首页 > 学术发表知识库 > 定积分不等式论文答辩ppt

定积分不等式论文答辩ppt

发布时间:

定积分不等式论文答辩ppt

不是只照着目录来的。要写出自己文章的创新处,主要部分。最好有图标结合,你也知道,那么多论文老师是没心情看的。模板越简单越好,前提要清晰,字体要大一些,我们组就有字体太小被老师打枪杯具的。能主要阐述你论文的主题思想就好了。介绍不要过长,会造成老师同学的反感,一点小意见,希望能帮到你

关于内容:1、一般概括性内容:课题标题、答辩人、课题执行时间、课题指导教师、课题的归属、致谢等。2、课题研究内容:研究目的、方案设计(流程图)、运行过程、研究结果、创新性、应用价值、有关课题延续的新看法等。3、PPT要图文并茂,突出重点,让答辩老师明白哪些是自己独立完成的,页数不要太多,30页左右足够,不要出现太多文字,老师对文字和公式都不怎么感兴趣;4、凡是贴在PPT上的图和公式,要能够自圆其说,没有把握的坚决不要往上面贴。5、每页下面记得标页码,这样比较方便评委老师提问的时候review关于模板:1、可以去像素网选择一套合适的论文答辩ppt模板,不要用太华丽的企业商务模板,学术ppt最好低调简洁一些;2、推荐底色白底(黑字、红字和蓝字)、蓝底(白字或黄字)、黑底(白字和黄字),这三种配色方式可保证幻灯质量。我个人觉得学术ppt还是白底好;3、动手能力强的大牛可以自己做附和课题主题的模板,其实很简单,就是把喜欢的图在“幻灯片母版”模式下插入就行了。关于文字:1、首先就是:不要太多!!!图优于表,表优于文字,答辩的时候照着ppt念的人最逊了;2、字体大小最好选ppt默认的,标题用44号或40号,正文用32号,一般不要小于20号。标题推荐黑体,正文推荐宋体,如果一定要用少见字体,记得答辩的时候一起copy到答辩电脑上,不然会显示不出来;3、正文内的文字排列,一般一行字数在20~25个左右,不要超过6~7行。更不要超过10行。行与行之间、段与段之间要有一定的间距,标题之间的距离(段间距)要大于行间距;关于图片:1、图片在ppt里的位置最好统一,整个ppt里的版式安排不要超过3种。图片最好统一格式,一方面很精制,另一方面也显示出做学问的严谨态度。图片的外周,有时候加上阴影或外框,会有意想不到的效果;2、关于格式,tif格式主要用于印刷,它的高质量在ppt上体现不出来,照片选用jpg就可以了,示意图我推荐bmp格式,直接在windows画笔里按照需要的大小画,不要缩放,出来的都是矢量效果,比较pro,相关的箭头元素可以直接从word里copy过来;3、流程图,用viso画就可以了,这个地球人都知道;4、ppt里出现图片的动画方式最好简洁到2种以下,还是那句话,低调朴素为主;5、动手能力允许的话,学习一下photoshop里的基本操作,一些照片类的图片,在ps里做一下曲线和对比度的基本调整,质量会好很多。windos画笔+ps,基本可以搞定一切学术图片。关于提问环节:评委老师一般提问主要从以下几个方面:1.他本人的研究方向及其擅长的领域;2.可能来自课题的问题:是确实切合本研究涉及到的学术问题(包括选题意义、重要观点及概念、课题新意、课题细节、课题薄弱环节、建议可行性以及对自己所做工作的提问);3.来自论文的问题:论文书写的规范性,数据来源,对论文提到的重要参考文献以及有争议的某些观察标准等;4.来自幻灯的问题:某些图片或图表,要求进一步解释;5.不大容易估计到的问题:和课题完全不相干的问题。似乎相干,但是答辩者根本未做过,也不是课题涉及的问题。答辩者没有做的,但是评委想到了的东西,答辩者进一步打算怎么做。提问环节很容易因为紧张被老师误导,如果老师指出你xx地方做错了,先冷静想一下,别立马就附和说啊我错了啊我没有考虑到。一般来说答辩老师提的问题,很少有你做课题这几年之中都没考虑到的。想好了再回答,不要顶撞老师,实在不会的问题,千万不要“蒙”,态度一定要谦虚,哪怕直接说“自己没有考虑到这点,请老师指正”。

可以分成几块来讲,不要跟论文的目录一样,没有时间讲那么多比如可以分研究背景我的工作发展前景后面一块可以做文献之类的,条理清楚就可以了

毕业论文答辩PPT应该有哪些内容?论文名称、答辩人、导师、答辩时间、学校、专业(1张)。研究背景、意义与目标、研究问题(1张)。研究框架(1张)。研究综述(1张):简要说明国内外相关研究现状,谁、什么时间、什么成果。对现状进行简要评述,引出自己的研究。研究方法与过程(1-2张):研究采用了哪些方法?在哪里展开?如何实施?主要结论(2-4张):主要阐述自己的研究成果,注意条理清晰,简明扼要。多用图表、数据来说明和论证结果。致谢(1张)。

不定积分计算方法论文答辩ppt

答辩PPT模板免费下载

链接: 

答辩,是一种教育术语。一般是几位相关专业的老师根据学生的设计实体和论文提出一些问题,同时听取学生个人阐述,以了解学生毕业设计的真实性和对设计的熟悉性;考察学生的应变能力和知识面的宽窄;听取学生对课题发展前景的认识。

毕业答辩PPT模板免费下载

链接:

关于内容:1、一般概括性内容:课题标题、答辩人、课题执行时间、课题指导教师、课题的归属、致谢等。2、课题研究内容:研究目的、方案设计(流程图)、运行过程、研究结果、创新性、应用价值、有关课题延续的新看法等。3、PPT要图文并茂,突出重点,让答辩老师明白哪些是自己独立完成的,页数不要太多,30页左右足够,不要出现太多文字,老师对文字和公式都不怎么感兴趣;4、凡是贴在PPT上的图和公式,要能够自圆其说,没有把握的坚决不要往上面贴。5、每页下面记得标页码,这样比较方便评委老师提问的时候review关于模板:1、可以去像素网选择一套合适的论文答辩PPT模板,不要用太华丽的企业商务模板,学术ppt最好低调简洁一些;2、推荐底色白底(黑字、红字和蓝字)、蓝底(白字或黄字)、黑底(白字和黄字),这三种配色方式可保证幻灯质量。我个人觉得学术ppt还是白底好;3、动手能力强的大牛可以自己做附和课题主题的模板,其实很简单,就是把喜欢的图在“幻灯片母版”模式下插入就行了。关于文字:1、首先就是:不要太多!!!图优于表,表优于文字,答辩的时候照着ppt念的人最逊了;2、字体大小最好选ppt默认的,标题用44号或40号,正文用32号,一般不要小于20号。标题推荐黑体,正文推荐宋体,如果一定要用少见字体,记得答辩的时候一起copy到答辩电脑上,不然会显示不出来;3、正文内的文字排列,一般一行字数在20~25个左右,不要超过6~7行。更不要超过10行。行与行之间、段与段之间要有一定的间距,标题之间的距离(段间距)要大于行间距;关于图片:1、图片在ppt里的位置最好统一,整个ppt里的版式安排不要超过3种。图片最好统一格式,一方面很精制,另一方面也显示出做学问的严谨态度。图片的外周,有时候加上阴影或外框,会有意想不到的效果;2、关于格式,tif格式主要用于印刷,它的高质量在ppt上体现不出来,照片选用jpg就可以了,示意图我推荐bmp格式,直接在windows画笔里按照需要的大小画,不要缩放,出来的都是矢量效果,比较pro,相关的箭头元素可以直接从word里copy过来;3、流程图,用viso画就可以了,这个地球人都知道;4、ppt里出现图片的动画方式最好简洁到2种以下,还是那句话,低调朴素为主;5、动手能力允许的话,学习一下photoshop里的基本操作,一些照片类的图片,在ps里做一下曲线和对比度的基本调整,质量会好很多。windos画笔+ps,基本可以搞定一切学术图片。关于提问环节:评委老师一般提问主要从以下几个方面:1.他本人的研究方向及其擅长的领域;2.可能来自课题的问题:是确实切合本研究涉及到的学术问题(包括选题意义、重要观点及概念、课题新意、课题细节、课题薄弱环节、建议可行性以及对自己所做工作的提问);3.来自论文的问题:论文书写的规范性,数据来源,对论文提到的重要参考文献以及有争议的某些观察标准等;4.来自幻灯的问题:某些图片或图表,要求进一步解释;5.不大容易估计到的问题:和课题完全不相干的问题。似乎相干,但是答辩者根本未做过,也不是课题涉及的问题。答辩者没有做的,但是评委想到了的东西,答辩者进一步打算怎么做。提问环节很容易因为紧张被老师误导,如果老师指出你xx地方做错了,先冷静想一下,别立马就附和说啊我错了啊我没有考虑到。一般来说答辩老师提的问题,很少有你做课题这几年之中都没考虑到的。想好了再回答,不要顶撞老师,实在不会的问题,千万不要“蒙”,态度一定要谦虚,哪怕直接说“自己没有考虑到这点,请老师指正”。

快要硕士论文答辩了,PPT还没有做,在网上搜索了一通,大概知道了做论文答辩PPT的要点。也给需要答辩的同学一个参考。 哇卡卡! 一、要对论文的内容进行概括性的整合,将论文分为引言和试验设计的目的意义、材料和方法、结果、讨论、结论、致谢几部分。 二、在每部分内容的presentation中,原则是:图的效果好于表的效果,表的效果好于文字叙述的效果。最忌满屏幕都是长篇大论,让评委心烦。能引用图表的地方尽量引用图表,的确需要文字的地方,要将文字内容高度概括,简洁明了化,用编号标明。 三、 1 文字版面的基本要求 幻灯片的数目: 学士答辩10min 10~20张 硕士答辩20min 20~35张 博士答辩30min 30~50张 2 字号字数行数: 标题44号(40) 正文32号(不小于24号字) 每行字数在20~25个 每张PPT 6~7行 (忌满字) 中文用宋体(可以加粗),英文用 Time New Romans 对于PPT中的副标题要加粗 3 PPT中的字体颜色不要超过3种(字体颜色要与背景颜色反差大) 建议新手配色: (1)白底,黑、红、篮字 (2)蓝底,白、黄字(浅黄或橘黄也可) 4 添加图片格式: 好的质量图片TIF格式,GIF图片格式最小 图片外周加阴影或外框效果比较好 PPT总体效果:图片比表格好,表格比文字好;动的比静的好,无声比有声好。 四、(注意) 幻灯片的内容和基调。背景适合用深色调的,例如深蓝色,字体用白色或黄色的黑体字,显得很庄重。值得强调的是,无论用哪种颜色,一定要使字体和背景显成明显反差。 注意:要点!用一个流畅的逻辑打动评委。字要大:在昏暗房间里小字会看不清,最终结果是没人听你的介绍。不要用PPT自带模板:自带模板那些评委们都见过,且与论文内容无关,要自己做,简单没关系,纯色没关系,但是要自己做! 时间不要太长:20分钟的汇报,30页内容足够,主要是你讲,PPT是辅助性的。 记得最后感谢母校,系和老师,弄得煽情点 ^_^ 。

积分不等式论文参考文献

不等式理论简史及离散型Hilbert不等式[论文摘要]本文首先介绍了不等式理论发展的历史,然后引入了离散型Hilbert不等式,介绍了Hilbert不等式的一个初等证明,最后对Hilbert不等式的推广形式作了简要的总结。[关键词]不等式理论 Hilbert不等式初等证明 权函数[Abstract]In this passage,we introduce the history of inequality theory first.Then we introduce the Hilbert’s inequality with a primary prof.At the end,we make a summary of a series forms of Hilbert’s inequality.[Keywords]Theory of inequality Primary proof of Hilbert’s inequality Weight function 1 引 言1.1 选题背景 众所周知,不等式理论在数学理论中占有重要地位,它渗透到数学的各个领域,因而有必要对不等式理论的发展历史有一个清晰的认识。Hilbert不等式提出以来,众多数学家给出了各种证明,本文介绍了一个初等证明。同时,总结了Hilbert不等式的各种推广形式。1.2本文的主要内容本文的工作主要有三个方面:(1)、介绍不等式理论的发展历史(2)、介绍Hilbert不等式并给出了一个初等证明(3)、总结Hilbert的各种推广形式2 不等式理论简史和Hilbert不等式2.1 不等式理论简史 数学不等式的研究首先从欧洲国家兴起, 东欧国家有一个较大的研究群体, 特别是原南斯拉夫国家。目前,对不等式理论感兴趣的数学工作者遍布世界各个国家。在数学不等式理论发展史上有两个具有分水岭意义的事件,分别是: Chebycheff 在 1882 年发表的论文和 1928 年Hardy任伦敦数学会主席届满时的演讲;Hardy,Littlewood和 Plya的著作 Inequalities的前言中对不等式的哲学 (philosophy) 给出了有见地的见解: 一般来讲初等的不等式应该有初等的证明, 证明应该是“内在的”,而且应该给出等号成立的证明。A. M.Fink认为, 人们应该尽量陈述和证明不能推广的不等式. Hardy认为, 基本的不等式是初等的.自从著名数学家 G. H. Hardy,J. E. Littlewood和G. Plya的著作 Inequalities由Cambridge University Press于1934年出版以来, 数学不等式理论及其应用的研究正式粉墨登场, 成为一门新兴的数学学科, 从此不等式不再是一些零星散乱的、孤立的公式综合, 它已发展成为一套系统的科学理论。20 世纪 70 年代以来 , 国际上每四年在德国召开一次一般不等式 ( General Inequalities) 国际学术会议 , 并出版专门的会议论文集。不等式理论也是 2000 年在意大利召开的第三届世界非线性分析学家大会 (“The ThirdWorld Congress of Nonlinear Analyst s” ( WCNA - 2000) )的主题之一。2000 年和 2001 年在韩国召开的第六届和第七届非线性泛函分析和应用国际会议 ( InternationalConference on Nonlinear Functional Analysis andApplications) 与 2000 年在我国大连理工大学召开的ISAAC都将数学不等式理论作为主要的议题安排在会议日程之中。2001 年的不等式国际会议 IN EQUAL IT IES于 2001 年 7 月 9 日至 14 日在罗马尼亚 University of t heWest 召开。历史上 , 华人数学家在不等式领域做出过重要贡献 ,包括华罗庚、樊畿、林东坡、徐利治、王忠烈、王兴华等老一代数学家。最近几年我国有许多数学工作者始终活跃在国际数学不等式理论及其应用的领域 , 他们在相关方面做出了独特的贡献 , 引起国内外同行的注意和重视。例如王挽澜教授、石焕南教授、杨必成教授、高明哲教授、张晗方教授、杨国胜教授等。20世纪80年代以来在中国大地上出现了持续高涨的不等式研究热潮。 20世纪80年代杨路等教授对几何不等式研究的一系列开创性工作,将我国几何不等式的研究推向高潮;在代数不等式方面,王挽澜教授对Fan ky不等式的深人研究达到国际领先水平。祁锋教授及其所领导的研究群体在平均不等式及其他不等式方面取得了大量而系统的前沿研究成果;对分析不等式,胡克教授于1981年发表在《中国科学》上的论文《一个不等式及其若干应用》[5],针对Holder不等式的缺陷提出一个全新的不等式,被美国数学评论称之为"一个杰出的非凡的新的不等式",现在称之为胡克(HK)不等式。胡克教授对这个不等式及其应用作了系统而深刻的研究。 目前我国关于数学不等式理论及其应用的研究也有较丰富的成果。例如匡继昌先生的专著《常用不等式》一书由于供不应求 , 在短短的几年内已经出版了第二版 ,重印过多次。对于数学专著来讲 , 这是少有的现象。第二本较有影响的专著是王松桂和贾忠贞合著的《矩阵论中不等式》。另外 , 国内还有一个不等式研究小组比较活跃 , 主办一个《不等式研究通讯》的内部交流刊物 , 数学家杨路先生任顾问。对Hilbert不等式,是由Hilbert 在他的积分方程的讲座中提出。 此后,许多著名数学家如Feier(1921),Framcis,Littlewood (1928),Hardy (1920),Hardy-Littlewood-Polya(1926),Mulhoand(1928,1931),Owen(1930),Polya和Szegb,Schur(1911),F. Wiener (1910)等都做出过贡献。为此,Hardy等在文献「1」中的第9x章中专门讨论Hilbert不等式及其类似情形和推广。 20世纪90年代以来,我国一大批学者如徐利治,杨必成教授等对Hilbert不等式及其类似情形和推广的研究取得了举世瞩目的成果。由于这些结果在理论和实际运用方面都有重要意义,引起一系列广泛研究,当中取得各式各样的进展,成果在众多报刊杂志上被发表。综上所述 , 数学不等式理论充满蓬勃生机、兴旺发达。2.2 Hilbert不等式的初等证明 命题1 (Hilbert 不等式)如果 、 是平方可和实数列,则二重级数 是收敛的,且 (1)不等式严格成立,等式成立当且仅当 、 恒为零,(1)式中 是最优的。 命题一的证明须应用两个引理。 引理一 对每一个正数m,有 < 证明 设点(0,0),(0, ),( , )分别用C,Y, (n=0,1,2,•••)表示,S表示圆心在点C半径为 的从点 到Y 圆的面积, 是直线C 与过点 的竖线的交点(n=1,2,3,•••)。此外,设 表示扇形 C 的面积(如下 图1) 用 表示 的面积,于是,得到 =S= > = = • = > 因此, < .现在可以证明Hilbert不等式了。记 = 应用Schwarz不等式,得。以上应用了引理1,显然,最后不等式严格成立当且仅当序列 、 恒为零。往证 不能被比它小的常数代替。引理2 对每一个自然数m>1,有 > - 。证明 设 表示直线 和直线 (n=0,1,2,•••,m-1)的交点, 表示扇形 的面积(如下图2), 则显然有 = < = + = + = + 因此, > - 下证Hilbert不等式中的 是最优常数,考虑序列: = = ,当 时, = =0,当 > 时,这里k是自然数,则 + + (由引理2) -( )因此 - 因此, 是Hilbert不等式中的最优常数。至此完成了Hilbert不等式的初等证明。2.3 Hilbert不等式的推广 Hilbert提出不等式 (1) (2)后,Hardy把这些结果扩展,他得出了如下不等式 (3) (4)在这里, , 0, + =1,且p q>1。不等式(3)(4)被成为Hardy-Hilbert重级数不等式,且等号成立当且仅当 、 恒为零。多年以来,很多数学家对Hilbert不等式进行了研究,得到了一系列的成果。下面简单回顾一下这些研究的历程。先介绍在Hilbert最原始的不等式基础上取得的成果,然后再展示在Hardy-Hilbert不等式上的一系列成就。1990年,L.C.Hsu et al仔细分析Hardy最初的方法技术,引入一个权函数w(n)= ,得到了改进后的不等式: (5)不久,Hsu和王把权函数精简为 ,寻找能使式(5)成立θ的最大可能值的问题被提及。稍后,L.C Hsu和高明哲使用不同方法得出θ的下确界,θ=1.281+接着得到了θ的上确界λ(λ=1.4603545+),从而使问题得到解开。至于不等式(2),高明哲作了改进, w(n)= (n)>0(n=1,2,…)。然后高应用了Euler公式对权函数w作出估计:w(n)≤ ,θ=17/20类似地,在Hardy-Hilbert不等式上得到一些新结果。在研究Hardy-Hilbert不等式(3)的过程中,含参数n的求和式的值被估算,如 同是1990年,Hsu和Guo率先引入权函数: 不等式(3)拓展为 然后,权函数被Hsu和高明哲改进为 ,两年以后,高再给出权函数的精确形式: 再不久,杨和高得到 的一个下界,也就意味着,在权函数方面取得一个更好的结果: c是Euler常数,而(1-c)被证明为使不等式成立的最佳常数,高明哲证明了 的一个上界是: ρ(t)=t-[t]-1/2而 被估计为 若 > ,不等式不再成立,问题得到完全解开。有关不等式(4),杨必成得到如下较好的结果: ,r=p,q,c是常数。1998年,杨必成和Debnath给出了另一形式的带权函数的Hardy-Hilbert不等式: 除了上面所述以外,杨还有以下结果: 若把s(n,r)在上述表达式变为 ,会得到另一些结果.21世纪初,谭立通过引入一个形如 的权系数改进了不等式(3),若, 那么, 当中=ln2-13/48+/1920(0<<1),它是与r无关的最佳常数。并得到下面推论:设 ,当q充分大时,有 当中 引进适当的参数会使学习和研究对象更具概括性,也是常用的一种方法。在此部分,总结一下具广义性的含参数形式的Hilbert不等式.最近,就关于离散形式的Hilbert不等式,杨必成先引入参数A,B及λ从而不等式(1)得以拓展,他建立了如下新的不等式: < A,B>0,0<λ≤2,B(p,q)是beta函数而常数 是最佳,杨更得到如下结果: < A,B,C>0, ,0<λ≤2, 也被证明为最佳。对不等式(4),杨和Debnath给出一个推广: < ,常数 = 为最佳,其中,2-min(p,q)< 2,B(m,n)是beta函数。最近,匡继昌和Debnath给出一般形式的Hardy-Hilbert不等式: , p>1,1/p+1/q=1,1/2<min(p,q),K(x,y)是非负次数为-t(t>0)的齐次函数。若在(0,+∞)上有四阶连续微商,当n=1,2,3,4, ,当m=0,1,y+ <+ =p,q那么 < ,其中 = >0,r=p,q。更新的是,考虑不等式(3)和(4),杨和Debnath建立了含参数A,B,λ的新不等式: 常数因子3 为最佳。特别的,(1) λ=1,A,B>0 (2) λ=2,A,B>0 (3) 2-min{p,q}<λ≤2,A=B=1, 以上的常数因子都是最佳。以另外方式引入参数λ,杨得出以下结果: 常数因子π/(λsinπ/p)为最佳。特别地,(1) λ=1, (2) p=q=λ=2, 以上不等式的常数因子都是最佳。再新,匡继昌建立一个新的Hilbert不等式的一般形式 1/p+1/q=1,对每个正整数N<+∞,N=+∞,定义: 若1

先介绍定积分的历史背景!然后综合你的参考文献,说下你的文献里的研究现状!然后,你说下你发现这些文献少了些什么(比如,针对性不够,不够系统等等)然后,你就说你要在这些文献的基础上,做出什么样的研究(比如,你要用某某方法证明“定积分不等式”,当然,不一定要你的证明是最好的!但你一定要保证,这种证法是前所未有,同时,你还要举事例说明你的证法的应用方面的优越性)

1.The existence of time delay would deteriorate the performance of system or even be the important source of instability.     时滞的存在可能会破坏系统性能,甚至造成不稳定 2.Time delays are frequently encountered in many fields of science and engineering, and they are often a source of degradation in system performance or instability.     时滞现象频繁出现在许多科学和工程的领域中,并且它通常是导致系统性能下降或不稳定的原因。     3. In both delayed control and delayed measurement, the delay is usually considered undesirable since it has the tendency to deteriorate the system performance or even destabilize the system.     在具有延时的控制和测量中,时滞是不受待见的,因为它具有使系统性能恶化甚至使系统不稳定的趋势。 4. The last decade has shown an increasing research activity on time-delay and/or sampled-data systems analysis and control due to both emerging adapted theoretical tools and also practical issues in the engineering field and information technology (see Sipahi, Niculescu, Abdallah, Michiels, and Gu (2011) and Zhang, Branicky, and Phillips (2001) and references therein).     在过去的十年中,由于出现了新的适应性理论工具以及工程领域和信息技术领域的实际问题,因此在时延和/或采样数据系统分析和控制方面的研究活动不断增加(请参见Sipahi,Niculescu,Abdallah,Michiels ,以及Gu(2011)和Zhang,Branicky和Phillips(2001)以及其中的参考文献)。 5.Recently, there has been rapidly growing interest in the stability of the system with time-varying delays, which has strong background in engineering field , such as a networked control system, see  for example [1,2]. 最近,时滞系统的稳定性问题引起了广泛的关注,这在工程领域有很强的背景,如网络控制系统 6.The derived delay-dependent criteria based on the LKF approach are usually expressed in forms of linear matrix inequalities (LMIs), whose conservatism is often judged by the upper bound of the time-varying delay.1.The method of Lyapunov-Krasovskii function (LKF) is one of the most popular approaches. In LKF, some useful terms are not ignored but considered, which makes the result much less conservative.     LF泛函方法是重要的方法。考虑一些被忽略的项,能够降低保守性1. Delays can cause oscillations or bad performance in a system. This makes it necessary to study stability of time-delayed systems. In addition to stability, for some applications, it may be crucial to determine the convergence rate or the transient decaying rate of system states.     时滞会产生差的系统性能。研究时滞系统是必要的。除了稳定性以外,对于某些应用而言,确定系统状态的收敛速率或瞬态衰减速率可能至关重要。 1. Cross-coupling control idea is widely used to design the synchronization  controller,  which  can  be  seen  in literatures[2–8,11,13–17,20,22].     交叉控制思想已经广泛被用于设计同步控制器,如文献[2-8] 2. Steel rolling mill control  is an example of measurement delay, which is found in Sbarbaro-Hofer [240].     轧机控制是测量延迟的一个例子,可以在Sbarbaro Hofer[240]中找到。 3. Analysis of the delayed resonator  as well as  its applications  are reported  in [216, 217, 63, 125].     [216,217,63,125]对延迟谐振器及其应用进行了的分析。 4. For example, the finite dimensional systems could represent a dynamic controller for a system modeled by a PDE ( see d’Andréa Novel, Boustany, Conrad, and Rao (1994), Krstic (2009) and references therein ).     例如,有限维系统可以代表由PDE建模的系统的动态控制器(请参见d'AndréaNovel,Boustany,Conrad和Rao(1994),Krstic(2009)及其参考)。 5. Instead , a system of ordinary differential equations (ODEs) can model a component coupled to a phenomenon described by PDEs as in Daafouz, Tucsnak, and Valein (2014).     相反,如Daafouz,Tucsnak和Valein(2014)所述,常微分方程组(ODE)可以对与PDE描述的现象耦合的组件进行建模。 6. In the past few decades, fruitful results have been obtained for the robust stability of uncertain systems with time-varying delays by using the LKF approach.     过去几十年,时滞不确定系统的鲁棒稳定性已经取得丰硕研究成果,通过使用LKF方法 7.The core idea behind an event-triggered control is that the update of control commands is only executed after the occurrence of an event rather than the lapse of time in a periodic fashion注意:介绍具体的现有研究工作,不是简单的堆叠,需要有层次,逻辑,目的。简单的说,要通过现有的结果,凸显出研究的必要性和重要性。基本上可以采取总—分—总的结构,     总:研究的主要方向,思路,方法     分:针对不同的方向,列举参考文献;注意不应随意列举,要有代表性,并且对文章有所点评,指出不足或优点。这部分的目的仍然是要突出             自己文章的优越性。     总:综上所述,本文研究的目的是为了解决现有文献中的哪些不足 1. The time domain method based on Lyapunov stability theory is abroad exploited . Among some inequality-based stability conditions, the linear matrix inequality (LMI) approach becomes a powerful and popular means to tackle the stability issues of power systems with  time-varying delays (see [4], [6], and [9]–[12]).     基于Lyapunov稳定理论的时域方法广泛研究。一些基于不等式的稳定性条件中,线性矩阵不等式的方法是解决具有时变时滞电力系统稳定问题的有效工具 2. To handle the time-varying and random delays, the time domain indirect methods based on Lyapunov stability theory and linear matrix inequality techniques (LMIs) have been proposed as an effective method to obtain approximate value of the delay margin [13].     为了处理时变时滞和随机时滞,基于Lyapunov稳定理论的时域直接方法和线性矩阵不等式技术已经成为获得时滞裕度近似值的一个有效方法 3. In order to diminish the conservatism for the stability conditions of time-varying delay systems, many approaches were developed. The main efforts have been focused on two aspects: one is the techniques of constructing L–K functional , such as delay-division functional, functional with matrices dependent on the time delays [13], functional including the ones with triple-integral terms [14], and quadratic terms which is multiplied by a higher degree scalar function [15] .The other is the analyzing methods for estimating the derivatives of L–K functionals with respect to time , such as improved majorization technique, free weighting matrix method [16], integral inequality including Jensen inequality [11], Wirtinger inequality [17], auxiliary function-based integral inequality [18],  and convex combination ideas incorporating linear convex analysis [19], reciprocal convex technique [20], and quadratic convex approach [21].     许多方法被用来减少时变时滞系统稳定判据的保守性。主要工作集中在两个方面:一是L-K泛函的构建,如:时滞分割函数,其函数矩阵决于时滞[13],具有三重积分项的函数[14],和高阶标量函数相乘的二次项[15]。另一方面是估计L-K泛函时间导数的分析方法,如:改进的专业化技术,自由加权矩阵方法[16],Jensen不等式[11],Wirtinger不等式[17],基于辅助函数的积分不等式[18]以及结合线性凸分析的凸组合思想[19] ,倒凸技术[20]和二次凸方法[21]。 4. The last decade has seen a tremendous emergence of research devoted to the construction of Lyapunov–Krasovskii functionals which aims at reducing the inherent conservatism of this approach.     过去10年中,大量研究致力于构造L-K泛函,旨在减少固有保守性 4.1 Apart the choice of the functional, an important source of conservatism relies also on the way to bound some cross terms arisen when manipulating the derivative of the Lyapunov–Krasovskii functional.     除了泛函的选择,保守性的另一个来源是处理L-K泛函导数时产生的交叉项 1. Zhang et al. [1] have developed chaotic speed synchronization controller for multiple induction motors by using stator flux regulation. xx[1] 利用 定子磁通量调节技术 开发 了 用于 多个感应电动机的混沌速度同步控制器。 2. Starting from a semi-group modeling of the PDEs, the authors of Gahlawat and Peet (2017) construct a very general Lyapunov functional whose parameters are optimized via a sum of square procedure ( see also Ahmadi, Valmorbida, & Papachristodoulou, 2016).     起始于PDEs的半群模型,(2017)中的作者构建了一个非常一般化的Lyapunov 泛函,其参数通过平方和流程优化 1. In combination with a simple choice of Lyapunov–Krasovskii functionals, this inequality leads to new stability criteria for linear time-delay and sampled-data systems.     结合简单选择的Lyapunov–Krasovskii函数,这种不等式能够得到线性时滞和采样数据系统的新稳定性标准。1. 在现有文献中      reported in the literature 2. 近年来/多年        in the last decade  3.研究结果被推广  The result of this study can be generalized for …   4. 本文旨在讨论      It is the aim(intend, purpose) of this paper to discuss (present, describe)    5. 已经得到             have concluded, gained, obtained, yielded, arrived at, generated, acquired, achieved 6. 结果表明             This result(fact, demonstration, illustration, classification, comparison, analyses) gives (shows)  7.公式是基于          The formulas is derived for … according to … 1. Do not hesitate to contact me if I can be of any assistance.

定积分的应用论文答辩稿

学位申请者为申请学位而提出撰写的学术论文叫学位论文。这种论文是考核申请者能否被授予学位的重要条件。学位申请者如果能通过规定的课程考试,而论文的审查和答辩合格,那么就给予学位。如果说学位申请者的课程考试通过了,但论文在答辩时被评为不合格,那么就不会授予他学位。有资格申请学位并为申请学位所写的那篇毕业论文就称为学位论文,学士学位论文。学士学位论文既是学位论文又是毕业论文。学术论文是某一学术课题在实验性、理论性或观测性上具有新的科学研究成果或创新见解的知识和科学记录;或是某种已知原理应用于实际中取得新进展的科学总结,用以提供学术会议上宣读、交流或讨论;或在学术刊物上发表;或作其他用途的书面文件。在社会科学领域,人们通常把表达科研成果的论文称为学术论文。 学术论文具有四大特点:①学术性 ②科学性 ③创造性 ④理论性一、学术性学术论文的科学性,要求作者在立论上不得带有个人好恶的偏见,不得主观臆造,必须切实地从客观实际出发,从中引出符合实际的结论。在论据上,应尽可能多地占有资料,以最充分的、确凿有力的论据作为立论的依据。在论证时,必须经过周密的思考,进行严谨的论证。二、科学性科学研究是对新知识的探求。创造性是科学研究的生命。学术论文的创造性在于作者要有自己独到的见解,能提出新的观点、新的理论。这是因为科学的本性就是“革命的和非正统的”,“科学方法主要是发现新现象、制定新理论的一种手段,旧的科学理论就必然会不断地为新理论推翻。”(斯蒂芬·梅森)因此,没有创造性,学术论文就没有科学价值。三、创造性学术论文在形式上是属于议论文的,但它与一般议论文不同,它必须是有自己的理论系统的,不能只是材料的罗列,应对大量的事实、材料进行分析、研究,使感性认识上升到理性认识。一般来说,学术论文具有论证色彩,或具有论辩色彩。论文的内容必须符合历史 唯物主义和 唯物辩证法,符合“实事求是”、“有的放矢”、“既分析又综合” 的科学研究方法。四、理论性指的是要用通俗易懂的语言表述科学道理,不仅要做到文从字顺,而且要准确、鲜明、和谐、力求生动。1.表论文的过程 投稿-审稿-用稿通知-办理相关费用-出刊-邮递样刊一般作者先了解期刊,选定期刊后,找到投稿方式,部分期刊要求书面形式投稿。大部分是采用电子稿件形式。 2.发表论文审核时间一般普通刊物(省级、国家级)审核时间为一周,高质量的杂志,审核时间为14-20天。 核心期刊审核时间一般为4个月,须经过初审、复审、终审三道程序。 3.期刊的级别问题 国家没有对期刊进行级别划分。但各单位一般根据期刊的主管单位的级别来对期刊划为省级期刊和国家级期刊。省级期刊主管单位是省级单位。国家级期刊主管单位是国家部门或直属部门。

论文答辩是一种比较正规的审查形式,有组织、有准备、有鉴定、有计划的。答辩会由校方、答辩委员会还有答辩者组成。我在此献上 毕业 答辩发言稿,希望大家喜欢。

毕业答辩发言稿一:

各位老师,上午好!

我叫赵晓琦,是土 木工 程__ 班的学生,我的论文题目为某某市八十八中学办公楼的设计。设计是在姚力老师的悉心指点下完成的,在那里我向我的老师表示深深的谢意,也向在坐各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,并对上大学来我有机会聆听教诲的各位老师表示由衷的敬意。

下面我将本论文设计的目的和主要资料向各位老师作一汇报,恳请各位老师批评指导。

首先我想简单介绍本设计。

本工程为某某市八十八中学办公楼采用多层框架结构,主体结构为6层,内外装修均为一般装修,为永久性建筑。该楼总建筑面积为3981㎡,拟建位置另行给定,抗震设防烈度为8度。

其次我想谈谈这篇论文的结构和主要资料。

毕业答辩发言稿二:

各位领导、来宾,老师、同学们:

大家上午好!

为了进一步提高广大学生的创业意识,鼓励创新观念的成长,促进同学们就业观念由“择业”向“创业”转换,促进产、学、研一体化发展,培养能够适应市场经济发展需求的骨干人才,厦门大学团委一直致力于激发大学生创新创业的热情,以“挑战杯” 创业计划 竞赛为契机,为大学生创新创业提供广阔的平台。

“恒安杯”厦门大学第五届创业计划竞赛从去年5月启动至今,共吸引了1000多名本科生、硕士生和博士生参加,申报了65个项目。有30支团队从去年10月的初赛中脱颖而出。经过初赛、复赛和决赛三个阶段的培训和角逐,目前闯入决赛的9支队伍今天在此进行决赛。现在我简要向各位介绍一下本次竞赛的举办情况。

毕业论文答辩流程

1、 自我介绍 :自我介绍作为答辩的发言稿,包括姓名、学号、专业。介绍时要举止大方、态度从容、面带微笑,礼貌得体的介绍自己,争取给答辩小组一个良好的印象。好的开端就意味着成功了一半。

2、答辩人陈述:收到成效的自我介绍只是这场答辩的开始,接下来的自我陈述才进入正轨。自述的主要内容包括论文标题;课题背景、选择此课题的原因及课题现阶段的发展情况;有关课题的具体内容,其中包括答辩人所持的观点看法、研究过程、实验数据、结果;答辩人在此课题中的研究模块、承担的具体工作、解决方案、研究结果。 文章 的创新部分;结论、价值和展望; 自我评价 。

3、提问与答辩:答辩教师的提问安排在答辩人自述之后,是答辩中相对灵活的环节,有问有答,是一个相互交流的过程。一般为3个问题,采用由浅入深的顺序提问,采取答辩人当场作答的方式。

4、 总结 :上述程序一一完毕,代表答辩也即将结束。答辩人最后纵观答辩全过程,做总结陈述,包括两方面的总结:毕业设计和论文写作的体会;参加答辩的收获。答辩教师也会对答辩人的表现做出点评:成绩、不足、建议。

5、致谢:感谢在毕业设计论文方面给予帮助的人们并且要礼貌地感谢答辩教师。

毕业答辩发言稿 范文 相关文章:

★ 毕业论文答辩发言稿精选5篇

★ 毕业论文答辩演讲稿范文合集5篇

★ 毕业论文答辩发言稿精选集总5篇

★ 毕业论文答辩演讲稿范文精选5篇

★ 2020本科毕业答辩演讲稿最新范文【五篇】

★ 毕业论文答辩演讲稿范文集锦

★ 本科毕业答辩演讲稿范文

★ 毕业论文答辩发言稿精选集总

★ 毕业论文答辩演讲稿范文汇总

★ 毕业论文答辩发言稿精选合集

微分积分中值定理的应用论文答辩

1,预备知识,就是微分中值定理证明中用到的定理或定义。2,给出定理的内容,并证明,这个证明过程要你自己想,不能用别人证明过程,要不这篇论文就不是你的了,这部分也是你论文的核心和亮点。3,就是定理应用部分了。其实我觉得如果你去证明课本上的中值定理的话。这篇文章不好写,因为他已经被证明过了,你想创新比较难,我建议你改变定理的形式或改变定理的条件后,再自己给出证明过程,那这篇文章就很不错了。

微分中值定理的应用如下:

微分中值定理是微分学理论的重要组成部分,在导数应用中起着桥梁作用,也是研究函数变化形态的纽带,因而在微分学中占有很重要的地位。

通过微分学基本定理的介绍,揭示函数与其导数之间的关系,在知识结构和思想体 系中,建立起应用导数进一步研究函数性质的桥梁。 在各类大型考试中,微分中值定理占有很重要的位置,是重要的考点,常 以该定理的证明及应用出现,涉及一些理论分析和证明,还有在极值问题中的实 际应用,因而对其进行较深层次的挖掘与探讨就显得很有必要。

国内外现状和发展趋势与研究的主攻方向人们对微分中值定理的研究,从微积分建立之后就开始了。 1637年,著名 法国数学家费马在《求最大值和最小值的方法》中给出费马定理。 教科书中通常 将它称为费马定理。

  • 索引序列
  • 定积分不等式论文答辩ppt
  • 不定积分计算方法论文答辩ppt
  • 积分不等式论文参考文献
  • 定积分的应用论文答辩稿
  • 微分积分中值定理的应用论文答辩
  • 返回顶部