深度嵌入聚类算法研究 基于机器视觉的行人重识别算法的分析与实现 基于动力学模型的属性网络重叠社团发现 基于Spring-Boot框架的一体化运维监控应用的研究与实现 Android系统中基于手写密码与笔迹信息的综合认证技术研究 公交线路准点预测方法研究 基于深度学习的医学图像分割算法研究 基于CNN的高速公路流量预测 服务器安全防护与管理综合平台实现 JavaScript全栈视频播放系统设计与实现快速行人检测算法的研发 基于数据挖掘的药物分子筛选方法研究 基于消息队列的自定义审批流程管理系统设计与实现 基于CRF的初等数学命名实体识别 基于多尺度 CNN的图片语义分割研究 基于图像分割技术的连通区域提取算法的研究 基于背景因素推理的目标关系识别算法研究与实现 基于智能移动设备的非接触式人机交互系统设计与实现 分布式数据库物理查询计划调度优化算法研究 基于遮挡的人脸特征提取算法研究与实现 表情识别应用系统的设计与实现 基于CloudSim的云计算与大数据系统的可靠性仿真研究 多源数据库数据采集系统设计与实现 基于Android和WiFi的无线自组织网络P2P通信系统设计与实现 矩阵分解中的流形结构学习研究 基于无监督的OSN恶意账号检测 深度学习在基于视频的人体动作识别上的应用 用户评分的隐式成分信息的研究 线性规划求解算法的实现与应用 基于freeRTOS的嵌入式操作系统分析与实验设计 基于深度强化学习的信息检索的研究与实现 CPM语言编译链接系统的实现 基于SSD的Pascal Voc数据集目标检测设计与实现 复杂网络关键节点识别算法比较研究 基于对抗网络和知识表示的可视问答 基于FPGA实现存储器及虚拟存储器管理 匿名可信身份共享区块链的设计与实现 基于图像的场景分类算法的设计与实现 恶意APK静态检测技术研究与实现 车辆再识别技术研究
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: TN957.52 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
2.1基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
2.2 边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
2.3基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
2.4结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
2.4.1基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
2.4.2基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
2.4.3基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
2.4.4基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
2.5图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
通过遥感变化信息检测方法对两时相遥感影像进行处理分析后,得到 “变化信息”影像,同时为了便于后续震害信息的识别,需要把这些变化信息从复杂的环境背景中提取出来,得到一个仅包含变化信息的二值影像,这里就需要用到图像分割 ( ImageSegmentation ) 技术。图 像 分 割 包括 手 动分 割 和 自动分割两种,手动分割是指操作者利用相关的经验进行小图斑的合并、提取和取舍,但是对于大区域遥感影像来说,手工操作工作量大、效率低、速度慢、周期长、容易漏掉小图斑,并且分割图斑的边界容易受到操作者的主观控制,对精度的影响也较大,所以本研究中的图像分割一般指的是自动分割。
退化废弃地遥感信息提取研究
从 20 世纪 70 年代起,图像分割方法一直受到各国学者的关注,至今已经提出了很多种分割方法,FuK. S. ( 1981) 将分割方法分成阈值分割、边缘分割和区域分割,实际上区域分割包含了阈值分割。蔡殉、朱波 ( 2002) 则将图像分割方法分成更多的类别,包括阈值分割、彩色分割、基于模糊集法、深度分割、像素分割、区域增长法,其中彩色分割、深度分割和像素分割都属于阈值分割。
由于现今遥感变化信息检测还处于像元级别 ( 钟家强,2005) ,通过不同检测方法,对灰度、彩色影像进行处理变换,使得变化信息的灰度 ( 像素值) 和色彩信息得到加强,通常表现出灰白色 ( 图 4 - 8、图 4 - 9) 和亮绿色 ( 图 4 - 11) ,与周围地物的色标不协调,可以通过确定相关的变化阈值把变化区域分割出来。但是由于变化信息受到太阳辐射、大气干扰、传感器参数、空间分辨率、光谱分辨率以及季节差异等因素影响,变化图斑的灰度有时在一定的范围内波动,增加了变化信息精确分割的难度,这使得变化阈值的确定显得尤为重要。
( 一) 变化影像特征分析
通过多时相遥感变化信息检测方法得到的灰度或彩色影像通常具有以下特征: ① 影像中光谱特征复杂,包含的地物类型众多,但是变化信息和背景环境的光谱性质不一致。② 灰度影像的变换信息图斑一般分布在灰度轴的两端 ( 就是较亮的区域) ,不过有时也可能位于暗端,极少数情况下也可能位于两者之间,这要根据具体的遥感数据和采用何种检测方法来定; 彩色影像变化信息图斑一般为亮绿色,是否能够和周围地物类型明显区分要根据实际情况而定。③ 变化信息图斑内部的灰度值比较均匀,但是会在一定范围内波动,所以图像分割时很容易丢失细小的图斑。④ 变化信息图斑之间灰度特征比较相似 ( 一致) ,但是纹理特征的差别通常较明显,因为变化信息的图斑可能属于不同的地物类型,所以通常不能用纹理信息来分割变化信息图斑。⑤ 由于非人为控制的因素,影像中不可避免地存在一些噪声信息,这些噪声信息一般表现在与变化信息图斑接近的小图斑( 图 4 - 9 表现得特别明显) ,所以分割的时候要区分哪些是变化信息图斑,哪些是噪声图斑。⑥ 对于不同的环境和区域,变化信息图斑是服从随机分布的,有的地方稀疏,有的地方密集。
( 二) 单阈值区域分割法
单阈值区域分割是一种简单有效的图像分割方法,其用一个阈值将变化图像的灰度级分为两个部分: 变化与未变化。其最大特点是计算简单,在重视运算效率的应用场合 ( 例如用于硬件实现) 得到了广泛应用 ( 冯德俊,2004) 。一般是利用图像的灰度直方图来确定分割阈值。在计算分割阈值时,常在去除噪声的基础上将灰度直方图包络成一条曲线,如果图像上有多个特征区域,其直方图就会出现多个峰值,每个峰值对应一个特征区域,而谷底值点就为分割阈值,用以划分不同的特征区域。
复杂图像的目标和背景的灰度值时常有部分交错,为了在分割时使这种错误分割的概率最小,需要寻找出最优的分割阈值,所以单阈值区域分割法也叫最优阈值法,意指能够使分割误差最小。图像的灰度直方图可以看成是像元灰度值的概率分布密度函数,假设一幅图像仅含有目标和背景两个主要的灰度值区域,那么其直方图就表示对应目标和背景两个单峰值的概率分布密度函数之和,如果已知密度函数的形式,就可以计算出使误差最小的最优阈值。其计算原理如下:
假设一幅含有高斯噪声的图像,其背景和目标的直方图(概率密度函数)分别为pb(z)和po(z),那么整个图像的混合概率密度p(z)为(章毓晋,2001):
退化废弃地遥感信息提取研究
式中:σb和σo分别为背景和目标均值的均方差;μb和μo分别为背景和目标的平均灰度值;pb和po分别为背景和目标区域灰度的先验概率,二者之和为1。如果μb<μo,需要确定阈值T,将小于阈值的分割作为背景,大于阈值的分割作为目标,假设将目标像元错误地划分为背景以及把背景错误地划分为目标的概率分别为Eb(T)和Eo(T),则总的误差为两者之和E(T)。为了使该误差最小,将总误差对T求导数,并令导数为零,得到
退化废弃地遥感信息提取研究
将该式代入式(4-3),可得二项式
退化废弃地遥感信息提取研究
求解该二项式得到最优阈值
退化废弃地遥感信息提取研究
最优阈值T的选取原理如图4-12所示,其原理可以概括为:将经过平滑去噪后的直方图看成一条曲线h(x),最优阈值T必须满足以下两个条件:
退化废弃地遥感信息提取研究
图4-12 最优阈值选取原理
设原始图像 f( x,y) 的灰度值范围为 G =[0,L -1],用最优单阈值法把图像分成两类,最优分割阈值为 T ( 0 < T < L -1) ,分割后生成的二值影像为 g( x,y) :
退化废弃地遥感信息提取研究
本研究在 ERDAS 软件下利用空间建模语言 ( SML) 实现了单阈值 ( 最优阈值) 法,分别分析了图 4 -8、图 4 -9 和图 4 -11 变化影像的直方图分布情况 ( 图 4 -13) ,并进行了最优阈值区域分割,把得到的三幅二值变化信息影像取合集,即把三幅影像相加,保留所有大于 1 的像素点,最后得到变化区域二值影像,如图 4 -14 所示。
图 4 -13 三幅变化影像的直方图曲线
图 4 -14 单阈值法提取的变化信息二值影像( 白色区域为发生变化的区域)
图 4 -15 双阈值模糊识别法计算流程
(三)双阈值模糊识别分割法
由于单阈值区域分割法只有一个全局阈值参与影像分割,然而影像受到大气、噪声、光照以及背景灰度变化的共同影响,导致了变化信息的灰度值总是在一定范围内波动,常常出现变化信息和噪声以及其他地物类别交错的现象。在这种情况下,单阈值区域分割难以满足精度的要求,如何区分出其中的变化信息?本研究提出了双阈值模糊识别分割法,其流程如图4-15所示。
利用变化图像的灰度直方图计算得到两个阈值T1和T2,并且T1<T2,然后利用双阈值法对变化图像进行分割(DaneKottkeetal.,1989、1998),将图像f(x,y)分割为三个类别:背景、不确定类、变化信息:
退化废弃地遥感信息提取研究
对其中不确定的像元保留其灰度值不变,利用模糊识别算子构建目标函数,分别计算出该像元属于两种不同类别(背景和变化信息)的模糊隶属度,通过比较两种隶属度的大小判断其归属(把它归类到隶属度大的那一类当中),划分到背景与变化信息当中,直到完成所有不确定像元的划分,即完成了整个分割过程。
1.双阈值T1和T2的计算
核心阈值T1的计算按照公式4-5的单阈值(最优阈值法)区域分割法得到。核心阈值T2则是利用灰度直方图中大于T1阈值的像元灰度求平均值得到。
设影像的灰度值在0到255之间(8维图像),利用离散积分的原理来计算灰度的均值。如果利用单阈值法计算出来的最优阈值为T1,那么核心阈值T2的计算公式如下:
退化废弃地遥感信息提取研究
式中:ni表示变化图像中灰度为i的像元出现的个数。
2.模糊识别算法
模糊识别算法的基本思想如下(李希灿等,2003、2008):
首先将样本集规格化,就是把样本集的特征值规格化到0到1之间,设样本特征值y规格化为x,样本集n个样本划分为C个类别,则模糊识别矩阵为
退化废弃地遥感信息提取研究
式中:Uhj为样本j归属于第h类的相对隶属度,h=1,2,…,C,且应当满足以下条件:
退化废弃地遥感信息提取研究
设C个类别的特征值为标准指数或模糊聚类中心指标,则C个类别的中心指标向量为:
退化废弃地遥感信息提取研究
式中:Sh为第h类的中心指标,0≤Sh≤1且h=1,2,…,c,为了求解最优模糊识别矩阵U和模糊最优中心指标S,建立目标函数(李希灿,1998):
退化废弃地遥感信息提取研究
式4-14的意义是:样本集对于全体类别的加权广义海明距离平方和为最小。显然,在不分类别(h=1,Uhj=1)的情况下,该公式变为通常的最小二乘最优准则。在式4-14的目标函数下,计算出最优模糊划分的隶属度和中心指标向量:
退化废弃地遥感信息提取研究
式中:u*hj为样本j隶属于h类的隶属度。
3.分割归类
通过构造的目标函数(隶属度函数),分别计算出每个像素点属于“目标”(变化信息)和“背景”(非变化信息)的隶属度,并把它分入到隶属度大的那一类当中,从而完成图像分割的过程。
图4-16 双阈值模糊识别分割法二值影像
(白色区域为变化信息)
通过在ERDAS下利用空间建模语言(SML)实现该分割算法,分别将图4-8、图4-9和图4-11变化图像作为输入对象,进行双阈值模糊识别分割,得到的二值变化图像取合集最终结果如图4-16所示。从图4-16中可以看出,双阈值模糊识别分割法能够在一定程度上消除单阈值区域分割法中混杂在变化信息中的离散噪声和个别地物类型,使变化信息更加准确、集中,从而提高了分割的精度。实践证明,双阈值模糊识别分割法有着坚实的理论基础,并且在实际变化信息的分割中能够取得很好的效果,是一种可行、可靠的图像分割自动算法。
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: TN957.52 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
2.1基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
2.2 边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
2.3基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
2.4结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
2.4.1基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
2.4.2基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
2.4.3基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
2.4.4基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
2.5图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
这是何凯明在博士期间发表的一篇经典的图像去雾算法的文章。这篇文章中他通过观察提出了一种暗通道算法(Dark Channel Prior),简单来说就在一张正常图像中,除了天空区域,在图像的每个小块(patch)中一定有一些像素点至少有一个通道的值是非常小的,基于这个先验条件,何凯明团队使用了一种简单有效的办法来进行图像去雾。 下面的公式为经典的去雾模型,其中 指获取得到的图片亮度, 是去雾后恢复的图像, 指透射率, 是指大气的光成分(即雾成分)。这个公式还是很容易直观的理解,因为透射率可以在一定程度上代表损失率。 为大气散射系数, 为景深。由于在统计意义上,一个patch中总有几个像素的至少一个通道是很暗的,此时的 趋近于0,于是在一个patch中有如下公式成立: 这样我们就可以算出t的近似值了。同时,当patch为天空时,大气光 和真实图像光 十分相近,于是t的近似值趋向于0。 获得了反射率t以后,下一步便是对图像进行soft matting获得轮廓特征,这样可以将透射率t精细化。 这样我们就获得了精细化后的透射率t值。对于有雾区域,我们可以根据下面的公式进行去雾,其中我们对t设定了一个最低的阈值。 最终的公式如下:在这篇文章中,作者提出了用神经网络方法对反射率t进行训练并预测,网络结构如下: 首先用CNN接maxout抽取图像特征,再接几个平行的multi-scale mapping,然后进行池化,经过BReLU激活函数得到最终的反射率t BReLU如图b所示,因为rgb具有上界和下界,如果不进行截断可能会越界。
本文介绍一篇基于去雾算法的低亮度图片增强算法(FAST EFFICIENT ALGORITHM FOR ENHANCEMENT OF LOW LIGHTING VIDEO)。 该论文的作者观察到反转的低亮度图片(inverted image)具有与有雾图片类似的性质,比如: 以上两条性质是有雾图片特有的性质。 因此,我们可以运用成熟的去雾算法来进行低亮度图片的增强。 具体地做法如下: 其中, 是大气的亮度, 是相机获取到的图像亮度, 是原始图像或场景的亮度。 基于[1] , 我们可以得到:其中 是大气的散射系数, 是像素 的景深。其中 在算法中设置为0.8, 是中心位于 的一个小区域,在算法中设置为9。 为了获取大气的亮度,作者选取了图像中RGB通道中最小值里最大的100个像素,然后选取这些像素中RGB值相加最大的像素值最为 的估计值。这里需要注意,我们需要增强的区域是位于前景的物体,例如房子、车子等物体,同时需要避免过度增强背景区域,像天空等。 所以,这里我们需要根据图片内容的不同,自适应地调节 ,从而重点增强前景的内容。因此,这里引入了一个中间变量:然后,需要恢复的图片 可由下式计算得到:[]论文还介绍了如何加速视频的方法,由于不是该博客的研究重点,故而忽略,有兴趣的朋友可以查看原文。
论文地址: V-Net 是另一种版本的3D U-Net。它与U-Net的区别在于: 1、3D图像分割end2ent模型(基于3D卷积),用于MRI前列腺容积医学图像分割。2、新的目标函数,基于Dice coefficient。3、数据扩充方法:random non-linear transformations和histogram matching(直方图匹配)。4、加入残差学习提升收敛。 (1)网络结构 其网络结构主要特点是3D卷积,引入残差模块和U-Net的框架,网络结构如图: 整个网络分为压缩路径和非压缩路径,也就是缩小和扩大feature maps,每个stage将特征缩小一半,也就是128-128-64-32-16-8,通道上为1-16-32-64-128-256。每个stage加入残差学习以加速收敛。 图中的圆圈加交叉代表卷积核为5*5*5,stride为1的卷积,可知padding为2*2*2就可以保持特征大小不变。每个stage的末尾使用卷积核为2*2*2,stride为2的卷积,特征大小减小一半(把2x2 max-pooling替换成了2x2 conv.)。整个网络都是使用keiming等人提出的PReLU非线性单元。网络末尾加一个1*1*1的卷积,处理成与输入一样大小的数据,然后接一个softmax。 (2)损失函数 由于前景比较小,在学习过程中不容易被学习到,因此重新定义了Dice coefficient损失函数。两个二进制的矩阵的dice相似系数为: 使用这个函数能避免类别不平衡。
摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处理硬件平台,DSP/BIOS为实时操作系统,利用CCS开发环境来构建应用程序;并通过摄像头提取视频序列,实现对边缘检测Sobel算子改进[1]。 关键词 DM642;Sobel算子;程序优化;图像边缘检测 1 引言 边缘是图像中重要的特征之一,是计算机视觉、模式识别等研究领域的重要基础。图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较强烈的地方,也即通常所说的信号发生奇异变化的地方。经典的边缘检测算法是利用边缘处的一阶导数取极值、二阶导数在阶梯状边缘处呈零交叉或在屋顶状边缘处取极值的微分算法。图像边缘检测一直是图像处理中的热点和难点。 近年来,随着数学和人工智能技术的发展,各种类型的边缘检测算法不断涌现,如神经网络、遗传算法、数学形态学等理论运用到图像的边缘检测中。但由于边缘检测存在着检测精度、边缘定位精度和抗噪声等方面的矛盾及对于不同的算法边缘检测结果的精度却没有统一的衡量标准,所以至今都还不能取得令人满意的效果。另外随着网络和多媒体技术的发展,图像库逐渐变得非常庞大;而又由于实时图像的目标和背景间的变化都不尽相同,如何实现实时图像边缘的精确定位和提取成为人们必须面对的问题。随着DSP芯片处理技术的发展,尤其是在图像处理方面的提高如TMS320C6000系列,为实现高效的、实时的边缘检测提供了可能性[5]。在经典的边缘检测算法中,Sobel边缘检测算法因其计算量小、实现简单、处理速度快,并且所得的边缘光滑、连续等优点而得到广泛的应用。本文针对Sobel算法的性能,并借助于TMS320DM642处理芯片[3],对该边缘检测算法进行了改进和对程序的优化,满足实时性需求。2 Sobel边缘检测算法的改进 经典的Sobel图像边缘检测算法,是在图像空间利用两个方向模板与图像进行邻域卷积来完成的,这两个方向模板一个是检测垂直边缘,一个是检测水平边缘。算法的基本原理:由于图像边缘附近的亮度变化较大,所以可以把那些在邻域内,灰度变化超过某个适当阈值TH的像素点当作边缘点。Sobel算法的优点是计算简单,速度快。但由于只采用了两个方向模板,只能检测水平方向和垂直方向的边缘,因此,这种算法对于纹理较复杂的图像,其边缘检测效果欠佳;同时,经典Sobel算法认为,凡灰度新值大于或等于阈值的像素点都是边缘点。这种判定依据是欠合理的,会造成边缘点的误判,因为多噪声点的灰度新值也很大。2.1 图像加权中值滤波 由于图像中的边缘和噪声在频域中均表现为高频成分,所以在边缘检测之前有必要先对图像进行一次滤波处理,减少噪声对边缘检测的影响。中值滤波是一种非线性信号的处理方法[2],在图像处理中,常用来保护边缘信息;保证滤波的效果。加权中值滤波,首先对每个窗口进行排序,取适当的比例,进行曲线拟合,拟合后的曲线斜率表征了此窗口的图像特征,再根据图像各部分特性适当的选择权重进行加权。2.2 增加方向模板 除了水平和垂直两方向外,图像的边缘还有其它的方向,如135o和45o等,为了增加算子在某一像素点检测边缘的精度,可将方向模板由2个增加为8个即再在经典的方向模板的基础上增加6个方向模板,如图1所示。2.3 边缘的定位及噪声的去除 通常物体的边缘是连续而光滑的,且边缘具有方向和幅度两个特征,而噪声是随机的。沿任一边缘点走向总能找到另一个边缘点,且这两个边缘点之间的灰度差和方向差相近。而噪声却不同,在一般情况下,沿任一噪声点很难找到与其灰度值和方差相似的噪声点[4]。基于这一思想,可以将噪声点和边缘点区分开来。对于一幅数字图像f(x,y),利用上述的8个方向模板Sobel算子对图像中的每个像素计算,取得其中的最大值作为该点的新值,而该最大值对应的模板所表示的方向为该像素点的方向。若|f(x,y)-f(x+i,y+j)|>TH2,对于任意i=0,1,-1;j=0,1,-1均成立,则可判断点(x,y)为噪声点。图2给出了图像边缘检测系统改进算法的软件流程图。图1 边缘检测8个方向模板图2 系统结构图3 基于TMS320DM642的图像处理的设计及算法优化3.1 TMS320DM642功能模块及图像处理系统的硬件结构 DSP以高速数字信号处理为目标进行芯片设计,采用改进的哈佛结构(程序总线和数据总线分开)、内部具有硬件乘法器、应用流水线技术、具有良好的并行性和专门用于数字信号处理的指令及超长指令字结构(VLIW)等特点;能完成运算量大的实时数字图像处理工作。 TMS320DM642是TI公式最近推出的功能比较强大的TMS320C6x系列之一,是目前定点DSP领域里性能较高的一款[6]。其主频是600MHz,8个并行运算单元、专用硬件逻辑、片内存储器和片内外设电路等硬件,处理能力可达4800MIPS。DM642基于C64x内核,并在其基础上增加了很多外围设备和接口,因而在实际工程中的应用更为广泛和简便。本系统使用50 MHz晶体震荡器作为DSP的外部时钟输入,经过内部锁相环12倍频后产生600 MHz的工作频率。DM642采用了2级缓存结构(L1和L2),大幅度提高了程序的运行性能。片内64位的EMIF(External Memory Interface)接口可以与SDRAM、Flash等存储器件无缝连接,极大地方便了大量数据的搬移。更重要的是,作为一款专用视频处理芯片,DM642包括了3个专用的视频端口(VP0~VP2),用于接收和处理视频,提高了整个系统的性能。此外,DM642自带的EMAC口以及从EMIF 口扩展出来的ATA口,还为处理完成后产生的海量数据提供了存储通道。本系统是采用瑞泰公司开发的基于TI TMS320DM642 DSP芯片的评估开发板——ICETEK DM642 PCI。在ICETEK DM642 PCI评估板中将硬件平台分为五个部分,分别是视频采集、数据存储、图像处理、结果显示和电源管理。视频采集部分采用模拟PAL制摄像头,配合高精度视频A/D转换器得到数字图像。基于DSP的视频采集要求对视频信号具备采集,实时显示、对图像的处理和分析能力。视频A/D采样电路—SAA7115与视频端口0或1相连,实现视频的实时采集功能。视频D/A电路—SAA7105与视频口2相连,视频输出信号支持RGB、HD合成视频、PAL/NTSC复合视频和S端子视频信号。通过I2C总线对SAA7105的内部寄存器编程实现不同输出。 整个系统过程由三个部分组成:图像采集—边缘处理—输出显示,如图2所示。摄像头采集的视频信号经视频编码器SAA7115数字化,DM642通过I2C总线对SAA7115进行参数配置。在SAA7115内部进行一系列的处理和变换后形成的数字视频数据流,输入到核心处理单元DM642。经过DSP处理后的数字视频再经过SAA7105视频编码器进行D/A转换后在显示器上显示最终处理结果。3.2 图像处理的软件设计和算法优化的实现 由于在改进Sobel边缘检测算子性能的同时,也相对增加了计算量,尤其是方向模板的增加,每个像素点均由原来的2次卷积运算增加为8次卷积运算,其实时性大大减弱。为了改进上述的不足,在深入研究处理系统和算法后,针对TMS320DM642的硬件结构特点,研究适合在TMS320DM642中高效运行的Sobel改进算法,满足实时处理的要求。整个程序的编写和调试按照C6000软件开发流程进行,流程分为:产生C代码、优化C代码和编写线性汇编程序3个阶段。使用的工具是TI的集成开发环境CCS。在CCS下,可对软件进行编辑、编译、调试、代码性能测试等工作。在使用C6000编译器开发和优化C代码时[7-8],对C代码中低效率和需要反复调用的函数需用线性汇编重新编写,再用汇编优化器优化。整个系统的控制以及数字图像处理是用C程序实现,大部分软件设计采用C程序实现,这无疑提高了程序的可读性和可移植性,而汇编程序主要是实现DM642的各部分初始化。其边缘检测优化算法在DM642中的实现步骤具体如下: S1:根据DM642的硬件结构要求和控制寄存器设置,初始化系统并编写实现边缘检测算法的C程序。 S2:借助CCS开发环境的优化工具如Profiler等产生.OUT文件。 S3:根据产生的附件文件如.MAP文件,分析优化结果及源程序结构,进一步改进源程序和优化方法。 S4:使用CCS中调试、链接、运行等工具,再生成.OUT可执行文件。 S5:运行程序,如果满足要求则停止;否则重复步骤S2~S4直至满足使用要求。4 实验结果 本文以Lena图像为例根据上述的硬件环境和算法实现的原理和方法,图4~图6分别给出了在该系统下采集的视频Lena图像及使用边缘检测算子和改进后处理的结果。由实验结果可以看出,在该系统下能实时完成视频图像的处理,并且给出的边缘检测算子能较好的消除噪声的影响,边缘轮廓清晰。该算法不仅能抑制图像中大部分噪声和虚假边缘,还保证了较高的边缘点位精度。图4 Lena原始图像 图5 传统Sobel算子 图6 改进Sobel算子5 总结 本文实现了在TMS320DM642评估板上用改进的Sobel算子对实时图像进行边缘检测,无延迟地得到边缘图像。边缘检测效果较好,既提高了图像检测的精度又满足了实时性的要求。从检测结果看,利用该改进后的算子在边缘精确定位、边缘提取都达到了很好的效果,且抗噪声能力强,并为目标跟踪、无接触式检测、自动驾驶、视频监控等领域的应用提供了坚实的基础。参考文献[1] 王磊等. 基于Sobel理论的边缘提取改善方法[J].中国图像图形学报,2005.10[2] 陈宏席. 基于保持平滑滤波的Sobel算子边缘检测.兰州交通大学学报,2006,25(1):86—90[3] 熊伟. 基于TMS320DM642的多路视频采集处理板卡硬件设计与实现[ M]. 国外电子元器件,2006[4] 朱立.一种具有抗噪声干扰的图像边缘提取算法的研究[J].电子技术应用.2004,25(1)[5] 刘松涛,周晓东.基于TMS320C6201的实时图像处理系统[J].计算机工程,2005(7):17—23[6] TI TMS320DM642 video/imaging fixed-point digital signal processor data manual,2003[7] TMS320C6x Optimizing C Compiler User’s Guide’ TEXAS INSTRUMENTS”,2002[8] TMS320C32x Optimizing C/C++ Compiler User's Guide,Texas Instruments Incorporated,2001
中北大学2012届毕业论文 第1页 共47页 1 引言 1 课题的提出以及研究意义 使计算器具有人类的感知的能力,能够识图认字,能听话和说话,能与人们自然的进行信息交互,是人们长期以来的梦想。经过二十余年的奋斗,这些梦想已逐渐部分成真。赋予计算机识图认字的智能,能够解脱人们将汉字输入计算机的繁重劳动,克服计算机汉语信息的汉字输入困难的问题,对我国信息化发展更具有特殊重要的价值。随着计算机技术、通信技术、多媒体技术以及Internet的迅速发展,人们越来越深刻地感受到了计算机处理事情的便捷。提取并识别图像中的文字,在图像数据库的组织与管理、视频索引、公交、交通、旅游、摄影等方面将有着极其广泛的应用。随着电力系统的规模增大,电力设备也越来越多,且设备分布具有跨地域性的特点,因此怎样管理维护这些设备,并可随时查看这些设备的信息成为一个急需解决的问题。 图像中往往包含着丰富的文字信息,若能将图像中的文字进行自动检测、分割、提取和识别,则对图像高层语义内容的自动理解、索引和检索非常有价值。因此,90年代,随着多媒体技术的发展以及对基于内容的多媒体检索的需求,图像中的文字获取又逐渐成为研究热点之一。电力设备标牌图像中的文字获取对图像识别、检索有重要意义。从电力设备标牌图像中提取文字需要首先定位包含文字的图像区域,由于电力设备标牌中的文字在字体、大小、对齐方式和排列上变化多端,文字背景复杂,而许多应用场合还要求算法具有一定处理速度,这些都使得从其图像中有效地提取文字变得困难,对其深入研究很有意义。电力设备标牌图像中有丰富的文字信息,对图像中的文字信息的提取将是图像处理方面研究的一个重要方向。在电力系统中,电力设备种类繁多,通过对设备图像的采集,识别出电力设备标牌的文字信息,建立设备信息图文库,对电力设备的年检、统计等工作更加便捷、高效,对提高电力系统的设备管理水平非常重要。在电力管理上的技术需求越来越引起人们的关注和期待,而在此方向的技术研究目前还是一个空白点,因此,研究设备图片中的字符识别技术具有广泛的实际应用价值和重要的学术意义。 2 相关技术研究现状 中北大学2012届毕业论文 第2页 共47页 目前电力设备标牌识别的研究还是一个空白点。其相关技术包括车牌识别技术和对图像中的文字识别技术[1]。电气标牌字符的识别研究还很滞后,目前仍没有相对成熟的系统。随着电力系统的规模增大,电力设备也越来越多,怎样管理维护这些设备,是我们现在需要努力研究并有待应用的一门技术。 当前,图像作为一种重要的可视化信息媒体,已被应用到几乎所有的科学技术领域和日常生活的各个方面。随着图像信息的快速增长,从海量的图像资源中快速高效地提取并识别信息已成为人们迫切的需求。因此,20世纪90年代,基于内容的图像检索(CBIR)[2]技术应运而生,从可视化角度开辟了一条更为直观 、准确的途径,并很快成为智能信息处理领域的研究热点。 如今牌照定位是从一张图片中找到标牌的位置,将包括牌照的子图像从这张图片中切割出来。主要有边缘特征法[3]、神经网络法[4,5]、基于灰度的检测方法、基于数学形态学法、基于颜色的分割方法、基于区域特征的方法、小波变换的方法等。 文字识别技术已经广泛应用到了各个领域中,它作为计算机智能接口的重要组成部分,在信息处理领域中可以大大提高计算机的使用效率。字符识别的对象是汉字、字母和数字。我国牌照的独有的特点是包括汉字的识别。汉字因为其结构复杂,使得识别过程有别于数字和字母。目前主要的字符识别方法有:模板匹配法、统计特征字符识别法、结构特征字符识别法、人工神经网络法。模板匹配对噪声比较敏感,并对字符的字体变化具有不适应的特点。基于统计特征的字符识别法对于形近字符区分能力弱,而且需要寻找特征,特征有时随图像变化而失效。结构特征的描述和比较要占用大量的存储和计算资源,因此算法在实现上相对复杂、识别速度慢。神经网络法也存在找寻特征和计算量大的问题。光学字符识别(OCR)技术是计算机自动、高速地辨别纸上的文字,并将其转化为可编辑的文本的一项实用技术。它是新一代计算器智能接口的一个重要组成部分,也是模式识别领域的一个重要分支。因此,在电力标牌的字符识别中,OCR技术也得到了广泛的应用,是其进行识别不可或缺的技术力量。Lienhart等[6,7]先后开发出两个视频中的文字检测、分割和识别系统。这两个系统都是利用文字的单色性相对于背景的高对比度和视频字幕的简单纹理来进行图像分割。 近几年,国内学者也开始关注并积极投身到电力设备标牌的字符检测领域来,但中北大学2012届毕业论文 第3页 共47页 是都仅限于在进行基于内容的多媒体检索的研究时,附带地介绍了图像和视频中的文字获取,并没有进行系统深入的研究,也没有开发出相应可行的系统。如何识别图像中的文字仍然是一个有待研究解决的问题。 3 本课题主要内容 电力设备标牌字符识别涉及到的技术和车牌识别技术有些相似处,车牌识别技术已经较为成熟,但是,电力设备标牌识别与之有很多不同之处。主要包括: (1)图像的预处理技术。标牌中有很多钢印信息,通过二值化[8,9]提取标牌特征时,需要完整的提取其特征量。而车牌上的信息在提取时不存在上述问题。 (2)电力设备标牌中的信息识别技术。标牌中的字符很多,尤其是所涉及的汉字比较丰富,而车牌中字符构成比较简单。 本文对电力系统中设备标牌中的字符识别技术进行了研究,对设备标牌中的字符识别系统的每一个模块进行了研究及实现。电力设备图片在识别前首先需要对图像进行预处理,以更好的提取标牌中的信息。其次,分割图像。最后进行标牌上的字符识别。因此,本课题主要研究内容为: (一)电力设备标牌的图像预处理方法的研究。采集到的设备图片不可避免的会受到噪声的污染,需要对设备图片进行处理以及修正,突出图片中的标牌信息,增强图像,以便更好的进行字符识别。 (二)分析电力设备标牌特点,结合设备标牌特点研究适合标牌图像的二值化方法。 (三)研究边缘检测算子并对图像进行边缘检测处理,分析实验结果,并进行图像的分割。 (四)应用光学字符识别(OCR)[12,13,14,15]技术和字符识别技术进行电力设备标牌的识别[16,17,18,19]。 在拟采用的研究手段上分别从设备图像预处理、标牌的二值化算法以及标牌图像的分割和字符的识别四个方面进行阐述: 1)进行图像的滤波处理、经灰度直方图灰度修正以及灰度图像对比处理把我们感兴趣的部分突出出来。 2)为了进行有效的识别,采用阈值法进行标牌图像的二值化。通过对其标牌二值化,提取标牌图像中的钢印信息。 中北大学2012届毕业论文 第4页 共47页 3)进行标牌图像的边缘检测和分割。 4)采用基于光学字符识别(OCR)的技术以及MATLAB软件算法完成对标牌字符的识别。 中北大学2012届毕业论文 第5页 共47页 2 电力设备标牌图像预处理 电力设备标牌图像由于背景的灰度值介于标头字符的灰度值和钢印灰度值之间,所以用单一的一个阈值无法将标头字符和钢印同时提取出来。为了进行有效的识别,首先需要对数字图像进行处理。 二维物理图像被栅格划分成小的区域,这些小的区域称为数据元素(Picture Element),简称像素。对每个像素进行采样和量化,得到相应的整数值。这个值代表像素的明暗程度和颜色深浅等信息。 每个引入噪声。图像可以分为二值图像、灰度图像、彩色图像。灰度图像只含亮度信息,不含彩色信息。灰度值用8位(Bit)表示,从0到255,一共256级,从黑(0)到白(255)。二值图像就只有代表黑白两色的两个灰度值,归一化后灰度值是黑(0)到白(1)。彩色图像每个像素值都有三个分量,分别表示红色(R),绿色(G)和蓝色(B)。每个分量又按各分量的灰度分为0到255共256级。根据RGB的不同组合就可以表示256 ×256×256种颜色,也就是常说的24位真彩色。 2.1 图像的读取 clear; close all; I=imread('bae.jpg'); imshow(I);(结果见图2(a)) 2.2 去噪 在图像形成、传输或变换的过程中,由于受到其它客观因素诸如系统噪声、曝光不足或过量、相对运动等影响,获取图像往往会与原始图像之间产生某种差异(称为降质或退化)。退化后的图像通常模糊不清或者经过机器提取的信息量减少甚至错误,因此必须对其采取一些手段进行改善。图像增强技术正是在此意义上提出的,目的就是为了改善图像的质量。图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除无关信息,达到强调图像的整体或局部特征的目的。图像增强尚没有统一的理论方法。 利用巴特沃斯(Butterworth)低通滤波器对受噪声干扰的图像进行平滑处理: