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

2.1形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

2.2FTIR分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

2.4电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为521.2 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为0.5 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为54.3%,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达21.8亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

2.1 研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

2.2 试验与研究

2.2.1 铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含58.66%A12O3和41.34%FeO。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为4.39g/cm3,莫氏硬度为7.5。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

2.2.2 原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

2.2.3 铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

2.3 产品的性能

2.3.1 结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

2.3.2 强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

2.3.3 具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

2.4 产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

超级电容器毕业论文答辩ppt

借花献佛,最近也在准备,希望对你有帮助。毕业论文答辩中PPT制作也是一个很主要的进程,答辩即将到来,你筹备好了么?以下为收拾的一些毕业论文PPT制造的要点、构造和一些样本。 大家需要对自己的论文选题、办法、结论、相关文献非常熟悉。 答辩每个人最多10分钟,最好限制在8分钟之内,讲明白后面幻灯片上的内容。 答复老师问题有理有据,由于是自己完成的,你理所当然最威望,但不能诡辩。 演示文稿尽量做得简洁、美丽、得体。答辩自负、表达流畅、有理有据。 研究概述(1:一张幻灯片) 简明简要(一两句话)阐明: 研究背景 研究意义 研究目的 研究问题 研讨框架(1) 研究的展开思路 和论文构造相关概念(1) 若有特殊专业或者要特殊解释的概念,可以说明。一般无须。 研究综述(1) 扼要阐明国内外相干研究成果,谁、什么时光、什么结果。 最后很扼要述评,引出自己的研究。 研究方法与过程(1-2) 采取了什么方法?在哪里展开?如何实行? 主要结论(3-5) 自己研究的结果,条理清楚,简明简要。 多用图表、数据来阐明和论证你的结果。 体系演示 若是体系开发者,则需要提前做好安装好演示筹备,在答辩时对主要模块作一演示1-2分钟。 问题讨论(1) 有待进一步讨论和研讨的课题。 致谢(1) PPT的制作上面的那位已经说了,我就说说陈述吧。这是我找到的论文陈述,你参考参考。各位老师,下午好! 我叫xxxx,是xxxx班的学生,我的论文题目是《xxxx》,论文是在xxxx导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对三年来我有机会聆听教诲的各位老师表示由衷的敬意。下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。 首先,我想谈谈这个毕业论文设计的目的及意义。 作为计算机应用的一部分,图书销售管理系统对图书销售进行管理,具有着手工管理所无法比拟的优点,极大地提高图书销售管理效率及在同行业中的竞争力.因此,图书销售管理系统有着广泛的市场前景和实际的应用价值. 其次,我想谈谈这篇论文的结构和主要内容。 本文分成五个部分. 第一部分是综述.这部分主要论述本系统开发的目的和意义,与业务相关的管理原理,以及与系统相关MIS系统开发原理与方法。 第二部分是系统分析.这部分分析用户需求,进行调查研究和分析,目的是根据用户的需求和资源条件,以现状为基础,确定新系统的逻辑模型,即从抽象的信息管理角度出发,为使用户满意,系统应对哪些信息做怎样一些存储、变换与传递,具备哪些功能,从而明确系统应该做些什么。 第三部分是系统设计.通过系统总体设计及详细设计对系统分析的结果进行整合,目的是要得到一个令用户满意的良好的实现方案。 第四部分是系统实现.根据系统设计的内容,讨论了该系统对人员与平台的要求,以及数据库表结构的建立与数据输入,并进行应用程序设计与测试. 第五部分是系统运行.这部分描述了系统操作使用的方法,进行一些系统测试,并评价了该系统. 最后,我想谈谈这篇论文和系统存在的不足。 这篇论文的写作以及系统开发的过程,也是我越来越认识到自己知识与经验缺乏的过程。虽然,我尽可能地收集材料,竭尽所能运用自己所学的知识进行论文写作和系统开发,但论文还是存在许多不足之处,系统功能并不完备,有待改进.请各位评委老师多批评指正,让我在今后的学习中学到更多。 谢谢!

关于内容:1、一般概括性内容:课题标题、答辩人、课题履行时间、课题领导教师、课题的回属、致谢等。2、课题研究内容:研究目标、计划设计(流程图)、运行进程、研究成果、创新性、利用价值、有关课题延续的新见解等。3、PPT要图文并茂,突出重点,让答辩老师清楚哪些是自己独立完成的,页数不要太多,15页左右足够,不要涌现太多文字,老师对文字和公式都不怎么感兴致;4、凡是贴在PPT上的图和公式,要能够自圆其说,没有把握的坚决不要往上面贴。5、每页下面记得标页码,这样比拟便利评委老师提问的时候review关于模板:1、不要用太富丽的企业商务模板,学术ppt最好低调简洁一些;2、推举底色白底(黑字、红字和蓝字)、蓝底(白字或黄字)、黑底(白字和黄字),这三种配色方法可保证幻灯质量。我个人感到学术ppt还是白底好;3、动手才能强的大牛可以自己做附和课题主题的模板,实在很简略,就是把爱好的图在“幻灯片母版”模式下插入就行了。关于文字:1、首先就是:不要太多!!!图优于表,表优于文字,答辩的时候照着ppt念的人最逊了;2、字体大小最好选ppt默认的,标题用44号或40号,正文用32号,一般不要小于20号。标题推举黑体,正文推荐宋体,假如一定要用少见字体,记得答辩的时候一起copy到答辩电脑上,不然会显示不出来;3、正文内的文字排列,一般一行字数在20~25个左右,不要超过6~7行。更不要超过10行。行与行之间、段与段之间要有一定的间距,标题之间的间隔(段间距)要大于行间距;关于图片:1、图片在ppt里的地位最好同一,全部ppt里的版式部署不要超过3种。图片最好同一格局,一方面很精制,另一方面也显示出做学问的严谨态度。图片的外周,有时候加上暗影或外框,会有意想不到的效果;2、关于格局,tif格式主要用于印刷,它的高质量在ppt上体现不出来,照片选用jpg就可以了,示意图我推举bmp格式,直接在windows画笔里依照须要的大小画,不要缩放,出来的都是矢量效果,比拟pro,相干的箭头元素可以直接从word里copy过来;3、流程图,用viso画就可以了,这个地球人都知道;4、ppt里呈现图片的动画方法最好简练到2种以下,还是那句话,低调朴实为主;5、动手才能容许的话,学习一下photoshop里的基础操作,一些照片类的图片,在ps里做一下曲线和对照度的基础调剂,质量会好很多。windos画笔+ps,根本可以搞定一切学术图片。关于提问环节:评委老师一般提问重要从以下几个方面:1.他本人的研究方向及其善于的范畴;2.可能来自课题的问题:是确切切合本研讨涉及到的学术问题(包含选题意义、主要观点及概念、课题新意、课题细节、课题单薄环节、建议可行性以及对自己所做工作的提问);3.来自论文的问题:论文书写的规范性,数据起源,对论文提到的主要参考文献以及有争议的某些察看尺度等;4.来自幻灯的问题:某些图片或图表,请求进一步说明;5.不大轻易估量到的问题:和课题完整不相关的问题。似乎相关,但是答辩者基本未做过,也不是课题涉及的问题。答辩者没有做的,但是评委想到了的东西,答辩者进一步盘算怎么做。依据本人观摩师兄师姐答辩的经验,提问环节很轻易由于紧张被老师误导,假如老师指出你xx处所做错了,先沉着想一下,别立马就附和说啊我错了啊我没有斟酌到。一般来说答辩老师提的问题,很少有你做课题这几年之中都没斟酌到的。想好了再答复,不要顶撞老师,实在不会的问题,千万不要“蒙”,态度必定要谦逊,哪怕直接说“自己没有斟酌到这点,请老师指正”。

关于论文答辩ppt,首先要选用背景简洁干净的模版,首页写上论文题目,答辩人及指导教师,日期。其次是目录,要包括论文目的、答辩主要内容等,再做一个对研究背景、研究问题的简明介绍,重点阐述研究内容及研究成果,专攻论文的学术性及严谨性,然后得出结论,分享启迪。最后要对老师们表示感谢,表达自己希望得到老师们的认可。

在做毕业论文答辩ppt内容的时候,首先要为你的PPT选一个好的封面!大家可以参照WPS提供的一些免费的毕业论文答辩PPT模板,直接下载使用即可。此外,还可以在百度搜索毕业论文答辩PPT模板进行相应的下载!

在选毕业论文答辩PPT时,建议大家根据自己的毕业论文内容,选择合适的模板,背景!这样可以

让你的毕业论文PPT看起来具有整体美感!

在做PPT之前,大家最好把自己的论文目录标题,摘要,结语等重要内容好好看看!毕竟,这些都

是你毕业论文的脉络,可以让你很好的把握整体!

其实毕业论文答辩PPT内容就是你毕业论文的重点内容,大家只需把你毕业论文的重点内容在毕业

论文答辩PPT 上很好的呈现就可以了!

需要注意的是毕业论文答辩PPT内容要是要简洁明了!大家在做毕业论文答辩PPT的时候千万不要

不管三七二十一,什么内容全部写上去!

遇上需要图表的数据的内容,大家做好流程图,这样看起来比较清晰明了!流程图在PPT的插入选

项里,大家看看,不同版本的办公软件,流程图的位置也是不一样的!

很多学校,老师会提供毕业论文答辩的PPT模板。大家也可以参照指导老师给的模板,对照自己的

毕业论文来做毕业论文答辩PPT!

去下模版啊,很方便的啊

超级电容器碳基材料研究论文

"姓名:何孝军性别:男百合网ID:6220091329岁广东身高:170cm恋爱类型:将军型卓越领导式的将军型(ESTJ):外向(E)+感觉(S)+思考(T)+判断(J)主要特征: 呈现负责任的个性; 重视权威和指挥体系; 享受一种粗糙的幽默感; 追寻婚姻和家庭生活的稳定性和结构,也是家庭极佳的保护者和供养者。对爱情的理解:“爱情是建立在坚固的家庭价值、传统和忠贞上的。”男将军型的匹配类型:公务员型、主人型、将军型、专家型、领袖型 "

成果简介

本文,浙江大学王树荣教授团队在《ChemElectroChem》期刊 发表名为“Preparation of Nitrogen and Sulfur Co-doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO2 Atmosphere for Symmetric Supercapacitors”的论文, 研究以螳螂虾壳为原料,CO2为活化剂,通过一步热解活化制备多种N、O、S自掺杂生物质碳材料(MSCs)。

通过控制热解温度来调节碳材料的物理和化学性质。在这项研究中,MSCs 材料的最大比表面积 (SSA) 和孔体积分别为484.5 m 2  g -1和0.291cm 3  g -1在 700 C 时达到。此外,在表征试验中发现,氮和硫等杂原子已成功引入碳微观结构中。 MSC-750含有高达9.46%的N和0.52%的S ,虽然SSA只有431.6m2g-1 时,6MKOH对称超级电容器在1Ag-1下的比电容在所有样品中达到最大值 144.2Fg -1,这是由于其高含量的杂原子官能团产生的赝电容。

图文导读

图1、(a)–(d) 分别为样品 MSC-600、650、700 和 750 的 SEM 图像;(e) 和 (f) MSC-700 和 MSC-750 在高倍率下的形态学图像。

图2、(a)–(b) MSC-750的TEM图像;(c)–(i) MSC-750选定区域的TEM-EDS图像。

图3、(a) MSCs的拉曼光谱和 (b)XRD图。

图4、MSC的电化学性能

图5、(a) 奈奎斯特曲线;(b) 比电容的虚部(C“,vs 频率);(c)-(f) 两个串联的硬币型超级电容器分别用于点亮白色和红色 LED。

小结

通过二氧化碳一步热解活化螳螂虾壳制备多元素共掺杂多孔生物质活性炭材料,并将其应用于对称超级电容器。这些结果表明MSC-750是一种很有前景的超级电容器电极材料,为水产品的高附加值加工利用开辟了新途径。

文献:

何孝军,这个人名在我国比较常见,有同名的教授、艺术工作者和综艺节目《非常勿扰》男嘉宾。教授,硕士研究生导师, 2004年毕业于大连理工大学,获工学博士学位。2005年被聘为硕导。2006年到日本丰桥技术科学大学访学,同年,被聘为副教授。 曾参与完成国家“973”、“863”和国家自然科学基金等项目。正主持国家自然科学基金和安徽省教育厅项目3项。近几年,是国家“863”项目高效节能领域(纳米专题)的课题评审专家,美国化学会石油研究基金(The ACS petroleum research fund)的评审专家。《Carbon》,《Electrochemistry Communications》,《Chemistry of Materials》,《The Journal of Physical Chemistry》,《Chemical Engineering Journal》,《Journal of Environmental Management》,《Applied Surface Science》等国际刊物论文的审稿人。

  • 索引序列
  • 超级电容论文的参考文献
  • 碳基超级电容器论文参考文献
  • 超级电容器研究前沿论文
  • 超级电容器毕业论文答辩ppt
  • 超级电容器碳基材料研究论文
  • 返回顶部