首页 > 学术发表知识库 > 太阳系行星论文学术资料

太阳系行星论文学术资料

发布时间:

太阳系行星论文学术资料

太阳系是双星系,除了看得见的太阳,还有颗褐矮星作为太阳伴星,循环一周25920年(又称太阳系大年),这个也是地轴倾斜的缘由,否则没有春夏秋冬,对地面生物成长不利。 共济会是光明会前身,是影子政府的关键组成部分,以前号称300人主席团,基辛格为主席,隶属于40多个外星种族的月球德古拉联盟中负面外星人领导,主要任务控制地球政府,其中主要血脉为蜥蜴人血脉,半混血的有基辛格,布什家族,罗斯柴尔德,英王室等,以前计划把地球70亿人毁灭大半,只留少数5-10亿做奴隶种族,让蜥蜴人种族重新地球上开始,实施计划有孟山都转基因粮食武器,世界卫生组织的疫苗(强烈建议国人暂停注射疫苗),亚洲尤其中国的人口计划生育,南非每月4000儿童死亡血祭,美国100万人口卖外星做奴隶,自己导演了911,摧毁阿富汗,伊拉克,利比亚,可惜在叙利亚被识破计谋的俄罗斯牵制,印刷无抵押的120万亿美元洗劫全球(俗称剪羊毛,亚洲金融危机,广场协议等),已经登录月球和火星,上世纪末欺6000万工程师去火星基地制作宇宙飞船等与800外星种族贸易,在黄石公园设置有火山引发装置,地球外层空间设置奇美拉电子章鱼消除灵魂投胎前的记忆,几次妄图发起第三次世界大战,但被银河中央联盟5个种族的力量阻止,现在面临倒台不能继续作恶地球,金融将会重置,自由能源技术普及,环境污染解决,粮食轻松解决,人类进入全球统一的繁荣黄金时代,地表再也不需要矿石能源、战争、国界、种族分离等。 话说人是灵魂的投胎器皿,地表人有半数灵魂来源马尔戴克星的卫星火星,马尔戴克星和火星文明曾经比地球发达,只是75万年前两星交战时马尔戴克星人被炸毁成为小行星带,而火星被粉碎的小行星陨石掀去大气层和海洋,从而生态毁灭,幸存的50万年前从月球上作为难民转移到地球,所以我们灵魂有些好战基因。而我们的身体主要是25万年前以人类DNA为基础,然后组合德拉古40多个外星种族优秀基因以22个基因项目合成改造来的。 灵魂需要我们好好找到相亲相爱的路,这是所有宗教的核心,也是更高文明的方向。

在网上搜搜霍金的果壳中的宇宙

建议你把太阳系中每种星体形成过程写一下,从星云开始写,然后是物质开始聚集,内部发生聚变,初始太阳系形成,行星开始形成,太阳系冷却。只是告诉你一下思路望采纳

分类: 教育/科学 >> 科学技术 解析: 水星最接近太阳,是太阳系中第二小行星。水星在直径上小于木卫三和土卫六,但它更重。公转轨道: 距太阳 57,910,000 千米 (0.38 天文单位)行星直径: 4,880 千米 质量: 3.30e23 千克在古罗马神话中水星是商业、旅行和偷窃之神,即古希腊神话中的赫耳墨斯,为众神传信的神,或许由于水星在空中移动得快,才使它得到这个名字。 早在公元前3000年的苏美尔时代,人们便发现了水星,古希腊人赋于它两个名字:当它初现于清晨时称为阿波罗,当它闪烁于夜空时称为赫耳墨斯。不过,古希腊天文学家们知道这两个名字实际上指的是同一颗星星,赫拉克赖脱(公元前5世纪之希腊哲学家)甚至认为水星与金星并非环绕地球,而是环绕着太阳在运行 金星是离太阳第二近,太阳系中第六大行星。在所有行星中,金星的轨道最接近圆,偏差不到1%.轨道半径:距太阳 108,200,000 千米 (0.72 天文单位)行星直径:12,103.6 千米质量:4.869e24 千克 金星 (希腊语: 阿佛洛狄特;巴比伦语: Ishtar)是美和爱的女神,之所以会如此命名,也许是对古代人来说,它是已知行星中最亮的一颗。(也有一些异议,认为金星的命名是因为金星的表面如同女性的外貌。)金星在史前就已被人所知晓。除了太阳与月亮外,它是最亮的一颗。就像水星,它通常被认为是两个独立的星构成的:晨星叫Eosphorus,晚星叫Hesperus,希腊天文学家更了解这一点。 地球是距太阳第三颗,也是第五大行星:轨道半径:149,600,000 千米 (离太阳1.00 天文单位)行星直径:12,756.3 千米质量:5.9736e24 千克 >地球是唯一一个不是从希腊或罗马神马中得到的名字。Earth一词来自于古英语及日耳曼语。这里当然有许多其他语言的命名。在罗马神话中,地球女神叫Tellus-肥沃的土地(希腊语:Gaia, 大地母亲) 月球是地球唯一一颗天然卫星:轨道半径.距地球384,400千米行星直径:3476千米质量:7.35e22千克 古罗马人称之为Luna,古希腊人称之为Selene或阿尔特弥斯(月亮与狩猎的女神),另外在其他神话中它还有许多名字。 理所当然,月球早在史前就已被人所知道。它是空中仅次于太阳的第二亮物体。由于月球每月绕地球公转一周,地球、月球、太阳之间的角度不断变化;我们把它叫做一个朔望月。一个连续新月的出现需要29.5天(709小时),随月球轨道周期(由恒星测量)因地球同时绕太阳公转变化而变化。火星为距太阳第四远,也是太阳系中第七大行星: 公转轨道:离太阳227,940,000 千米 (1.52 天文单位) 行星直径:6,794 千米 质量:6.4219e23 千克火星(希腊语: 阿瑞斯)被称为战神。这或许是由于它鲜红的颜色而得来的;火星有时被称为“红色行生”。(趣记:在希腊人之前,古罗马人曾把火星人微言轻农耕之神来供奉。而好侵略扩张的希腊人却把火星作为战争的象征)而月份三份的名字也是得自于火星。 Phobos (英语发音"FOH bus")是火星的两颗卫星中较大,也是离火星较近的一颗。火卫一与火星之间的距离也是太阳系中所有的卫星与其主星的距离中最短的,从火星表面算起,只有6000千米。它也是太阳系中最小的卫星之一。公转轨道:距火星中心9378 千米 卫星直径:22.2 千米 (27 x 21.6 x 18.8) 质量:1.08e16 千克在希腊神话中,火卫一是阿瑞斯(火星)和阿芙罗狄蒂(金星)的一个儿子。“phobos”在希腊语中意味着“恐惧”(是“phobia”-恐惧的构词成分)。火卫一在1877年由Hall发现,1971年由“水手9号”首次拍得照片,并由1977年的“海盗1号”、1988年的“火卫一号”进行观测。 木星是离太阳第五颗行星,而且是最大的一颗,比所有其他的行星的合质量大2倍(地球的318倍)。 公转轨道:距太阳 778,330,000 千米 (5.20 天文单位)行星直径:142,984 千米 (赤道)质量:1.900e27 千克木星(a.k.a. Jove; 希腊人称之为 宙斯)是上帝之王,奥林匹斯山的统治者和罗马国的保护人,它是Cronus(土星)的儿子。木星是天空中第四亮的物体(次于太阳,月球和金星;有时候火星更亮一些),早在史前木星就已被人类所知晓。根据伽利略1610年对木星四颗卫星:木卫一,木卫二,木卫三和木卫四(现常被称作伽利略卫星)的观察,它们是不以地球为中心运转的第一个发现,也是赞同哥白尼的日心说的有关行星运动的主要依据;由于伽利略直言不讳地支持哥白尼的理论而被宗教裁判所逮捕,并被强迫放弃自己的信仰,关在监狱中度过了余生。 木星的卫星 木星有16颗已知卫星,4颗大伽利略发现的卫星,12颗小的。 由于伽利略卫星产生的引潮力,木星运动正逐渐地变缓。同样,相同的引潮力也改变了卫星的轨道,使它们慢慢地逐渐远离木星。 木卫一,木卫二,木卫三由引潮力影响而使公转共动关系固定为1:2:4,并共同变化。木卫四也是这其中一个部分。在未来的数亿年里,木卫四也将被锁定,以木卫三的两倍公转周期,木卫一的八倍来运行。 木星的卫星由宙斯一生中所接触过的人来命名(大多是他的情人)。 卫星 距离 (千米) 半径 (千米) 质量 (千克) 发现者 发现日期 木卫十六 128000 20 9.56e16 Synnott 1979 木卫十五 129000 10 1.91e16 Jewitt 1979 木卫五 181000 98 7.17e18 Barnard 1892 木卫十四 222000 50 7.77e17 Synnott 1979 木卫一 422000 1815 8.94e22 伽利略 1610 木卫二 671000 1569 4.80e22 伽利略 1610 木卫三 1070000 2631 1.48e23 伽利略 1610 木卫四 1.08e23 伽利略 1610 木卫十三 *********** 8 5.68e15 Kowal 1974 木卫六 *********** 93 9.56e18 Perrine 1904 木卫十 *********** 18 7.77e16 Nicholson 1938 木卫七 *********** 38 7.77e17 Perrine 1905 木卫十二 *********** 15 3.82e16 Nicholson 1951 木卫十一 *********** 20 9.56e16 Nicholson 1938 木卫八 *********** 25 1.91e17 Melotte 1908 木卫九 *********** 18 7.77e16 Nicholson 1914 较小卫星的数值是约值。 木星的光环 光环 距离 (千米) 宽度 (千米) 质量 (千克) Halo 100000 22800 ? Main 122800 6400 1e13 Gossamer 129200 850000 ? (距离是指从木星中心到光环内侧边缘 土星是离太阳第六远的行星,也是九大行星中第二大的行星: 公转轨道: 距太阳 1,429,400,000 千米 (9.54 天文单位) 卫星直径: 120,536 千米 (赤道) 质量: 5.68e26 千克 在罗马神话中,土星(Saturn)是农神的名称。希腊神话中的农神Cronus是Uranus(天王星)和该亚的儿子,也是宙斯(木星)的父亲。土星也是英语中“星期六”(Saturday)的词根。( 土星在史前就被发现了。伽利略在1610年第一次通过望远镜观察到它,并记录下它的奇怪运行轨迹,但也被它给搞糊涂了。早期对于土星的观察十分复杂,这是由于当土星在它的轨道上时每过几年,地球就要穿过土星光环所在的平面。(低分辨率的土星图片所以经常有彻底性的变化。)直到1659年惠更斯正确地推断出光环的几何形状。在1977年以前,土星的光环一直被认为是太阳系中唯一存在的;但在1977年,在天王星周围发现了暗淡的光环,在这以后不久木星和海王星周围也发现了光环 天王星是太阳系中离太阳第七远行星,从直径来看,是太阳系中第三大行星。天王星的体积比海王星大,质量却比其小。 公转轨道: 距太阳2,870,990,000 千米 (19.218 天文单位) 行星直径: 51,118 千米(赤道) 质量: 8.683e25 千克 读天王星的英文名字,发音时要小心,否则可能会使人陷于窘迫的境地。Uranus应读成"YOOR a nus" ,不要读成"your anus"(你的 *** )或是"urine us"(对着我们撒尿)。 乌拉诺斯是古希腊神话中的宇宙之神,是最早的至高无上的神。他是该亚的儿子兼配偶,是Cronus(农神土星)、独眼巨人和泰坦(奥林匹斯山神的前辈)的父亲。 天王星是由威廉·赫歇耳通过望远镜系统地搜寻,在1781年3月13日发现的,它是现代发现的第一颗行星。事实上,它曾经被观测到许多次,只不过当时被误认为是另一颗恒星(早在1690年John Flamsteed便已观测到它的存在,但当时却把它编为34 Tauri)。赫歇耳把它命名为"the Geium Sidus(天竺葵)"(乔治亚行星)来纪念他的资助者,那个对美国人而言臭名昭著的英国国王:乔治三世;其他人却称天王星为“赫歇耳”。由于其他行星的名字都取自希腊神话,因此为保持一致,由波德首先提出把它称为“乌拉诺斯(Uranus)”(天王星),但直到1850年才开始广泛使用。 天王星的卫星 天王星有15颗已命名的卫星,以及2颗已发现但暂未命名的卫星。 与太阳系中的其他天体不同,天王星的卫星并不是以古代神话中的人物而命名的,而是用莎士比亚和罗马教皇的作品中人物的名字。 它们自然分成两组:由旅行者2号发现的靠近天王星的很暗的10颗小卫星和5颗在外层的大卫星。(右图) 它们都有一个圆形轨道围绕着天王星的赤道(因此相对于赤道面有一个较大的角度)。 卫星 距离 (千米) 半径 (千米) 质量 (千克) 发现者 发现日期 天卫六 50000 13 ? 旅行者2号 1986 天卫七 54000 16 ? 旅行者2号 1986 天卫八 59000 22 ? 旅行者2号 1986 天卫九 62000 33 ? 旅行者2号 1986 天卫十 63000 29 ? 旅行者2号 1986 天卫十一 64000 42 ? 旅行者2号 1986 天卫十二 66000 55 ? 旅行者2号 1986 天卫十三 70000 27 ? 旅行者2号 1986 天卫十四 75000 34 ? 旅行者2号 1986 天卫十八 75000 20 ? Karkosca 1999 天卫十五 86000 77 ? 旅行者2号 1985 天卫五 130000 236 6.30e19 Kuiper 1948 天卫一 191000 579 1.27e21 Lassell 1851 天卫二 266000 585 1.27e21 Lassell 1851 天卫三 436000 789 3.49e21 赫歇耳 1787 天卫四 583000 761 3.03e21 赫歇耳 1787 天卫十六 7200000 30 ? Gladman 1997 天卫十七 *********** 60 ? Gladman 1997 天王星的光环 光环 距离 (千米) 宽度 (千米) 1986U2R 38000 2,500 6 41840 1-3 5 42230 2-3 4 42580 2-3 Alpha 44720 7-12 Beta 45670 7-12 Eta 47190 0-2 Gamma 47630 1-4 Delta 48290 3-9 1986U1R 50020 1-2 Epsilon 51140 20-100 (距离是指从天王星的中心算到光环的内边的长度 海王星是环绕太阳运行的第八颗行星,也是太阳系中第四大天体(直径上)。海王星在直径上小于天王星,但质量比它大。 公转轨道: 距太阳 4,504,000,000 千米 (30.06 天文单位) 行星直径: 49,532 千米(赤道) 质量: 1.0247e26 千克 在古罗马神话中海王星(古希腊神话:波塞冬(Poseidon))代表海神。 在天王星被发现后,人们注意到它的轨道与根据牛顿理论所推知的并不一致。因此科学家们预测存在着另一颗遥远的行星从而影响了天王星的轨道。Galle和d\'Arrest在1846年9月23日首次观察到海王星,它出现的地点非常靠近于亚当斯和勒威耶根据所观察到的木星、土星和天王星的位置经过计算独立预测出的地点。一场关于谁先发现海王星和谁享有对此命名的权利的国际性争论产生于英国与法国之间(然而,亚当斯和勒威耶个人之间并未有明显的争论);现在将海王星的发现共同归功于他们两人。后来的观察显示亚当斯和勒威耶计算出的轨道与海王星真实的轨道偏差相当大。如果对海王星的搜寻早几年或晚几年进行的话,人们将无法在他们预测的位置或其附近找到它。 仅有一艘宇宙飞船旅行者2号于1989年8月25日造访过海王星。几首我们所知的全部关于海王星的信息来自这次短暂的会面。 海王星的卫星 海王星有8颗已知卫星:7颗小卫星和海卫一。 卫星 距离 (千米) 半径 (千米) 质量 (千克) 发现者 发现日期 海卫三 48000 29 ? 旅行者2号 1989 海卫四 50000 40 ? 旅行者2号 1989 海卫五 53000 74 ? 旅行者2号 1989 海卫六 62000 79 ? 旅行者2号 1989 海卫七 74000 96 ? 旅行者2号 1989 海卫八 118000 209 ? 旅行者2号 1989 海卫一 355000 1350 2.14e22 Lassell 1846 海卫二 5509000 170 ? Kuiper 1949 海王星的光环 光环 距离 (千米) 宽度 (千米) 另称 Diffuse 41900 15 1989N3R, Galle Inner 53200 15 1989N2R, 勒威耶 Plateau 53200 5800 1989N4R, Lassell, Arago Main 62930 < 50 1989N1R, Adams (距离是海王星中心到光环的内端) 一般认为,冥王星是离太阳最远而且是最小的行星。太阳系中有七颗卫比冥王星大(月球, 木卫一, 木卫二, 木卫三, 木卫四, 土卫六 and 海卫一)。 公转轨道: 离太阳平均距离5,913,520,000 千米 (39.5 天文单位) 行星直径: 2274 千米 质量: 1.27e22 千克 罗马神话中,冥王星(希腊人称之为Hades哈迪斯)是冥界的首领。这颗行星得到这个名字(而不采纳其他的建议)可能是由于他离太阳太远以致于一直沉默在无尽的黑暗之中,也可能是因为冥王星(pluto)开头的两字母是Percival Lowell是缩写。 冥王星是在1930年由于一个幸运的巧合而被发现的。一个后来被发现错误的计算“断言”基于天王星与海王星的运行研究,在海王星后还有一颗行星。美国亚利桑那州的Lowell天文台的Clyde W. Tombaugh由于不知道这个计算错误,对太阳系进行了一次非常仔细的观察,然而正因为这样,发现了冥王星。 Charon ( "KAIR en" )是冥王星唯一一颗已知的卫星: 公转轨道: 离冥王星19,640 千米 卫星直径: 1172 千米 质量: 1.90e21 千克 Charon(卡戎或查农--译注)是以神话中的人物命名的,他专门摆渡死者通过River Styx冥河来到冥界。 (虽然学术界以这个神秘人物来命名,但冥卫一的发现者这样命名也是为了纪念他的妻子Charlene。正如所知道的,他们英语发音的第一音节是相同的,就象“shard"("SHAHR en")一样。)

关于太阳系历程论文范文资料

图片 资料:太阳系(solar system)就是我们现在所在的恒星系统。由太阳、8颗大行星(原先有九大行星,因为冥王星被剔除为矮行星)、66颗卫星(原有67颗,冥王星的卫星被剔除)以及无数的小行星、彗星及陨星组成的。行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)、海王星(neptune)。离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(>3.0克/立方厘米),体积小,自转慢,卫星少,内部成分主要为硅酸盐(silicate),具有固体外壳。离太阳较远的木星、土星、天王星、海王星称为类木行星(jovian planets)。它们都有很厚的大气圈,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。在火星与木星之间有1000000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。 这些行星都以太阳为中心以椭圆轨道公转,虽然除了水星的十分接近于圆。行星轨道中或多或少在同一平面内(称为黄道面并以地球公转轨道面为基准)。黄道面与太阳赤道仅有7度的倾斜。冥王星的轨道大都脱离了黄道面,倾斜度达17度。上面的图表从一个特定的高于黄道面的透视角显示了各轨道的相对大小及关系(非圆的现象显而易见)。它们绕轨道运动的方向一致(从太阳北极上看是逆时针方向),因此,科学家们把冥王星排除在九大行星之外。除金星和天王星外自转方向也如此。 太阳系(solar system)在宇宙中的位置 太阳系位于银河系边缘 太阳系是由太阳以及在其引力作用下围绕它运转的天体构成的天体系统。它包括太阳、八大行星及其卫星、小行星、彗星、流星体以及行星际物质。人类所居住的地球就是太阳系中的一员。 太阳系的构成 太阳系的中心是太阳,虽然它只是一颗中小型的恒星,但它的质量已经占据了整个太阳系总质量的99.85%;余下的质量中包括行星与它们的卫星、行星环,还有小行星、彗星、柯伊伯带天体、外海王星天体、理论中的奥尔特云、行星间的尘埃、气体和粒子等行星际物质。整个太阳系所有天体的总表面面积约为17亿平方千米。太阳以自己强大的引力将太阳系中所有的天体紧紧地控制在他自己周围,使它们井然有序地围绕自己旋转。同时,太阳又带着太阳系的全体成员围绕银河系的中心运动。 太阳系内迄今发现了八颗大行星。有时称它们为“八行星”。按照距离太阳的远近,这八大行星依次是:最近的水星、金星、地球、火星、木星、土星、天王星、海王星。水星、金星、地球和火星也被称为类地行星,木星和土星也被称为巨行星,天王星、海王星也被称为远日行星。除了水星和金星外,其他的行星都有卫星。在火星和木星之间还存在着数十万个大小不等,形态各异的小行星,天文学家将这个区域称为小行星带。此外,太阳系中还有超过1000颗的彗星,以及不计其数的尘埃、冰团、碎块等小天体。 太阳系中的各个天体主要由氢、氦、氖等气体,冰(水、氨、甲烷)以及含有铁、硅、镁等元素的岩石构成。类地行星、地球、月球、火星、木星的部分卫星、小行星主要由岩石组成;木星和土星主要由氢和氦组成,其核可能是岩石或冰。 太阳系的起源和演化 一般以为行星系统是恒星形成过程的一部分,但是也有学者认为这是两颗恒星差一点撞击而成。最普遍的理论是说太阳系是从星云形成。 恒星形成的基本过程为此: 1. 星云中较密的核心部分变得太重,重心不稳定,开始分裂和崩溃坠落。一部分的重心能量变为放射的红外线,剩下的增加核心的温度。核心部分开始成为圆盘形状。 2. 当密度和温度道足够高, 氘融合燃烧开始发生,辐射的向外压力减慢(但不中止)临近其他核心崩溃。 3. 其他的原料继续下落到这一颗原恒星,它们的角动量的作用可能导致双极流程。 4. 最后,氢开始熔化在星的核心,外面剩余的包围材料被清除。 太阳星云这个假说,是1755年由伊曼努尔·康德提议。他说,太阳星云慢慢地转动,由于重力逐渐凝聚并且铺平,最终形成恒星和行星。一个相似的模型在1796年由拉普拉斯提出。 太阳星云开始直径大约100AU,质量是现在太阳的两三倍。在这个星云中,比较重的物质往中间落,积聚成块,是成为以后的行星。而星云外部越来越冷,因此靠里的行星有很多重的矿物质,而靠外的行星是气体或冰体。原太阳大约在46亿年前形成,以后八亿年中各个行星形成。 太阳系的运动 太阳系是银河系的一部分。银河系是一个螺旋形星系,直径十万光年,包括两千多亿颗星。太阳是银河系较典型的恒星,离星系中心大约两万五千到两万八千光年。太阳系移动速度约每秒220公里,两亿两千六百万年在星系转一圈。 太阳系中的八大行星都位于差不多同一平面的近圆轨道上运行,朝同一方向绕太阳公转。除金星以外,其他行星的自转方向和公转方向相同。 彗星的绕日公转方向大都相同,多数为椭圆形轨道,一般公转周期比较长。 对太阳系的探索与研究 人类出于对自身生存环境了解的渴望以及日益紧张的地球资源,从1959年开始不断的通过空间探测器等进行空间探测,研究太阳系。目前主要集中在月球和火星的探测以及小行星和彗星的探测。 对太阳系的长期研究,分化出了这样几门学科: * 太阳系化学: 空间化学的一个重要分科,研究太阳系诸天体的化学组成(包括物质来源、元素与同位素丰度)和物理-化学性质以及年代学和化学演化问题。太阳系化学与太阳系起源有密切关系。 * 太阳系物理学: 研究太阳系的行星、卫星、小行星、彗星、流星以及行星际物质的物理特性、化学组成和宇宙环境的学科。 * 太阳系内的引力定律: 太阳系内各天体之间引力相互作用所遵循的规律。 * 太阳系稳定性问题: 天体演化学和天体力学的基本问题之一。 太阳系和其他行星系 虽然学者同意另外还有其他和太阳系相似的天体系统,但直到1992年才发现别的行星系。至今已发现几十个行星系,但是详细材料还是很少。这些行星系的发现是依靠多普勒效应,通过观测恒星光谱的周期性变化,分析恒星运动速度的变化情况,并据此推断是否有行星存在,并且可以计算行星的质量和轨道。应用这项技术只能发现木星级的大行星,像地球大小的行星就找不到了。 此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。 太阳与八大行星的一些资料 下表的数据都是相对于太阳的数值:(卫星数截至2005年底) 太阳与八大行星数据对照表(赤道直径以地球直径6370公里为单位),距离与轨道半径以天文单位为单位。 天体 距离(AU) 赤道直径 质量 轨道半径(AU)|轨道倾角(度)|公转周期(年)|自转周期(天)|已发现卫星数 太阳 0 109 333,400 -- -- -- 27.275 -- 水星 0.39 0.382 0.05528 0.38710 7.0050 0.240852 58.6 0 金星 0.72 0.949 0.82 0.72 3.4 0.615 243.0185(逆向自转) 0 地球 1.00 1.00 1.00 1.00 0 1.00 0.9973 1 火星 1.5 0.53 0.11 1.52 1.9 1.88 1.0260 2 木星 5.2 11.2 318 5.20 1.3 11.86 0.4135 63 土星 9.5 9.41 95 9.54 2.5 29.46 0.444 47(有34颗已命名) 天王星 19.2 3.98 14.6 19.22 0.8 84.01 0.7183 29 海王星 30.1 3.81 17.2 30.06 1.8 164.79 0.6713 13 *1930年,冥王星被国际天文学联合会正式确认为行星,但一些天文学家对其行星的身份仍持怀疑态度。 *根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为行星。 太阳系的第九大行星 在19世纪末,很多天文学家推测海王星之外还有别的行星,因为测试海王星的轨道和理论算出的轨道不一样。他们叫这颗星“行星X”,是未知行星的意思。 美国天文学家帕西瓦尔·罗威尔在1909年和1913年两次寻找海王星之外的行星,但是没有找到。1915年结束之后,罗威尔发表论文,写出估测的行星数据。其实在那一年,他所在的天文台照到了冥王星的照片,但是直到1930年才认出这是一颗行星。 可是冥王星的质量太小,无法解释海王星的轨道。天文学家继续寻找“行星X”,但是这个名字又有了第十大行星的意思,因为X是拉丁文的10。直到“旅行者2 号”探测器临近海王星,才发现海王星的质量一直算错很多。用正确的质量,加上冥王星的影响,海王星的现实轨道和计算轨道一致。 按照行星轨道计算,和地球差不多大小的行星不可能在60AU之内(冥王星现在离太阳大约30AU)。如果确实有第十大行星,它的轨道会很倾斜,很可能是外星系的天体,靠太阳太近,而被太阳吸引入轨。 一直以来,天文界对冥王星的地位一直有所争议。甚至有些地方的天文馆将冥王星从九大行星的地位中剔除。 根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为行星。 自21世纪以来,科学家在冥王星更远的外围分别发现了三颗较大的行星。依序为2004年所发现的“Sedna”,代号为 2003 VB12;2005年同时发表的“Santa”,代号为2003 EL61及代号为2003 UB313(发现者未公布其名称)的行星。 2005年7月19日美国科学家发现的2003 UB313,研究人员估算其直径达3,000公里,被一些人认为很可能是太阳系第十大行星。但2006年国际天文学联合大会决议:将其列入矮行星. “水内行星” 天文学家曾发现离太阳最近的水星有一些无法解释的微小运动,天文学家怀疑可能有一个比水星更靠近太阳的行星的引力引起的,并用一个火神的名字给这个行星起名为“祝融星”(中文常译为“火神星”),但天文学家们观测了五十多年仍然未找到这颗行星。 “水内行星”的假设,已被科学家爱因斯坦的广义相对论排除。广义相对论的引力理论解释了水星的奇怪运动,但天文学家们仍未放弃对“水内行星”的探寻。 其他资料 太阳系内众多包含固态表面,而其直径超过1公里的天体,它们的总表面积达17亿平方公里。 有人认为太阳其实是一个双星系统的主星,在遥远的地方存在着一个伴星,名为“涅米西斯” (Nemesis)。该假设是用作解释地球出现生物大灭绝的一些规则性,认为其伴星会摄动系内的小行星和彗星,使其改变轨道冲进太阳系,增加撞击地球的机会并出现定期生物灭绝。 行星的形成 类地行星是经由碰撞聚集固态的物质颗粒成为微小行星 ,再聚集微小行星形成的。 类木行星以水冰相互吸附为起点,质量够大后,进一步吸附氢、甲烷,形成气体行星。 太阳系的行星大致可分为两大类:类地行星与类木行星 类地行星 成员包括有水星、金星、地球、火星。是小而密的岩石世界,具有较稀少的大气。内部结构:中心有金属核心,外为石质的地壳所包围,表面有相当多的坑洞,平均密度约为3-5g/cm3 。 类木行星 成员包括有木星、土星、天王星、海王星。 是体积大、质量大、但是密度小的气体世界,具有浓密的大气。平均密度约≤1.75 g/cm3,土星的密度约为0.7g/cm3,木星 质量约为地球的318倍。 结构:由内而外,中心有岩石核心、液态金属氢、液态分子氢、充满气体的大气层,表面有漩涡状的云层。另有行星环及为 数众多的卫星环绕著太阳系的八大行星,以太阳为中心依序为:水星(Mercury)、金星(Venus)、地球(Earth)、火星(Mars)、木星(Jupiter)、土星(Saturn)、天王星(Uranus)、海王星(Neptune) 。 到底谁是太阳系中最远的行星? 从1999年2月11日开始,冥王星终於变成太阳系中名符其实的最远的行星。根据JPL天文学家们的计算,从国际标准时(UT)9:08a.m.(中原标准时间17:08)开始的228年内,冥王星都会是离太阳最远的行星。 1930年2月18日,Clyde Tombaugh研究Lowell天文台望远镜所拍摄的天空照片时发现了冥王星。冥王星绕日周期为248年,轨道倾角约为17度,轨道偏心率约为0.2480。它主要是由岩石和冰所组成,有四季的变化。冥王星只有一颗卫星,名为查龙(Charon),在1978年才发现它的存在。由於冥王星轨道倾角及偏心率都比其他行星大很多,也就是说,冥王星近日点附近的轨道,有部份会落在海王星轨道的内侧,所以从1979年2月7日开始到1999年2月11日为止的20年间,冥王星至太阳的距离比海王星还近。 这样看来,2月11日时,冥王星会不会和海王星发生碰撞呢?答案是:不会!为什么呢?冥王星和海王星若要相撞,则两者必须同时到达它们的轨道交点。冥王星和海王星的会合周期大约是497年,即冥王星每绕日二周,海王星已绕日三周。所以每当冥王星经过轨道交点的时候,海王星总会绕到别的地方,发生碰撞的机会微乎其微。此外,冥王星相对於黄道面的轨道倾角比其他行星都大很多,也是不会发生碰撞的原因之一。 冥王星的直径大约是2300公里左右,在所有行星中,它比类地行星(水、金、地、火)小很多,甚至比月球还小;它的性质跟巨大且为气态的类木行星(木、土、天王、海王)不一样;轨道倾角及偏心率也都比其他行星大很多。所以有些天文学家认为冥王星应不属於「行星」一族,而应是归类於「库伯带(Kuiper Belt)」的成员。柯依伯带位于海王星和冥王星轨道外的区域,带中的天体都比冥王星小很多,而且大多是由冰所组成,可能是太阳系演化早期的残片。不过,冥王星的外形是成圆球形,与这些库伯带天体多为不规则状又有些许的不同;而且冥王星很规律地绕日旋转,所以,在经过众多争议之后,它仍被归为「行星」族。 2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为行星。 所以我们对冥王星的认识非常有限。美国太空总署(NASA)下所属的喷射推进实验室(JPL)目前正在进行一个称为「冥王星?w伯带(Pluto-Kuiper Express)」的计划,预计在公元2004年发射太空船,大约再10年之后,太空船就会飞掠冥王星和查龙,并探测库伯带中的天体。 根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为行星。从这一天起,冥王星不再是太阳系中最远的行星,海王星代替了它的地位。太阳系(solar system)就是我们现在所在的恒星系统。由太阳、8颗大行星(原先有九大行星,因为冥王星被剔除为矮行星)、66颗卫星(原有67颗,冥王星的卫星被剔除)以及无数的小行星、彗星及陨星组成的。行星由太阳起往外的顺序是:水星(mercury)、金星(venus)、地球(earth)、火星(mars)、木星(jupiter)、土星(saturn)、天王星(uranus)、海王星(neptune)。离太阳较近的水星、金星、地球及火星称为类地行星(terrestrial planets)。宇宙飞船对它们都进行了探测,还曾在火星与金星上着陆,获得了重要成果。它们的共同特征是密度大(>3.0克/立方厘米),体积小,自转慢,卫星少,内部成分主要为硅酸盐(silicate),具有固体外壳。离太阳较远的木星、土星、天王星、海王星称为类木行星(jovian planets)。它们都有很厚的大气圈,其表面特征很难了解,一般推断,它们都具有与类地行星相似的固体内核。在火星与木星之间有1000000个以上的小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们可能是由位置界于火星与木星之间的某一颗行星碎裂而成的,或者是一些未能聚积成为统一行星的石质碎块。陨星存在于行星之间,成分是石质或者铁质。这些行星都以太阳为中心以椭圆轨道公转,虽然除了水星的十分接近于圆。行星轨道中或多或少在同一平面内(称为黄道面并以地球公转轨道面为基准)。黄道面与太阳赤道仅有7度的倾斜。冥王星的轨道大都脱离了黄道面,倾斜度达17度。上面的图表从一个特定的高于黄道面的透视角显示了各轨道的相对大小及关系(非圆的现象显而易见)。它们绕轨道运动的方向一致(从太阳北极上看是逆时针方向),因此,科学家们把冥王星排除在九大行星之外。除金星和天王星外自转方向也如此。太阳系(solar system)在宇宙中的位置太阳系位于银河系边缘太阳系是由太阳以及在其引力作用下围绕它运转的天体构成的天体系统。它包括太阳、八大行星及其卫星、小行星、彗星、流星体以及行星际物质。人类所居住的地球就是太阳系中的一员。太阳系的构成太阳系的中心是太阳,虽然它只是一颗中小型的恒星,但它的质量已经占据了整个太阳系总质量的99.85%;余下的质量中包括行星与它们的卫星、行星环,还有小行星、彗星、柯伊伯带天体、外海王星天体、理论中的奥尔特云、行星间的尘埃、气体和粒子等行星际物质。整个太阳系所有天体的总表面面积约为17亿平方千米。太阳以自己强大的引力将太阳系中所有的天体紧紧地控制在他自己周围,使它们井然有序地围绕自己旋转。同时,太阳又带着太阳系的全体成员围绕银河系的中心运动。太阳系内迄今发现了八颗大行星。有时称它们为“八行星”。按照距离太阳的远近,这八大行星依次是:最近的水星、金星、地球、火星、木星、土星、天王星、海王星。水星、金星、地球和火星也被称为类地行星,木星和土星也被称为巨行星,天王星、海王星也被称为远日行星。除了水星和金星外,其他的行星都有卫星。在火星和木星之间还存在着数十万个大小不等,形态各异的小行星,天文学家将这个区域称为小行星带。此外,太阳系中还有超过1000颗的彗星,以及不计其数的尘埃、冰团、碎块等小天体。太阳系中的各个天体主要由氢、氦、氖等气体,冰(水、氨、甲烷)以及含有铁、硅、镁等元素的岩石构成。类地行星、地球、月球、火星、木星的部分卫星、小行星主要由岩石组成;木星和土星主要由氢和氦组成,其核可能是岩石或冰。太阳系的起源和演化一般以为行星系统是恒星形成过程的一部分,但是也有学者认为这是两颗恒星差一点撞击而成。最普遍的理论是说太阳系是从星云形成。恒星形成的基本过程为此:1. 星云中较密的核心部分变得太重,重心不稳定,开始分裂和崩溃坠落。一部分的重心能量变为放射的红外线,剩下的增加核心的温度。核心部分开始成为圆盘形状。2. 当密度和温度道足够高, 氘融合燃烧开始发生,辐射的向外压力减慢(但不中止)临近其他核心崩溃。3. 其他的原料继续下落到这一颗原恒星,它们的角动量的作用可能导致双极流程。4. 最后,氢开始熔化在星的核心,外面剩余的包围材料被清除。太阳星云这个假说,是1755年由伊曼努尔·康德提议。他说,太阳星云慢慢地转动,由于重力逐渐凝聚并且铺平,最终形成恒星和行星。一个相似的模型在1796年由拉普拉斯提出。太阳星云开始直径大约100AU,质量是现在太阳的两三倍。在这个星云中,比较重的物质往中间落,积聚成块,是成为以后的行星。而星云外部越来越冷,因此靠里的行星有很多重的矿物质,而靠外的行星是气体或冰体。原太阳大约在46亿年前形成,以后八亿年中各个行星形成。太阳系的运动太阳系是银河系的一部分。银河系是一个螺旋形星系,直径十万光年,包括两千多亿颗星。太阳是银河系较典型的恒星,离星系中心大约两万五千到两万八千光年。太阳系移动速度约每秒220公里,两亿两千六百万年在星系转一圈。太阳系中的八大行星都位于差不多同一平面的近圆轨道上运行,朝同一方向绕太阳公转。除金星以外,其他行星的自转方向和公转方向相同。彗星的绕日公转方向大都相同,多数为椭圆形轨道,一般公转周期比较长。对太阳系的探索与研究人类出于对自身生存环境了解的渴望以及日益紧张的地球资源,从1959年开始不断的通过空间探测器等进行空间探测,研究太阳系。目前主要集中在月球和火星的探测以及小行星和彗星的探测。对太阳系的长期研究,分化出了这样几门学科:* 太阳系化学:空间化学的一个重要分科,研究太阳系诸天体的化学组成(包括物质来源、元素与同位素丰度)和物理-化学性质以及年代学和化学演化问题。太阳系化学与太阳系起源有密切关系。* 太阳系物理学:研究太阳系的行星、卫星、小行星、彗星、流星以及行星际物质的物理特性、化学组成和宇宙环境的学科。* 太阳系内的引力定律:太阳系内各天体之间引力相互作用所遵循的规律。* 太阳系稳定性问题:天体演化学和天体力学的基本问题之一。太阳系和其他行星系虽然学者同意另外还有其他和太阳系相似的天体系统,但直到1992年才发现别的行星系。至今已发现几十个行星系,但是详细材料还是很少。这些行星系的发现是依靠多普勒效应,通过观测恒星光谱的周期性变化,分析恒星运动速度的变化情况,并据此推断是否有行星存在,并且可以计算行星的质量和轨道。应用这项技术只能发现木星级的大行星,像地球大小的行星就找不到了。此外,关于类似太阳系的天体系统的研究的另一个目的是探索其他星球上是否也存在着生命。太阳与八大行星的一些资料下表的数据都是相对于太阳的数值:(卫星数截至2005年底)太阳与八大行星数据对照表(赤道直径以地球直径6370公里为单位),距离与轨道半径以天文单位为单位。天体 距离(AU) 赤道直径 质量 轨道半径(AU)|轨道倾角(度)|公转周期(年)|自转周期(天)|已发现卫星数太阳 0 109 333,400 -- -- -- 27.275 --水星 0.39 0.382 0.05528 0.38710 7.0050 0.240852 58.6 0金星 0.72 0.949 0.82 0.72 3.4 0.615 243.0185(逆向自转) 0地球 1.00 1.00 1.00 1.00 0 1.00 0.9973 1火星 1.5 0.53 0.11 1.52 1.9 1.88 1.0260 2木星 5.2 11.2 318 5.20 1.3 11.86 0.4135 63土星 9.5 9.41 95 9.54 2.5 29.46 0.444 47(有34颗已命名)天王星 19.2 3.98 14.6 19.22 0.8 84.01 0.7183 29海王星 30.1 3.81 17.2 30.06 1.8 164.79 0.6713 13*1930年,冥王星被国际天文学联合会正式确认为行星,但一些天文学家对其行星的身份仍持怀疑态度。*根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为行星。太阳系的第九大行星在19世纪末,很多天文学家推测海王星之外还有别的行星,因为测试海王星的轨道和理论算出的轨道不一样。他们叫这颗星“行星X”,是未知行星的意思。美国天文学家帕西瓦尔·罗威尔在1909年和1913年两次寻找海王星之外的行星,但是没有找到。1915年结束之后,罗威尔发表论文,写出估测的行星数据。其实在那一年,他所在的天文台照到了冥王星的照片,但是直到1930年才认出这是一颗行星。可是冥王星的质量太小,无法解释海王星的轨道。天文学家继续寻找“行星X”,但是这个名字又有了第十大行星的意思,因为X是拉丁文的10。直到“旅行者2 号”探测器临近海王星,才发现海王星的质量一直算错很多。用正确的质量,加上冥王星的影响,海王星的现实轨道和计算轨道一致。按照行星轨道计算,和地球差不多大小的行星不可能在60AU之内(冥王星现在离太阳大约30AU)。如果确实有第十大行星,它的轨道会很倾斜,很可能是外星系的天体,靠太阳太近,而被太阳吸引入轨。一直以来,天文界对冥王星的地位一直有所争议。甚至有些地方的天文馆将冥王星从九大行星的地位中剔除。根据2006年08月24日国际天文学联合会大会的决议:冥王星被视为是太阳系的“矮行星”,不再被视为行星。自21世纪以来,科学家在冥王星更远的外围分别发现了三颗较大的行星。依序为2004年所发现的“Sedna”,代号为 2003 VB12;2005年同时发表的“Santa”,代号为2003 EL61及代号为2003 UB313(发现者未公布其名称)的行星。2005年7月19日美国科学家发现的2003 UB313,研究人员估算其直径达3,000公里,被一些人认为很可能是太阳系第十大行星。但2006年国际天文学联合大会决议:将其列入矮行星.“水内行星”天

ihfasdahsdla

它的体积是地球的130多万倍,太阳系的中心天体。银河系的一颗普通恒星。与地球平均距离14960万千米,直径139万千米,从地球到太阳上去步行要走3500多年,就是坐飞机,也要坐20多年。平均密度1.409克/立方厘米,质量1.989×10^33克,表面温度5770℃,中心温度1500万℃。由里向外分别为太阳核反应区、太阳对流层、太阳大气层。其中心区不停地进行热核反应,所产生的能量以辐射方式向宇宙空间发射。其中二十二亿分之一的能量辐射到地球,成为地球上光和热的主要来源。恒星也有自己的生命史,它们从诞生、成长到衰老,最终走向死亡。它们大小不同,色彩各异,演化的历程也不尽相同。恒星与生命的联系不仅表现在它提供了光和热。实际上构成行星和生命物质的重原子就是在某些恒星生命结束时发生的爆发过程中创造出来的。 太阳(Sun)是一颗普通的恒星,目前在赫-罗图上度过了主序生涯的一半左右。它是一个质量为1989.1亿亿亿吨(约为地球质量的33万倍)、直径139.2万km(约为地球直径的109倍)的热气体(严格说是等离子体)球。其平均密度为水的1.4倍,但这一平均密度隐含着很宽的密度范围,从超高密的核心到稀薄的外层。 作为一颗恒星太阳,其总体外观性质是,视星等为-26.3,光度为383亿亿亿瓦,绝对视星等(Mv)为+4.83,绝对热星等(Mb)为4.8,他是一颗黄色G2型矮星,有效温度等于开氏5770℃。太阳与在轨道上绕它公转的地球的平均距离为149597870km(499.005光秒或1天文单位)。按质量计,它的物质构成是71%的氢、26%的氦和少量重元素。太阳圆面在天空的角直径为32角分,与从地球所见的月球的角直径很接近,是一个奇妙的巧合(太阳直径约为月球的400倍而离我们的距离恰是地月距离的400倍),使日食看起来特别壮观。由于太阳比其他恒星离我们近得多,其视星等达到-26.8,成为地球上看到最明亮的天体。太阳每25.4天自转一周(平均周期;赤道比高纬度自转得快),每2亿年绕银河系中心公转一周。太阳因自转而呈轻微扁平状,与完美球形相差0.001%,相当于赤道半径与极半径相差6km(地球这一差值为21km,月球为9km,木星9000km,土星5500km)。差异虽然很小,但测量这一扁平性却很重要,因为任何稍大一点的扁平程度(哪怕是0.005%)将改变太阳引力对水星轨道的影响,而使根据水星近日点进动对广义相对论所做的检验成为不可信。 半径: 696295 千米.质量: 1.989×10^30 千克温度: 5770℃(表面) 1560万℃ (核心)总辐射功率: 3.83×10^26 焦耳/秒平均密度: 1.409 克/立方厘米日地平均距离: 1亿5千万 千米年龄: 约50亿年 到达地球大气上界的太阳辐射能量称为天文太阳辐射量。在地球位于日地平均距离处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总能量,称为太阳常数。太阳常数的常用单位为瓦/米2。因观测方法和技术不同,得到的太阳常数值不同。世界气象组织 (WMO)1981年公布的太阳常数值是1368瓦/米2。地球大气上界的太阳辐射光谱的99%以上在波长 0.15~4.0微米之间。大约50%的太阳辐射能量在可见光谱区(波长0.4~0.76微米),7%在紫外光谱区(波长<0.4微米),43%在红外光谱区(波长>0.76微米),最大能量在波长 0.475微米处。由于太阳辐射波长较地面和大气辐射波长(约3~120微米)小得多,所以通常又称太阳辐射为短波辐射,称地面和大气辐射为长波辐射。太阳活动和日地距离的变化等会引起地球大气上界太阳辐射能量的变化。 对于人类来说,光辉的太阳无疑是宇宙中最重要的天体。万物生长靠太阳,没有太阳,地球上就不可能有姿态万千的生命现象,当然也不会孕育出作为智能生物的人类。太阳给人们以光明和温暖,它带来了日夜和季节的轮回,左右着地球冷暖的变化,为地球生命提供了各种形式的能源。 在人类历史上,太阳一直是许多人顶礼膜拜的对象。中华民族的先民把自己的祖先炎帝尊为太阳神。而在古希腊神话中,太阳神则是宙斯(万神之王)的儿子。 太阳,这个既令人生畏又受人崇敬的星球,它究竟由什么物质所组成,它的内部结构又是怎样的呢? 其实,太阳只是一颗非常普通的恒星,在广袤浩瀚的繁星世界里,太阳的亮度、大小和物质密度都处于中等水平。只是因为它离地球最近,所以看上去是天空中最大最亮的天体。其它恒星离我们都非常遥远,即使是最近的恒星,也比太阳远27万倍,看上去只是一个闪烁的光点。 组成太阳的物质大多是些普通的气体,其中氢约占71%, 氦约占27%, 其它元素占2%。太阳从中心向外可分为核反应区、辐射区和对流区、太阳大气。太阳的大气层,像地球的大气层一样,可按不同的高度和不同的性质分成各个圈层,即光球、色球和日冕三层。我们平常看到的太阳表面,是太阳大气的最底层,温度约是6000℃。它是不透明的,因此我们不能直接看见太阳内部的结构。但是,天文学家根据物理理论和对太阳表面各种现象的研究,建立了太阳内部结构和物理状态的模型。这一模型也已经被对于其他恒星的研究所证实,至少在大的方面,是可信的。 太阳的核心区域虽然很小,半径只是太阳半径的1/4,但却是太阳那巨大能量的真正源头。太阳核心的温度极高,达1500万℃,压力也极大,使得由氢聚变为氦的热核反应得以发生,从而释放出极大的能量。这些能量再通过辐射层和对流层中物质的传递,才得以传送到达太阳光球的底部,并通过光球向外辐射出去。 太阳光球就是我们平常所看到的太阳圆面,通常所说的太阳半径也是指光球的半径。光球的表面是气态的,其平均密度只有水的几亿分之一,但由于它的厚度达500千米,所以光球是不透明的。光球层的大气中存在着激烈的活动,用望远镜可以看到光球表面有许多密密麻麻的斑点状结构,很象一颗颗米粒,称之为米粒组织。它们极不稳定,一般持续时间仅为5~10分钟,其温度要比光球的平均温度高出300~400℃。目前认为这种米粒组织是光球下面气体的剧烈对流造成的现象。 光球表面另一种著名的活动现象便是太阳黑子。黑子是光球层上的巨大气流旋涡,大多呈现近椭圆形,在明亮的光球背景反衬下显得比较暗黑,但实际上它们的温度高达4000℃左右,倘若能把黑子单独取出,一个大黑子便可以发出相当于满月的光芒。日面上黑子出现的情况不断变化,这种变化反映了太阳辐射能量的变化。太阳黑子的变化存在复杂的周期现象,平均活动周期为11.2年。 紧贴光球以上的一层大气称为色球层,平时不易被观测到,过去这一区域只是在日全食时才能被看到。当月亮遮掩了光球明亮光辉的一瞬间,人们能发现日轮边缘上有一层玫瑰红的绚丽光彩,那就是色球。色球层厚约8000千米,它的化学组成与光球基本上相同,但色球层内的物质密度和压力要比光球低得多。日常生活中,离热源越远处温度越低,而太阳大气的情况却截然相反,光球顶部接近色球处的温度差不多是4300℃,到了色球顶部温度竟高达几万度,再往上,到了日冕区温度陡然升至上百万度。人们对这种反常增温现象感到疑惑不解,至今也没有找到确切的原因。 在色球上人们还能够看到许多腾起的火焰,这就是天文上所谓的“日珥”。日珥是迅速变化着的活动现象,一次完整的日珥过程一般为几十分钟。同时,日珥的形状也可说是千姿百态,有的如浮云烟雾,有的似飞瀑喷泉,有的好似一弯拱桥,也有的酷似团团草丛,真是不胜枚举。天文学家根据形态变化规模的大小和变化速度的快慢将日珥分成宁静日珥、活动日珥和爆发日珥三大类。最为壮观的要属爆发日珥,本来宁静或活动的日珥,有时会突然"怒火冲天",把气体物质拼命往上抛射,然后回转着返回太阳表面,形成一个环状,所以又称环状日珥。 在日全食时的短暂瞬间,常常可以看到太阳周围除了绚丽的色球外,还有一大片白里透蓝,柔和美丽的晕光,这就是太阳大气的最外层—— 日冕。日冕的范围在色球之上,一直延伸到好几个太阳半径的地方。日冕里的物质更加稀薄,它还会有向外膨胀运动,并使得热电离气体粒子连续地从太阳向外流出而形成太阳风。 太阳看起来很平静,实际上无时无刻不在发生剧烈的活动。太阳表面和大气层中的活动现象,诸如太阳黑子、耀斑和日冕物质喷发等,会使太阳风大大增强,造成许多地球物理现象——例如极光增多、大气电离层和地磁的变化。太阳活动和太阳风的增强还会严重干扰地球上无线电通讯及航天设备的正常工作,使卫星上的精密电子仪器遭受损害,地面电力控制网络发生混乱,甚至可能对航天飞机和空间站中宇航员的生命构成威胁。因此,监测太阳活动和太阳风的强度,适时作出"空间气象"预报,越来越显得重要。 在银河系内一千多亿颗恒星中,太阳只是普通的一员,它位于银河系的对称平面附近,距离银河系中心约26000光年,在银道面以北约26光年, 它一方面绕着银心以每秒250公里的速度旋转,另一方面又相对于周围恒星以每秒19.7公里的速度朝着织女星附近方向运动。 太阳的年龄约为46亿年,它还可以继续燃烧约50亿年。在其存在的最后阶段,太阳中的氦将转变成重元素,太阳的体积也将开始不断膨胀,直至将地球吞没。在经过一亿年的红巨星阶段后,太阳将突然坍缩成一颗白矮星--所有恒星存在的最后阶段。再经历几万亿年,它将最终完全冷却,然后慢慢地消失在黑暗里。 清晨,当太阳从漫天红霞中喷薄而出,把万丈金光洒向大地,一种蓬勃向上的激情,就会油然而生。看到这个充满生机的世界,人们不能不热爱和赞美赐予我们生命和力量的万物主宰——太阳。 中华民族的先民把自己的祖先炎帝尊为太阳神。而在绚丽多彩的希腊神话中,太阳神被称为“阿波罗”。他右手握着七弦琴,左手托着象征太阳的金球,让光明普照大地,把温暖送到人间,是万民景仰的神灵。在天文学中,太阳的符号“⊙”和我们的象形字“日”十分相似,它象征着宇宙之卵。 太阳的质量相当于地球质量的33万多倍,体积大约是地球的130万倍,半径约为70万公里,是地球半径的109倍多。虽然如此,她在宇宙中也只是一个普通的恒星。 太阳的内部,从里向外,由核反应区、辐射区、对流区三个层次组成。 太阳核心释放的能量向外扩散,使得太阳表面温度大约达到6000℃,就像一个高温气体组成的海洋。大部分太阳能以热和光的形式向四周辐射开去。太阳这个巨大的"核能火炉"已经稳定地"燃烧"了50亿年.目前.它正处于壮年,要再过50亿年它才会燃尽自己的核燃料.那时,它可能膨胀成一个巨大的红色星体... 通过一般光学望远镜观测太阳,观测到的是光球层(太阳大气层的最里层)的活动。在光球上经常可以看到许多黑色斑点,叫太阳黑子。太阳黑子在日面上的大小、多少、位置和形态等,每日都不一样。太阳黑子是光球层物质剧烈运动形成的局部强磁场区域,是光球层活动的重要标志。长期观测太阳黑子就会发现,有的年份黑子多,有的年份黑子少,有时甚至几天,几十天日面上都没有黑子。天文学家们早已注意到,太阳黑子从最多(或最少)的年份到下一次最多(或最少)的年份,大约相隔11年。也就是说,太阳黑子有平均11的活动周期,这也是整个太阳的活动周期。天文学家把太阳黑了最多的年份称为“太阳活动峰年”,把太阳黑子最少的年份称为“太阳活动宁静年”。 太阳的内部主要可以分为三层,核心区,辐射区和对流区. 太阳的能量来源于其核心部分。太阳的核心温度高达1500万摄氏度,压力相当于2500亿个大气压。核心区的气体被极度压缩至水密度的150倍。在这里发生着核聚变,每秒钟有七亿吨的氢被转化成氦。在这过程中,约有五百万吨的净能量被释放(大概相当于38600亿亿兆焦耳,3.86后面26个0)。聚变产生的能量通过对流和辐射过程向外传送。核心产生的能量需要通过几百万年才能到达表面。 辐射区包在核心区外面这一层的气体也处在高温高压状态下(但低于核心区),粒子间的频繁碰撞,使得在核心区产生的能量经过很久(几百万年)才能穿过这一层到达对流区。辐射区的外面是对流区 能量在对流区的传递要比辐射区快的多.这一层中的大量气体以对流的方式向外输送能量.(有点像烧开水,被加热的部分向上升,冷却了的部分向下降.)对流产生的气泡一样的结构就是我们在太阳大气的光球层中看到的"米粒组织"。 太阳是自己发光发热的炽热的气体星球。它表面的温度约6000℃,中心温度高达1500万℃。太阳的半径约为696000公里,约是地球半径的109倍。它的质量为1.989×10^27吨,约是地球的332000倍。太阳的平均密度为1.4克每立方厘米,约为地球密度的1/4。太阳与我们地球的平均距离约1.5亿公里。 太阳是银河系中的一颗普通恒星,位于银道面之北的猎户座旋臂上,距银心约2.3光年,它以每秒250公里的速度绕银心转动,公转一周约需2.5亿年。太阳也在自转,其周期在日面赤道带约25天;两极区约为35天。 通过对太阳光谱的分析,得知太阳的化学成分与地球几乎相同,只是比例有所差异。太阳上最丰富的元素是氢,其次是氦,还有碳、氮、氧和各种金属。 太阳的结构从里向外主要分为:中心为热核反应区,核心之外是辐射层,辐射层外为对流层,对流层之外是太阳大气层。 从核物理学理论推知,太阳中心是热核反应区。太阳中心区占整个太阳半径的1/4,约为整个太阳质量的一半以上。这表明太阳中心区的物质密度非常高。每立方厘米可达160克。太阳在自身强大重力吸引下,太阳中心区处于高密度、高温和高压状态。是太阳巨大能量的发祥地。 太阳中心区产生的能量的传递主要靠辐射形式。太阳中心区之外就是辐射层,辐射层的范围是从热核中心区顶部的0.25个太阳半径向外到0.86个太阳半径,这里的温度、密度和压力都是从内向外递减。从体积来说,辐射层占整个太阳体积的绝大部分。 太阳内部能量向外传播除辐射,还有对流过程。即从太阳0.86个太阳半径向外到达太阳大气层的底部,这一区间叫对流层。这一层气体性质变化很大,很不稳定,形成明显的上下对流运动。这是太阳内部结构的最外层。太阳对流层外是太阳大气层。太阳大气层从里向外又可分光球、色球和日冕。我们看到耀眼的太阳,就是太阳大气层中光球发出的强烈的可见光。光球层位于对流层之外,属太阳大气层中的最低层或最里层,光球层的厚度约500公里,与约70万公里的太阳半径相比,好似人的皮肤和肌肉之比。我们说太阳表现的平均温度约6000摄氏度,指的就是这一层。光球之外便是色球。平时由于地球大气把强烈的光球可见散射开,色球便被淹没在蓝天之中。只有在日全食的时候才有机会直接饱览色球红艳的姿容。太阳色球是充满磁场的等离子体层,厚约2500公里。其温度从里向外增加,与光球顶衔接的部分约4500摄氏度,到外层达几万摄氏度。密度则随高度增加而减低。整个色球层的结构不均匀,由于磁场的不稳定性,太阳高层大气经常产生爆发活动,产生耀斑现象。 日冕是太阳大气的最外层。日冕中的物质也是等离子体,它的密度比色球层更低,而它的温度反比色球层高,可达上百万摄氏度。日全食时在日面周围看到放射状的非常明亮的银白色光芒即是日冕。

太阳系(solar system)是由太阳、8颗行星、100余颗卫星以及许多矮行星和无数的小行星,彗星和流星体组成的。

行星由里往外的顺序是:水星(Mercury)、金星(Venus)、地球(Earth)、火星(Mars)、木星(Jupiter)、土星(Saturn)、天王星(Uranus)、海王星(Neptune)。离太阳近的水星、金星、地球和火星称为类地行星(terrestrial planets)。

它们的共同特征是密度大(>3.0g/cm3),体积小,自转慢,卫星少,内部成分主要为硅酸盐(silicate),具有固体外壳。离太阳远的木星、土星、天王星和海王星称为类木行星(jovian planets)。

它们的共同特点是密度小(<2.0g/cm3),体积大,自转快,卫星较多。根据宇宙飞船探测资料,它们都有很厚的大气,具有与类地行星相似的固体内核。

扩展资料

在火星和木星之间有一个小行星带,其中包含数十万颗小行星(asteroid)(即由岩石组成的不规则的小星体)。推测它们是介于火星与木星之间尚未能聚积成为行星的石质碎块。

流星体存在于行星之间,成分是石质或者铁质。在地震及地球内部构造一章中所介绍的陨石就是坠落在地球上的陨星碎片。

在海王星轨道至离太阳40~50天文单位的一个环带内,有一个彗星的“仓库”,估计包含1亿~1万亿颗彗星,称为柯伊伯(Kuiber)带。彗星主要由水、二氧化碳、一氧化碳、氨气和甲烷等的冰,混合着尘埃颗粒构成,通常大小从几百米至几十米。

在柯伊伯带内环绕太阳运行的彗星,有时受到其他天体的引力影响改変轨道,会沿着一个扁长的椭圆形轨道飞向太阳系内部。当它们接近太阳时,受到阳光加热,气体和尘埃从彗星体内挥发出来,在太阳风和太阳光的作用下形成彗尾。

参考资料来源:百度百科-太阳系

关于人造太阳论文范文资料

这个可以释放核能,而且还不会对环境造成影响和破坏。

中国人造太阳正式诞生,这个“太阳”有什么用?专家一句道出真相,我国的“人造太阳”其实是用来实现可控核聚变的托卡马克装置,由于现实中的太阳也是以核聚变为能量来源的,因此我国的可控核聚变装置也被称为“人造太阳”,其最终目的就是让我们得以利用可控核聚变的巨大能量从而彻底解决能源危机。在很长一段时间内科学家都不知道太阳的能源究竟来自何方,直到上个世纪初随着物理学的进步人们才意识到太阳发光发热的能量来源就是内部的核聚变反应。巨量的氢元素在太阳核心的超高温和超高压环境中不断发生着核聚变反应,而地球仅仅接收了太阳能量的极小一部分就得以演化出万千生灵。

2030年的一天,我漫步在公路旁。只见,公路两旁载满了挺拔的大树,公路上行驶的汽车都是用混合燃料发动的,不像以前那种汽油型的汽车开起来既要燃油,又污染空气。工厂和居民的用电也是用风能、太阳能、开发垃圾回收来发电。全都是一个崭新的能源利用法展现在我们的眼前。“能源”一个醒目的词语,“跳动”在我们的眼帘。你会想到什么呢?你可能会说“能源”这个词说熟悉,我不知道怎么说好。说不熟悉吧,我们生活中处处都有能源。那就让我们来聊一聊能源这个话题吧! 地球是在一次宇宙爆炸中炸出来的,它一炸出来就内涵丰富的能源。化工燃料、太阳能、核能、水能、石油、生物燃料等等……说了这么多,还忘记告诉你们到底什么是能源呢?能源就是能产生能量的物质。能源种类有很多:有一次能源、有二次能源、有可再生能源、还有非再生能源。一次能源是直接来自自然界未经加工转换的能源,此类能源有:化石燃料、太阳能、核能、生物燃料、水能等等……二次能源是由一次能源直接或间接转化而来的能源,此类能源有:电能、煤气、汽油、沼气、氢能等等……可再生能源是不随其本身的转化或被人类利用而减少的能源,此类能源有:太阳能、风能、地热能等等……非再生能源是随其本身的转化或被人类利用减少的能源,此类能源有:化石燃料、核燃料等等……打个比方吧,我们以前生活常见的传统能源它们有:原煤、天然气、汽油、煤油、热力、电力、石油气、柴油等等……还有许许多多的工程都用到了能源比如:三峡大坝和葛洲坝用水能、火箭发射升空用氢燃料、秦山核电站用原子能发电。大量的能源使用使我们成为了“石油”能源的“俘虏”,而我们现在在节约能源的基础上,开发了新的能源。摆脱了石油能源的依赖性,首先一利用风能和太阳能发电取消电网送电。再利用混合燃料发动汽车、利用氢能源的开发、利用生物来直接将太阳转化为氢、利用海浪发电、开发垃圾燃气来开发能源市场,使我们能更有效的开创能源的利用和起到环保的作用有利于生态环境。 听了我对这能源新旧对比的介绍,你是不是对能源更加了解,更加有兴趣去开发呢?那让我们更多的有志之士来合理地去开发能源,使我们子孙后代受益无穷。 不容忽视! 虽然自然界里水会循环,但是,人类的用水量远高于可以让人类运用的水,节约用水就成了我们每个人都应该做的事情。 我觉得,已用过的水和已经遭受污染的水都可以再次利用。例如,洗菜、洗衣服的水可以冲马桶,受过污染的水可以在一切能够利用的情况多多利用,这样不仅减少了水费,更做到了节约用水的目的。而城市污水应多多回用于公用设施和住宅冲洗厕所、浇灌绿地、景观用水, 浇洒道路等, 这样做,污水的循环作用就提高了不少! 你知道吗?地球上有70.9%都是水,可这些水中有97.47%是咸水,咸水大部分是海洋水,不能饮用,因为1KG海洋水中就有39G个盐类物质;而这些水中的2.53%是淡水,而淡水大多是冰川水和深层地下水,这两种水占淡水的99%,可供我们人类使用的水仅占淡水的0.3%,我们的水资源十分少。我国是个缺水的国家,因此,我们更要节约用水,保护水资源。 水资源的利用在生活中是无所不在的,工厂排放出的污水再经过净化后同样可以循环使用,但是,也是要付出代价的,例如净化的成本,而这些又需要消耗资源。 雨水是我们每个人都见过的吧。当然,你有没有想到利用雨水就很难说了。科学家们都认为,雨水其实是一种难得的财富,它也是水资源,而且相当宝贵,但是,从全国范围看,我国的雨水收集与利用率还很低,我们应该用科学发展的思维看待雨水,用科学手段对待雨水,让雨水留下来,被我们科学地、循环地加以利用后,再科学地送它或入地或入河湖而去。这样何尝不是一种充分利用水资源的方法呢? 其实,水的宝贵大多数人都知道,却也选择遗忘。多少人不知道该如何节约用水?多少人浪费水资源?恐怕多得很吧。这就跟宣传有关了,我想,电视方面应该多多播放关于资源利用的问题,政府的宣传也是相当重要的,而新时代的祖国花朵们,更应该在从小就养成节约用水的好习惯,要知道,我们人类,离不开水,整个地球,离不开水! 况且节水有很多好处,不仅有利于缓解水资源的供需矛盾,减轻城市发展对环境的压力,还有利于延续供水和污水处理设施的建设投资,降低供水和污水处理设施的运行成本。从战略角度来看,节水绝对百益而一害! 节约用水靠得不是一个人的努力,是千千万万的人的努力,但不管用什么办法,我们都应该立即行动起来,把理念化为行动,要知道,水在日渐地减少,节水行动刻不容缓!

提供几篇范文供你参考,希望对你有所启示:2030年的一天,我漫步在公路旁。只见,公路两旁载满了挺拔的大树,公路上行驶的汽车都是用混合燃料发动的,不像以前那种汽油型的汽车开起来既要燃油,又污染空气。工厂和居民的用电也是用风能、太阳能、开发垃圾回收来发电。全都是一个崭新的能源利用法展现在我们的眼前。“能源”一个醒目的词语,“跳动”在我们的眼帘。你会想到什么呢?你可能会说“能源”这个词说熟悉,我不知道怎么说好。说不熟悉吧,我们生活中处处都有能源。那就让我们来聊一聊能源这个话题吧! 地球是在一次宇宙爆炸中炸出来的,它一炸出来就内涵丰富的能源。化工燃料、太阳能、核能、水能、石油、生物燃料等等……说了这么多,还忘记告诉你们到底什么是能源呢?能源就是能产生能量的物质。能源种类有很多:有一次能源、有二次能源、有可再生能源、还有非再生能源。一次能源是直接来自自然界未经加工转换的能源,此类能源有:化石燃料、太阳能、核能、生物燃料、水能等等……二次能源是由一次能源直接或间接转化而来的能源,此类能源有:电能、煤气、汽油、沼气、氢能等等……可再生能源是不随其本身的转化或被人类利用而减少的能源,此类能源有:太阳能、风能、地热能等等……非再生能源是随其本身的转化或被人类利用减少的能源,此类能源有:化石燃料、核燃料等等……打个比方吧,我们以前生活常见的传统能源它们有:原煤、天然气、汽油、煤油、热力、电力、石油气、柴油等等……还有许许多多的工程都用到了能源比如:三峡大坝和葛洲坝用水能、火箭发射升空用氢燃料、秦山核电站用原子能发电。大量的能源使用使我们成为了“石油”能源的“俘虏”,而我们现在在节约能源的基础上,开发了新的能源。摆脱了石油能源的依赖性,首先一利用风能和太阳能发电取消电网送电。再利用混合燃料发动汽车、利用氢能源的开发、利用生物来直接将太阳转化为氢、利用海浪发电、开发垃圾燃气来开发能源市场,使我们能更有效的开创能源的利用和起到环保的作用有利于生态环境。 听了我对这能源新旧对比的介绍,你是不是对能源更加了解,更加有兴趣去开发呢?那让我们更多的有志之士来合理地去开发能源,使我们子孙后代受益无穷。 不容忽视! 虽然自然界里水会循环,但是,人类的用水量远高于可以让人类运用的水,节约用水就成了我们每个人都应该做的事情。 我觉得,已用过的水和已经遭受污染的水都可以再次利用。例如,洗菜、洗衣服的水可以冲马桶,受过污染的水可以在一切能够利用的情况多多利用,这样不仅减少了水费,更做到了节约用水的目的。而城市污水应多多回用于公用设施和住宅冲洗厕所、浇灌绿地、景观用水, 浇洒道路等, 这样做,污水的循环作用就提高了不少! 你知道吗?地球上有70.9%都是水,可这些水中有97.47%是咸水,咸水大部分是海洋水,不能饮用,因为1KG海洋水中就有39G个盐类物质;而这些水中的2.53%是淡水,而淡水大多是冰川水和深层地下水,这两种水占淡水的99%,可供我们人类使用的水仅占淡水的0.3%,我们的水资源十分少。我国是个缺水的国家,因此,我们更要节约用水,保护水资源。 水资源的利用在生活中是无所不在的,工厂排放出的污水再经过净化后同样可以循环使用,但是,也是要付出代价的,例如净化的成本,而这些又需要消耗资源。 雨水是我们每个人都见过的吧。当然,你有没有想到利用雨水就很难说了。科学家们都认为,雨水其实是一种难得的财富,它也是水资源,而且相当宝贵,但是,从全国范围看,我国的雨水收集与利用率还很低,我们应该用科学发展的思维看待雨水,用科学手段对待雨水,让雨水留下来,被我们科学地、循环地加以利用后,再科学地送它或入地或入河湖而去。这样何尝不是一种充分利用水资源的方法呢? 其实,水的宝贵大多数人都知道,却也选择遗忘。多少人不知道该如何节约用水?多少人浪费水资源?恐怕多得很吧。这就跟宣传有关了,我想,电视方面应该多多播放关于资源利用的问题,政府的宣传也是相当重要的,而新时代的祖国花朵们,更应该在从小就养成节约用水的好习惯,要知道,我们人类,离不开水,整个地球,离不开水! 况且节水有很多好处,不仅有利于缓解水资源的供需矛盾,减轻城市发展对环境的压力,还有利于延续供水和污水处理设施的建设投资,降低供水和污水处理设施的运行成本。从战略角度来看,节水绝对百益而一害! 节约用水靠得不是一个人的努力,是千千万万的人的努力,但不管用什么办法,我们都应该立即行动起来,把理念化为行动,要知道,水在日渐地减少,节水行动刻不容缓!老师布置了一篇《未来的能源》习作,要求展开丰富联想。可是,写什么好呢?我沉思起来,不知不觉地闭上眼睛…… 当我睁开眼睛时,已经来到一个陌生的世界。这里一座座立交桥犹如一道道彩虹似得挂在天空中;道路两旁绿树成荫,鲜花盛开。更不可思议的是样式古怪的车,它们排出来的竟然是水蒸气! 正当我一筹莫展时,出现了一个方头方脑的机器人:“我叫小灵通,听说你有一篇《未来的能源》作文不会写,我就让你来参观未来世界,并做你的导游。” “你怎么知道我要写作文?”我惊奇地问道。 “要么怎么叫小灵通嘛!”它说。 “这里是公元2048年。由于石油于5年前耗尽,现在公路上跑的都是电动汽车和氢气动力汽车。”小灵通讲解到。 “氢气动力汽车?”我不解地问。 “对,氢是既高效又环保的新型清洁能源。它大量存在于水分子中.人们可以通过电解将其分离出来,供人们大量使用。人类已经开发出了使用氢气做燃料的发动机,氢燃烧后有还原成水蒸气不会污染环境.所以人们不再使用不环保的石油燃料了。”小灵通说。 “那还有加油站吗?”我忍不住又问。 “现在也没有加油站了,取而代之的是‘加电加气’站。”小灵通说. “未来有的主要能源电与氢气,那上那去发那么多电呀?”我问小灵通。 “你猜猜看!”“用太阳能!”我自信地说。“可该怎么使用它呢?具我所知,它们可不太好用呀?”我不解地问。 “也对也不对。应该是‘人造太阳’!” “什么? ‘人造太阳’?没看见天上有这么个宝贝呀?” 没等它说完我大惑不解地四处张望. “看把你急的.这是一种能模拟太阳发出巨大能量的新型核电站,不是挂在天上的。”小灵通提醒我. “那你快给讲讲嘛!”我有些迫不及待了。 “那要从你们那时候的托卡马克装置说起。太阳能产生巨大的能源是因为它压力大,温度高,能让几个氢原子核聚合成一个氦原子核,然后放出超大能量,人类把这叫做核聚变。这对太阳来说是小菜一碟。可人类怎么去掌握这么超高温超呢?” “氢弹爆炸不就是核聚变吗?我们人类不早就掌握这种本领了吗?”没等它说完我急忙插上话题。 小灵通不屑地回答:如果人类真想把核聚变当成新能源的话,比如建个核聚变发电站什么的,能象扔颗氢弹那么容易吗? 氢弹爆炸的核聚变,你控制的了吗?控制不了,又怎么能利用呢?” 我终于明白了,我们人类需要的,是能够控制的核聚变反应堆,不是一个挂在天上的太阳。 “对,当参加核聚变的燃料被加热到几亿度的高温时,原子里的原子核和电子就分了家,成了带电粒子。而‘托卡马克’装置就是可以将高温高压的带电粒子托举在真空中的磁容器。有了它再高的温度和压力也不怕。”小灵通像在给我补课。 “那燃料够用吗?还是用氢吗?”我又忍不住问。 “用氘(与dao刀字同音).海水里有打量的氢原子的同位素—氘。它是进行核聚变的巨大燃料来源。一升海水可以提取30毫克氘。这些氘在核聚变反应中释放的能量相当于燃烧300升汽油。全球海洋中约含有40万亿吨氘,够人类使用上百亿年。来自大海的核聚变能源是清洁、安全、取之不尽的理想能源。像这种‘人造太阳’我国已有几十个了,它们为我们国家发电做出了很大贡献,是能源的主力军。” …… “咚!”支撑我的书倒了,我从梦中醒来,发现本子依然空着,但灵感如潮水一般涌来.我把梦中的经过全记录了下来。 如果未来的能源真的是像想象的那样就好了, 那样既高效又环保,比石油强多了。50年后的能源是什么样的呢?我们国家自己的人造太阳会成功吗?我赶紧查阅相关科技资料。原来我国的托卡马克装置已经有了很大进展,他们用了8年时间,已经造出了一个巨大的容器,可以把稳定的反应时间提高到1000秒,温度达到1亿摄氏度呢.我一定要好好学习,将来当个科学家,专攻‘人造太阳’。也许50年后,当我再遇见小灵通时,我将会自豪地告述它,我国的‘人造太阳’也有我的一份功劳呢。让我们憧憬着那一天早日到来吧!

太阳能学报书评与太阳能学报

太阳能学报期刊级别为核心期刊,出刊周期为月刊,期刊创办于1980年。太阳能学报是中国科学技术协会主管、中国可再生能源学会主办的学术性期刊。《太阳能学报》主要设有学术论文、研究报告、实验仪器、实验技术、技术札记、简报、综述性论文等栏目。

《太阳能学报》属于EI,90%以上被EI收录就属于EI,你的这篇文章虽然在太阳能学报收录,但是不代表一定被EI收录,是否会被EI收录要等过段时间之后收录通知,也是可以查到的

太阳能电池材料论文题目

水热法生长二氧化钛纳晶及在染料敏化太阳能电池板的应用1 引言1991 年瑞士学者Gratzel 等在Nature 上发表文章,提出了一种新型的以染料敏化二氧化钛纳晶薄膜为光阳极的太阳能电池,其具有制作简单、成本低廉、效率高和寿命长等优点,光电转换效率目前可以达到11%以上,因此成为新一代太阳能电池的主要研究发展方向[1-4]。染料敏化太阳能电池的光电转换效率的提高要归功于其独特的纳晶多孔薄膜电极,其可以使电子在薄膜中有较快的传输速度,且具有足够大的比表面积,能够吸附大量的染料,并且与染料的能级相匹配。所以因对染料敏化太阳能电池的复杂的作用,许多科学工作者致力于制备功能和性能良好的TiO2 纳晶多孔薄膜电极[5, 6]。在纳晶TiO2 的三种晶型中,锐钛矿相的光电活性最好,最实用于染料敏化太阳能电池中,所以在制备纳晶TiO2 时,金红石相和板钛矿相纳晶应该尽量避免。对TiO2 纳晶的生长,许多研究者开始在水热法中采用有机碱做胶溶剂来制备TiO2 纳晶[7-9]。Yang 用三种有机碱做胶溶剂制备了粒经和形貌不相同的TiO2 纳晶,其结果证明了有机碱的加入对纳晶粒子大小、形貌及表面积等有一定影响[10]。但是,如何制备晶型和形貌都能满足于染料敏化太阳能电池的要求却很少讨论。在本章中,采用水热法基础上,分别使用三种有机碱四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(TEAOH)、四丁基氢氧化铵(TBAOH)做胶溶剂来制TiO2 备纳晶并应用于染料敏化太阳能电池中并研究了制备条件的不同对纳晶形貌、粒径大小及电池光电性能的影响。2 实验主要药品和仪器钛酸四正丁酯、异丙醇、聚乙二醇20,000、碘、碘化锂、4-叔丁基吡啶(TBP)、OP乳化剂(Triton X-100)(AR,均购于中国医药集团上海化学试剂公司);敏化染料(cis-[(dcbH2)2Ru(SCN)2],SOLARONIX SA.);四甲基氢氧化铵(TMAOH)(25 %)、四乙基氢氧化铵(TEAOH)(20 %)、四丁基氢氧化铵(TBAOH)(10 %) (均购于中国医药集团上海化学试剂公司);可控温磁力搅拌器(C-MAG HS4,德国IKA);马弗炉(上海实验电炉厂);100 W 氙灯(XQ-100 W,上海电光器件有限公司);导电玻璃基片(FTO,15 Ω/cm2,北京建筑材料研究院);X 射线粉末衍射仪(XRD) D8-advance(Bruker 公司);扫描电子显微镜(SEM)S-3500N(日本日立公司);透射电镜(TEM)JEM-2010(日本);红外光谱分析仪Nicolet Impact 410 spectrometer;紫外–可见分光光度计UV-Vis 3100 (Shimadzu corporation, Japan)。3 实验部分3.1 纳晶TiO2 的制备根据文献的制备方法[6-11],把钛酸四正丁酯与等体积的异丙醇混合均匀并逐滴加入到蒸馏水中并不断的搅拌30分钟([H2O]/[Ti(OBu)4] = 150),过滤并用水和乙醇溶液洗剂2-3次。在强烈搅拌下,把所得到的沉淀加入到pH=13.6的含有有机碱的溶液中,在100 °C搅拌24小时,得到半透明的胶体。将得到胶体装入高压釜(填充度小于80%)。在200 oC水热处理12小时。水热处理后,得乳白色混合物并伴有鱼腥味,这表明有机碱分解为了胺类化合物。将高压釜处理后的TiO2胶体连同沉淀一起倒入烧杯,经50 oC浓缩至原来的1/5,加入相当于TiO2量20%-30%的聚乙二醇20,000及几滴Triton X-100,搅拌至均匀,得稳定的TiO2纳晶浆体。3.2 纳晶薄膜电极的制备将洗净的导电玻璃四边用透明胶带覆盖,通过控制胶带的厚度和胶体的浓度来控制膜的厚度[12],中间留出约1×1 cm2空隙,将在酸性条件下制备的小粒径的纳晶TiO2胶体用玻片均匀的平铺在空隙中。空气中自然晾干后,在马弗炉中升温至450 ?C热处理30分钟,使TiO2固化并烧去聚乙二醇等有机物,冷却至80 ?C,经过仪器测量,薄膜的平均厚度在6微米左右。将获得的纳晶多孔薄膜浸泡于N3染料溶液中24小时,使染料充分地吸附在TiO2上,取出后用乙醇浸泡3-5分钟,洗去吸附在表面的染料,在暗处自然晾干,即得到染料敏化的纳晶多孔TiO2薄膜电极。首先按上文所述制备纳晶多孔薄膜,制备的薄膜平均厚度在4.5微米左右,将其重新用透明胶带覆盖,把用TMAOH做胶溶剂的条件下制备的大粒径的纳晶TiO2浆体用玻片均匀的平铺在空隙中。空气中自然晾干后,重新在马弗炉中升温至450 ?C热处理30分钟,反射层的纳晶薄膜的平均厚度控制在1.5微米左右,热处理后即得双层纳晶薄膜。浸泡染料后即得双层纳晶薄膜电极。3.3 DSSC 的组装以染料敏化纳晶多孔TiO2薄膜电极为工作电极,以镀铂电极为对阴极[13],将染料敏化电极与对阴极用夹子固定,在其间隙中滴入以乙腈为溶剂、以0.5 mol/L LiI+0.05 mol/L I2+0.2mol/L TBP为溶质的液态电解质,封装后即得到染料敏化太阳能电池。3.4 光电性能测量采用100 W氙灯作为太阳光模拟器,其入射光强Pin为100 mW/cm2。在室温下进行测量,记录其短路电流ISC和开路电压VOC,并应用公式计算其填充因子ff和光电转换效率η。3.5 表征与分析采用 D8-advance 型X 射线粉末衍射仪测定TiO2 的晶体结构,测试条件为:Cu Kα(λ=1.5405 ?),电压:40 KV,电流:40 mA。扫描速度:6?/min,扫描范围:10?-80?。采用KBr 压片法测量样品的红外光谱,测试条件:400-4000 cm-1,软件:OMNIC 6.0,扫描次数30 次。采用JEM-2010(日本)型透射电子显微镜(TEM)观察TiO2 纳晶的表面形貌及粒径大小。用紫外-可见分光光度计(UV-3100)测试不同粒径TiO2 纳晶多孔薄膜电极吸附染料的吸光度。TG 的升温速度:10 ℃/min,范围:室温至1000 ℃,测试仪器:SDT 2960 同步DSC-TGA 装置 (USA TA 设备)。4 结果与讨论4.1 有机碱对TiO2 纳晶的形貌和粒径的影响Sugimoto 和他的合作者们研究了影响TiO2 纳晶生长的一些因素,其中pH 的值、有机碱的烷基链的长短、水热的温度以及水热的时间等因素都对TiO2 纳晶颗粒的大小和形貌有很大的影响[14-17]。通过研究发现,四烷基有机碱作为模板来控制TiO2 纳晶的形貌和大小。所以可以使用不同的有机碱来制备适合于染料敏化太阳能电池光电传输的晶型完整并具有较大的比表面积的TiO2 纳晶。是在不同的有机碱做胶溶剂时制备的TiO2 纳晶的TEM 图,a 图是采用TMAOH 做胶溶剂,b 图是采用TEAOH 做胶溶剂,c 图是采用TBAOH 做胶溶剂。从图中可以看出,在相同pH 值下,不同的有机碱做胶溶剂时,制备的纳晶明显不同,这说明胶溶剂对TiO2纳晶的粒径大小和形貌有很大的影响,而且随着有机碱胶溶剂烷基链的加长,TiO2 纳晶的粒径减小,并且粒子为多面体。当用TMAOH 做胶溶剂时,制备的TiO2 纳晶的粒子多为四方体,颗粒宽12-20 nm,粒子长20-40 nm,如图1a 所示。当用TEAOH 做胶溶剂时制备的TiO2 纳晶的粒子颗粒不均匀,而且形貌也不规则有多面体形的也有四面体形的,粒子宽度8-10 nm,长度10-25 nm,如图1b 所示。而当有机碱的烷基链长从两个碳原子增加到四个碳原子时,即用TBAOH 用作胶溶剂时制备的纳晶颗粒粒子大小较均匀而且形貌也较规则,多为正方体,粒子大小一般在5nm 左右,如图1c 所示。在TiO2 纳晶的水热生长过程中,有机碱首先是吸附在TiO2 的晶核上,而烷基链的长短不同吸附的能力不同,吸附能力越大则就会阻碍纳晶的生长。研究发现[6],烷基链越长则有机碱吸附在晶核上的吸附力越大,则会阻碍晶体的生长,所以随着有机碱烷基链的长度的增加,纳晶颗粒在不断的减小;并且研究发现,胶溶剂的浓度不能太大,太大时制备的TiO2 纳晶就会出现严重的团聚现象[10]。4.2 有机碱对TiO2 纳晶晶型的影响是用三种有机碱做胶溶剂时制备的TiO2 纳晶的XRD 图,a 是制备的TiO2 纳晶经过自然风干后的XRD,b 是制备的三种TiO2 纳晶经过50 °C 热处理30 分钟中后的XRD 图。从图2a 中可以看出,2θ = 25.3°是TiO2 纳晶锐钛矿的特征峰,但是还有一些其它的杂峰,这些杂峰证明是有机胺类化合物的峰。当把制备的纳晶经过450 °C 热处理30 分钟中后,a 图中的杂峰就消失,TiO2 在2q =25.3°,37.55°,47.85°,53.75°,55.05°和62.35°的衍射峰的d 值均与标准PDF 卡片锐钛矿型TiO2 衍射峰相符,说明所制备的TiO2 的晶型为锐钛矿,没有金红石相和板钛矿相出现,制备的为纯的锐钛矿相TiO2 纳晶。在传统水热方法中,采用硝酸做胶溶剂,制备的纳晶TiO2 中,含有少量的金红石相和板钛矿相,而这两种的光电性能较差,影响染料敏化太阳能电池的光电转换效率。而用有机碱做胶溶剂制备的TiO2 纳晶可满足染料敏化太阳能电池中对锐钛矿相的要求。随着有机碱烷基链的增加,样品的特征衍射峰宽逐渐变大,并且衍射峰值逐渐减小,这表明制备纳晶颗粒不断减小,这与TEM 的结果一致。4.3 TiO2 纳晶的热稳定性分析是用三种有机碱制备的TiO2 纳晶的红外光谱图,(a) 是制备的纳晶粉末在80 °C 烘干24 小时,(b)是制备的纳晶粉末在450 °C 热处理1 小时,光谱范围是400-4000 cm-1。从红外光谱图可知,三种纳晶红外图谱相近。图3(a)中出现了有机化合物的一些键如C-H, N-H,和O-H 等键,但随着在450 °C 热处理1 小时后,这些化合键就消失了,而TiO2 薄膜的红外谱图中主要有Ti-O-Ti 键伸缩振动峰在500cm-1 附近,没有出现宽的吸收带,如图3(b)所示,这一结果与文献中的结果相一致[7]。这说明在有机碱条件下制备的TiO2 纳晶在经过450 °C后为稳定的锐钛矿相,吸附在其表面的有机物分解完全。从XRD 的结果也可以得出(图 3b),所有有机化合物在经过450 °C 热处理后都消失完全了,这说明二氧化钛化合物在高于450 °C热处理后,可以晶化为稳定的锐钛矿相TiO2 纳晶。是用有机碱做胶溶剂时制备的TiO2 纳晶粉末热稳定性的TG 分析。这些纳晶粉末是在105 °C 下烘干24 小时,而没有进行任何热处理的。从图中可以看出,有两个失重过程。第一个过程是100~250 °C 之间的明显失重,可以认为是失去了吸附在纳晶粉末表面的水分子和一些醇。第二个过程是250~400 °C 之间的失重,是因为粉体中吸附的有机物成份的失去。有机物与制备的氧化物之间有很强的键和作用,这些有机物包裹着氧化物,当温度达到400 °C 时,这些键和作用才会消失,有机物完全分解,这说明有机物与纳晶颗粒之间的力结合不是太大不影响纳晶的晶化。另外发现,在不同有机碱胶溶剂下制备的纳晶粉末的失重情况明显不同,在采用TBAOH 做胶溶剂时的失重明显要高于使用TMAOH 做胶溶剂时的,这说明前者表面吸附了更多的有机物。吸附有机物的量不同,表明制备的纳晶粉末的形貌和粒径大小也明显不同[14],这与TEM 的结果一致,在采用TBAOH 做胶溶剂时制备的TiO2纳晶颗粒较小表面积较大,这就使吸附在纳晶表面的有机物就增多,所以在进行热分解时失重较多;而采用TMAOH 做胶溶剂时制备的TiO2 纳晶颗粒明显大许多,表面积又小所以吸附的有机物就会减小,所以在热分解时失重较少。从失重量的多少也可以简单分析出制备的纳晶颗粒和形貌的异同。用有机碱做胶溶剂来制备TiO2 纳晶,会对其晶型及其晶型的稳定性有一定的影响。图5 为有机碱TEAOH 做胶溶剂的条件下制备的TiO2 纳晶及其分别在300 °C,500 °C,700 °C,800 °C,900 °C 烧结1 小时样品的XRD 谱图。在TiO2 纳晶的晶型中,峰位于2θ=25.3°是锐钛矿相的特征衍射峰,峰位于2θ=27.4°是金红石相的特征衍射峰。从图中可知,TiO2 纳晶在800 °C 烧结前,晶型没有发生变化。在800 °C 烧结之后,才出现了金红石相晶型,这一结果与Young 等人的研究结果一致[18]。据报道在酸性条件下制备的TiO2 纳晶,在烧结温度达600 °C 时,锐钛矿晶型就开始向金红石晶型转变[19]。而用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶从锐钛矿相向金红石相转变的温度有所提高,这说明用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶热稳定性提高了,这一稳定性说明,可以对锐钛矿型TiO2 纳晶在较高的温度下进行烧结,而不改变其晶型,即没有金红石型纳晶出现。4.4 BET 和吸附染料能力的研究用不同的有机碱做胶溶剂所制备的TiO2 纳晶粉的表面积进行分析,实验得出,在使用有机碱TMAOH 做胶溶剂时制备的TiO2 纳晶粉的比表面积为66 m2·g-1,但是当使用TEAOH和TBAOH 做胶溶剂时,制备的TiO2 纳晶粉的比表面积为78 m2·g-1 和82 m2·g-1。这一结果与粒径越大比表面积越小相一致,颗粒大小如图1 所示,这说明颗粒越小比表面积越大。研究发现,吸附的染料(RuL2(SCN)2)的多少并不一定随着比表面积的增大而增大。为了研究用于染料敏化太阳能电池测试的TiO2 纳晶多孔薄膜吸附染料的多少,把敏化的电极在5 mL 0.05 mol/L NaOH 溶液中让染料进行脱附,之后对染料的碱性溶液进行吸光度的分析,UV-vis 吸收光谱的结果如图5 所示。图中a、b 和c 三条曲线分别是采用TMAOH、TEAOH和TBAOH 做胶溶剂时制备的TiO2 纳晶。根据朗伯-比尔定律可知吸光度随浓度增加而增大,结果显示,采用TMAOH 做胶溶剂时制备的TiO2 纳晶吸收的染料最少,这与比表面积越小吸附的染料越少相吻合,但比其它两种纳晶的吸附量要少很多。虽然采用TBAOH 做胶溶剂时制备的TiO2 纳晶的比表面积比用TEAOH 做胶溶剂所制备的TiO2 纳晶的比表面积大,但是后者却比前者所吸附的染料多,这里可能的解释就是因其用TBAOH 做胶溶剂时制备的TiO2 纳晶的颗粒太小还不足10nm,所以用其制备的纳晶多孔薄膜太致密而使得吸附的染料减小。4.5 染料敏化太阳能电池光电性能研究采用有机碱制备的三种不同形貌和粒径大小的TiO2 纳晶,并用其制备了敏化电极应用于染料敏化太阳能电池光电性能的研究,如图6 所示。表1 给出了三种不同电极的所组装的电池的短路电流、开路电压、填充因子和光电转换效率的值。在100 mW/cm2 光照条件下,三种电池的短路电流分别为10.7、13.1、10.4 mA/cm2,开路电压分别为0.779、0.700、0.698V,填充因子分别为0.52?0.62?0.60,光电转换效率分别达到了4.4%?5.67%?4.4%。从实验结果可知,采用有机碱TEAOH 制备的TiO2 纳晶所组装的电池的光电转换效率比其它两种电池的光电转换效率要高。可知,采用有机碱TEAOH 所制备的TiO2 所制备的电池的开路电压要比采用有机碱TMAOH 所制备的TiO2 所制备的电池的要低,但是其电池的短路电流和填充因子都要比其它两种有机碱所制备TiO2 所组装的电池要高。这可能是因为(1)用有机碱TEAOH 所制备的TiO2 纳晶粒经比较适中,制备的多孔薄膜粒子与粒子之间结合比较紧密,这样就提高了电子在薄膜中的传播速度;(2)较其它两种多孔薄膜吸附的染料要多,研究表明吸附的染料的量与所产生的光电流成正比,吸附的染料越多,则产生的光电流越大,用有机碱TEAOH 做胶溶剂所制备的TiO2 多孔薄膜所吸附的染料最多,所以用其所组装的染料敏化太阳能电池的短路电流最高,电池的光电转换效率也达到最好。5 结论本章采用了钛酸四正丁酯为原料,以三种有机碱做胶溶剂来制备TiO2 纳晶,以三种制备的敏化的纳晶多孔薄膜为电极组装了染料敏化太阳能电池,并对其进行了电池光电性能的测试。研究了这三种有机胶溶剂对TiO2 纳晶晶体生长的影响,采用三种不同烷基链的有机碱做胶溶剂制备的纳晶形貌和大小有很大的不同,研究发现,随着烷基链的加长,纳晶的形貌开始变得规整,粒径也减小,但是有机碱的浓度不能太大,浓度过高时,会使制备的纳晶出现团聚,所以在使用有机碱做胶溶剂时,采用的是在pH=13.6 的条件下制备的。通过热稳定性分析发现,吸附在TiO2 纳晶表面的有机碱在450 °C 热处理后,有机物分解完全,这说明在制备纳晶多孔薄膜时,有机物分解完全,多孔薄膜中为纯的TiO2 纳晶。因为三种TiO2纳晶形貌和大小不同所以制备的多孔薄膜吸附染料的量也不相同。实验发现采用有机碱TEAOH 做胶溶剂时制备的TiO2 的敏化电极吸附的染料最多,电池光电性能测试也显示用此TiO2 纳晶制备的电池开路电流达到13.1 mA cm-2,光电转换效率达到5.67%,比其它两种电池的光电转换效率要高,这说明用有机碱TEAOH 做胶溶剂所制备的TiO2 纳晶的形貌和大小比其它两种有机碱胶溶剂制备的TiO2 更适合应用于染料敏化太阳能电池。更多毕业论文请到

太阳电池又称光伏电池,是一种能有效地吸收太阳辐射能,并使之转变成电能的半导体器件。它可单独地作为光探测元件,例如在照像机中使用,主要是经过串联和并联,以获得所需的电压及电流来作为供电电源使用。太阳电池的外观就如一张薄的卡片或一片薄的玻璃片一样,与普通电池外观不同,它自身也不能储存电能,即没以有光时就不发电,如果晚上要用它,就要与蓄电池配合使用。 太阳电池的面积每100㎝2在强阳光下约产生1瓦的电,我们常说的1度电是1千瓦小时,也就是1千瓦这样的电池工作1小时才能产生1度电。 太阳电池发展概况 太阳能光伏发电,可视为迄今为止最美妙、最长寿和最可靠的发电技术。与太阳能发电相比,它另涉及半导体器件,既无运动部件,又无流动工质,因此,避免了机械维修和工质腐蚀的问题,是可再生能源和可持续发展的可靠能源。 硅太阳电池的发展,始于1954年在,美国贝尔研究所试制成功,次年便被用做电信装置的电源,1958年又被美国首次应用和于“先锋1号”人造卫星。宇宙开发极大地促进了太阳电池的开发。与此同时,地面用太阳电池的研究也在不断开展,特别是1973年的能源危机,又大大加速了地面太阳电池的发展。许多国家为开发、利用太阳能电池,为阳光发电的研究投入了相当数量的资金。迄今为止翱翔于太空的成千个飞行器中,大多数都配备了太阳能电池系统。第一颗人造卫星上天,是光伏技术开发利用的起点,经过近五十年的发展,它已形成一门新的光伏科学与光伏工程。无论是在宇宙飞行中的应用,还是作为地面发电系统的应用,从开发速度、技术成熟性和应用领域来看,光伏技术都是新能源中的佼佼者。 太阳电池作为有潜力的可再生能源,在地面上逐渐得到推广。太阳电池的成本及售价也在逐年下降,多年来太阳电池的产量一直以10-25%的增长率在增加。1990年世界太阳能电池组件的产量70MW(兆瓦),我国为1.2MW,主要是用在太阳光照好的边远地区。到2001年全世界太阳电池的产量达到350MW,我国太阳能电池的实际产量已达到4.5MW,累计安装量已超过20MW。我国是个发展中国家,地域辽阔,有许多边远省份和经济欠发达地区。据统计目前我国尚有700万户(2800万人口),还没有用上电,60%的有电县严重缺电。这些地区在短期内不可能靠常规电力解决用电问题,光伏发电则是解决分散农、牧民用电的理想途径,市场潜力非常巨大。 光伏发电具有许多优点:如:安全可靠、无噪声、无污染、能量随处可得,不受地域限制,无须消耗燃料,无机械转动部件,故障率低,维护简便,可以无人值守,建站周期短,规模大小随意,无须架输电线路,可以方便地与建筑物相结合等,这些优点都是其它发电方式所不及的。 目前国际上大量使用的电池为单晶硅太阳电池、多晶硅太阳电池和非晶硅太阳电池三种,这三种电池约各占1/3的市场,我国目前有7个太阳电池生产线,主要是生产单晶硅及非晶硅太阳电池,多晶硅太阳电池也有少量生产。我国生产单晶硅太阳电池的效率在12-13%,多晶硅太阳电池在10%,非晶硅太阳电池在5-6%。晶体硅太阳电池在研究上是朝着高效率化、薄片化、大面积化的方向发展。1995年我国晶体硅太阳电池组件的参考价格为45元/瓦,非晶硅太阳电池组件为25元/瓦,仍为常规能源的几倍,但在无电地区及拉线不方便的地方,已产生了良好的经济效益。

  • 索引序列
  • 太阳系行星论文学术资料
  • 关于太阳系历程论文范文资料
  • 关于人造太阳论文范文资料
  • 太阳能学报书评与太阳能学报
  • 太阳能电池材料论文题目
  • 返回顶部