首页 > 学术发表知识库 > 数学小论文五年级下册300字

数学小论文五年级下册300字

发布时间:

数学小论文五年级下册300字

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。

今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。

我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。

1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”

通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。

12345678912345678900

七年级下册数学小论文300字

生活中的数学 生活中数学无处不在,学习数学就是为了能在实际生活中得以应用。它是学习、生活必不可少的基本工具。去商场买衣物时商场的促销、打折;建造大楼所需的水泥数量;物体的长、宽 、高。类似这样的问题数不胜数,这些事例毋庸置疑的证明数学和实际生活的关系。 在生活中就有这样的问题。如去商场买衣物时,甲商场促销满20元打9折、满40元或高于40元低于80元打8.5折、满80元打8折,80元以上打7折。乙商场全场打8.5折。问哪家商场比较便宜?这就不只一个答案。当要花40元以下时乙商场比较便宜;40元时甲、乙一样便宜;80元或80元以上甲商场比较便宜。这就是生活中的数学。 除了去商场买衣物中包含了数学连普遍使用的交通工具也运用到了数学。如生活中的圆可谓是最常见的图形,生活中的人们几乎无处不在应用圆。上学时,公路上一辆辆汽车奔驰而过平稳而快速。汽车为什么可以运行得luc快速,而又不会使坐在车里的人感到颠簸呢?就是因为汽车的轮子是圆的。球体与地面的摩擦力最小,速度慢下来的时间最长,且速度并不容易改变。所以人们才把圆形和球体称之为最美观的平面图形和最美观的立体图形。 体系的严谨性,广泛的应用性也是数学的显著特征。线之长短,宇宙之大,分子之微,温度之变,光照之速,无处不用数学。在生物学方面也要用到数学,心脏跳动、血液循环、脉搏等周期性的运动都可以用方程组表示出来。连过去很少使用数学的语言学、历史学等等,也与数学结合形成了内容丰富数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。我们要尽力做到善于发现问题和提出问题,善于反思与反求!

看看下面的。初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。 想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了! 想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法! 想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。 我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘! 匿名 回答采纳率:21.2% 2009-01-31 16:06 检举

有一天,我跟妈妈去逛商场.妈妈进了超市买东西,让我站在付钱的地方等她.我没什么事,就看着营业员阿姨收钱.看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的.”我定下心,仔细地想了起来.

过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢”我说:“光用1元要组成大一点的数就不方便了呀.这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!

快要过年了,妈妈准备买一盒巧克力送给亲戚。我们来到了超市。可是,巧克力品种多价格又多,包装也十分精美,真是让人眼花缭乱。最后,我们决定在费列罗中挑一盒。有一盒巧克力是16颗装44.8元的,另外一盒巧克力是3颗装8.6元的,还有一盒巧克力是24颗装70元的。

妈妈问我:“ 买哪种更合算呢?”我想到了两种方法。

方法一:算出每颗多少元。44.8÷16=2.8(元) 8.6÷3≈2.86(元) 70÷24≈3(元)2.8元<2.86元<3元

16颗装比较合算。方法二:算出1元可以买多少颗。16÷44.8≈0.36颗) 3÷8.6≈0.35(颗) 24÷70≈0.34(颗) 0.36颗>0.35颗>0.34颗 还是16颗装合算。

“妈妈,16颗装的最合算,我们把这一盒待会家吧!”“好,琪琪我们以后要省钱哦!”

于是,妈妈买了16颗装的巧克力,比3颗装每颗便宜了0.06元,比24颗装每颗便宜了0.2元,真合算,省钱实惠又好吃,下一次,买东西,我还要替妈妈省钱。

今天,妈妈在做家务而我在做家庭作业。

我发现有一道数学题不会做,于是,我就空在那儿。哈,试卷做完了,我便开始慢慢思考这道题。题目是:“一间教室长8米,宽6米,用边长是4平方分米的正方形地砖铺地,需要这样的地砖多少块?”我想了一会儿,便明白了,在卷子上刷刷地写了几笔,可妈妈摇了摇头,缓慢地说:“不对,再想。”我绞尽脑汁,还是想不出来,于是便说:“妈妈,你就饶了我吧!”妈妈便开始认真地教我:“你说1米与1平方米能互相比较吗?”“不能啊!”我说。“这和题目有什么关系呢?”“那你除出来的就不对了,你看,你没有求出这块地砖的面积呀!不是吗?”我点点头,仿佛是明白了。于是,我又刷刷地在试卷上写着。

原来做数学题目不是光看数字的,它跟我们写作文是一样的,先要审题,再核题,把整个题目彻底搞清楚了,才能下笔去做题,这就是我在做数学题中的一点小发现!

今天,我在一本书中看到一个数学小问题:“小明一共有10个气球,如果一分钟放一个气球,他放10个气球一共用了几分钟?”我故意考考妹妹,刚上四年级的妹妹不假思索地说:“这个简单,10分钟呗。”我大笑一声,喊到:“错!” “嗯?为什么呢?”我耐心地解释着:“答案是9分钟,因为先放第一个气球,一分钟后,放第二个气球,一直放到第9个气球,所以,第九分钟后放第10个气球。”妹妹听了恍然大悟,说到:“原来如此,我上当了!”

细心地妈妈在一旁听到了我们这番有趣的对话,笑着说:“其实,生活中还有好多像这样的问题,比如爬楼梯、排队、坐座位……,我来考你一个吧!妹妹从一楼到二楼用了9秒钟,那么她从1楼走到15楼要多少秒呢?”我拿出笔和约,认真地做了起来:妹妹从一楼到二楼用了9秒,妹妹走到十五楼,也就是走了十四层,14*9=126秒。

我把答案告诉了妈妈,她笑着说:“不错,思路很清晰,很会思考!”

是啊,生活中处处有数字,只要我们有一双善于观察的眼睛和一个善于思索的头脑,那么,许多问题就能迎刃而解。

数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.

五年级数学下册小论文600字

五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

1、生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域。 2、生活中的数学 千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜。走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,3.6斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤10.5元,单价是:10.5÷1=10.5元,而一斤半十五块五,也就是1.5斤15.5元,它的单价是:15.5÷1.5,我没细算,想想可能应该比10.5多,但是却犯了个致命的错误。算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是10.5÷1=10.5,而别人那儿是15.5÷1.5,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,15.5÷1.5=10.333……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”

数学小论文1500字五年级下册

大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

五年级数学小论文范文如下:

伟大的数学王国由0—9、点、线、面组成。你可别小瞧这些成员,他们让我们的生活奇妙无比,丰富多彩。例如这不起眼的点,它使我们的生活更美,更快捷。这个功劳非黄金分割点莫属了。

把—条线段分成两部分,其中一段与该线段的比等于另一条线段与第一条线段的比,比值近似0.618,这就是黄金分割点。

从古希腊以来,一直有人认为把黄金分割点应用于造型艺术,可以使作品给人以最美的感觉。因此,黄金分割点在生活中的应用十分广泛。

一、画图的应用。

1、画长方形是我们小学生最平常的事,也是最熟悉不过的。你们可知道在无条件的情况下怎么把长方形画的更美,给人一种更舒适的感觉?那就是长方形的宽与长的比值接近0.618,这样画出的图形更美。

2、学过绘图的人可能知道如果给你一张纸,把这张纸画满,不一定会好看,但要是就画一点,留许多空白也不会太好看。但有一些画就让人感觉很美、很清爽。那是因为它应用了黄金分割点,才让人感到赏心悦目。

二、人体的应用。

1、在人体的结构上,黄金分割的应用更为广泛,举个最为熟悉的例子。人们常称的帅哥、美女,就是他们的脸宽与脸长的比、腿长与身长的比值都约是0.618,这样的身材堪称最美。

2、人的肚脐是人体的黄金分割点、膝盖是人腿的黄金分割点。

三、建筑物的应用。

古今中外,许多建造师都偏爱0.618,他们的杰作另世人仰慕。如:古埃及的金字塔,巴黎的圣母院,还有法国的埃菲尔铁塔等等。

四、生活上的应用。

1、大家平时可能注意到电工在检查一根不导电的电线时,他总是选择这根电线的黄金分割点来检查,因为这样可以最快速的找到损坏处。

2、我们家里大多数门窗的宽和长的比也是0.618,还有箱子、书本等都应用了黄金分割点,让这些物品看上去更舒心。

大千世界,美轮美奂,到处都蕴藏着黄金分割点。让我们一起努力吧,用知识和智慧创造出更多的美!

数学简介:

数学[英语:mathematics,源自古希腊语μθημα(máthēma);经常被缩写为math或maths],是研究数量、结构、变化、空间以及信息等概念的一门学科。 数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。 在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。

你不拿货卖是ヾ(❀╹◡╹)ノ~ヾ(●´∇`●)ノ哇~哦利润空间锁困了就进入太用力酷我极速蜗牛太庸俗哦空

五年级数学小论文【一】

我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。

我列几题来看:第一题,8684=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,89=72,末尾46=24,89的结果是积的百位和千位,46的结果是积的十位和个位。这题的积是7224。第二题,3452,属于第三种,可以将它乘法变加法,三步完成,第一步,24=8,个位相乘,积的末尾为8。第二步用45+32=26,交叉相乘加起来,写6进2。第三步,十位相乘35=15,15加进的2,等于17,这题的积是1768。第三题,6848,属于第二种,十位数相加等于10,个位数字相同。用64=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,88=64,十位和个位是6和4,这题的积是3264。

当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。

五年级数学小论文【二】

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?

我思索了一会儿,不慌不忙地说:可以这样算:

51=5305=150(小时)200小时150小时

还可以这样算:

51=52005=40(小时)30小时40小时

由这几步可得出结论,节能灯泡省钱。

妈妈又问我:很好。再想想看,还有没有别的办法来算?

我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:

5/200100=0.025100=2.5

1/301000.033100=3.3

3.32.5

或者这样算:

200/5100=40100=4000

30/1100=30100=3000

40003000

因此,也是节能灯泡便宜。。

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:生活处处有数学这个道理。

五年级数学小论文【三】

生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。

我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。

我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。

同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

数学小论文五年级300字

数学小论文 今天我看到了一题数学奥数题,问题是这样的:四位数“3AA1”是9的倍数,那么A是多少?我想破了买袋也想不出来。 这时妈妈过来了,她看了看我的问题,思考了一下告诉我说:“3AA1是9的倍数,那么3+A+A+1也一定是9的倍数,你再好好想想吧。” 听了妈妈的话我马上就反应过来了,既然是9的倍数,可能是1倍也可能是2倍,我就从1倍开始用实验法来试,很快结果就出来了,A是7。 奥数真的很神奇,能够很好地提高我们用数学语言和模型解决实际问题的能力,就像我从这一题奥数题里懂得了一种解决问题的新思路,看到数学的实际作用,感受到数学的魅力。 在强调素质教育的今天,奥林匹克数学的这一教育有着更为重要的现实意义。

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

五年级数学小论文【一】

我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。

我列几题来看:第一题,8684=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,89=72,末尾46=24,89的结果是积的百位和千位,46的结果是积的十位和个位。这题的积是7224。第二题,3452,属于第三种,可以将它乘法变加法,三步完成,第一步,24=8,个位相乘,积的末尾为8。第二步用45+32=26,交叉相乘加起来,写6进2。第三步,十位相乘35=15,15加进的2,等于17,这题的积是1768。第三题,6848,属于第二种,十位数相加等于10,个位数字相同。用64=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,88=64,十位和个位是6和4,这题的积是3264。

当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。

五年级数学小论文【二】

今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。

妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?

我思索了一会儿,不慌不忙地说:可以这样算:

51=5305=150(小时)200小时150小时

还可以这样算:

51=52005=40(小时)30小时40小时

由这几步可得出结论,节能灯泡省钱。

妈妈又问我:很好。再想想看,还有没有别的办法来算?

我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:

5/200100=0.025100=2.5

1/301000.033100=3.3

3.32.5

或者这样算:

200/5100=40100=4000

30/1100=30100=3000

40003000

因此,也是节能灯泡便宜。。

我和妈妈买了比较划算的节能灯泡回去了。

经过这件事,我明白了:生活处处有数学这个道理。

五年级数学小论文【三】

生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。

我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。

我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。

同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

巧用平均数,同学们我们日常生活中都做过简单有趣的数学问题吧,今天我和大家来分享一题罢问题有¥6超重,鹅卵石他们的重量是8.5千克6千克4千克4千克3千克2千克要求他们分别放在三个背包里,最要求,最终的一个背包尽可能近一点,请写出最终的背包的石头是多少千克,请同学们动手开始吧,接下来我来解答8.5+ 6:00 +6+4+4+3+2 ( ÷3等于9.17千克,这时三个背包的平均数,所以最终的肯定要超过9.17千克,如果¥1中联部,不是整数体育课块平均数为整数,所以最小最重的背包重量只能是9.5 千克10千克在这六个重量中,正好有6+46+4单8.5千克与其余的¥5中做的另一块都不可能得到9.5千克的重量最重的背包的证明,不可能是9.5千克,那么悲观中就可能最小就是10千克,六个重量重正好有个是6+4等于10或4+4+4+2等于10 24+4+2等于10也就是说,可以取到10千克,剩下的石头中4+3+2等于9000客衣个背包中8.5千克,所以这样这道题的正确答案是10千克,同学们你们明白了吗了吗?

  • 索引序列
  • 数学小论文五年级下册300字
  • 七年级下册数学小论文300字
  • 五年级数学下册小论文600字
  • 数学小论文1500字五年级下册
  • 数学小论文五年级300字
  • 返回顶部