家有陈先森
这是何凯明在博士期间发表的一篇经典的图像去雾算法的文章。这篇文章中他通过观察提出了一种暗通道算法(Dark Channel Prior),简单来说就在一张正常图像中,除了天空区域,在图像的每个小块(patch)中一定有一些像素点至少有一个通道的值是非常小的,基于这个先验条件,何凯明团队使用了一种简单有效的办法来进行图像去雾。 下面的公式为经典的去雾模型,其中 指获取得到的图片亮度, 是去雾后恢复的图像, 指透射率, 是指大气的光成分(即雾成分)。这个公式还是很容易直观的理解,因为透射率可以在一定程度上代表损失率。 为大气散射系数, 为景深。由于在统计意义上,一个patch中总有几个像素的至少一个通道是很暗的,此时的 趋近于0,于是在一个patch中有如下公式成立: 这样我们就可以算出t的近似值了。同时,当patch为天空时,大气光 和真实图像光 十分相近,于是t的近似值趋向于0。 获得了反射率t以后,下一步便是对图像进行soft matting获得轮廓特征,这样可以将透射率t精细化。 这样我们就获得了精细化后的透射率t值。对于有雾区域,我们可以根据下面的公式进行去雾,其中我们对t设定了一个最低的阈值。 最终的公式如下:在这篇文章中,作者提出了用神经网络方法对反射率t进行训练并预测,网络结构如下: 首先用CNN接maxout抽取图像特征,再接几个平行的multi-scale mapping,然后进行池化,经过BReLU激活函数得到最终的反射率t BReLU如图b所示,因为rgb具有上界和下界,如果不进行截断可能会越界。
梦回红楼
本文介绍一篇基于去雾算法的低亮度图片增强算法(FAST EFFICIENT ALGORITHM FOR ENHANCEMENT OF LOW LIGHTING VIDEO)。 该论文的作者观察到反转的低亮度图片(inverted image)具有与有雾图片类似的性质,比如: 以上两条性质是有雾图片特有的性质。 因此,我们可以运用成熟的去雾算法来进行低亮度图片的增强。 具体地做法如下: 其中, 是大气的亮度, 是相机获取到的图像亮度, 是原始图像或场景的亮度。 基于[1] , 我们可以得到:其中 是大气的散射系数, 是像素 的景深。其中 在算法中设置为0.8, 是中心位于 的一个小区域,在算法中设置为9。 为了获取大气的亮度,作者选取了图像中RGB通道中最小值里最大的100个像素,然后选取这些像素中RGB值相加最大的像素值最为 的估计值。这里需要注意,我们需要增强的区域是位于前景的物体,例如房子、车子等物体,同时需要避免过度增强背景区域,像天空等。 所以,这里我们需要根据图片内容的不同,自适应地调节 ,从而重点增强前景的内容。因此,这里引入了一个中间变量:然后,需要恢复的图片 可由下式计算得到:[]论文还介绍了如何加速视频的方法,由于不是该博客的研究重点,故而忽略,有兴趣的朋友可以查看原文。
姓名:张昊楠 学号:21021210691 学院:电子工程学院 【嵌牛导读】简要介绍暗通道先验理论基础 【嵌牛鼻子】图像处理 图像去
关于虚拟现实的科技论文1500字篇二 医学虚拟现实技术研究 【摘要】医学虚拟现实技术(MedicalVirtual Reality Te
《洛神赋图》将曹植《洛神赋》的主题思想表达的完整而和谐。顾恺之巧妙的运用各种艺术技巧将辞赋中曹植与洛神之间的爱情故事表达得纯洁感人、浪漫悲哀。画面奇幻而绚丽,情
(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专
由于不同因素之间的复杂作用,在保留原始字体,颜色,大小和背景纹理的同时在场景图像中交换文本是一项具有挑战性的任务。在这项工作中,我们提出了一个三阶段框架Swap