首页 > 学术发表知识库 > 光谱的主要研究论文

光谱的主要研究论文

发布时间:

光谱的主要研究论文

我这里有很多材料,欢迎来537寻找!

稀土掺杂氟化物多波长红外显示材料的研究摘 要本文简单介绍了稀土发光原理、上转换发光材料的大致发展史、红外上转换发光材料的应用以及当前研究现状。以PbF2为基质材料,ErF3为激活剂,YbF3为敏化剂,采用高温固相反应法制备了PbF2: Er,Yb上转换发光材料。重点讨论了制备过程中,制备工艺中的烧结时间、烧结温度对红外激光显示材料发光效果的影响。研究了Er3+/Yb3+发光系统在1064nm激光激发下的荧光光谱和上转换发光的性质。实验表明,在1064nm激光激发下,材料可以发射出绿色和红色荧光,是一种新型的红外激光显示材料。关键字:1064nm 上转换 红外激光显示 Er3+/Yb3+AbstractThis paper simply described the rare earth luminescence mechanism, the development of up-conversion materials and their applications were systematically explained. Present situation of the research on infrared up-conversion luminescence is also presented. PbF2 as matrix, ErY3 as activator and YbF3 as sensitizer were adopted to synthesize PbF2: Er,Yb up-conversion material with high temperature solid-phase reaction. A great emphasize was paid on the factors that effect on the luminescence properties of infrared laser displayed materials such as sinter temperature, time of sinter. The luminescence system of Er3+/Yb3+, their fluorescence spectrum and their character of up-conversion with 1064nm LD as an excitation source were studied. The experimental results that intense green and wed up-conversion emissions were observed under 1064nm LD excitation, which is a new type of infrared laser displayed materials.Key Words: 1064nm Up-conversion Infrared laser displayed materials Er3+/Yb3+目 录摘要Abstract第一章 绪论 11.1 稀土元素的光谱理论简介 11.1.1 稀土元素简介 11.1.2 稀土离子能级 11.1.3 晶体场理论 21.1.4 基质晶格的影响 21.2 上转换发光材料的发展概况 31.3 上转换发光的基本理论 41.3.1 激发态吸收 41.3.2 光子雪崩上转换 41.3.3 能量传递上转换 51.4 敏化机制与掺杂方式 61.4.1 敏化机制 61.4.2 掺杂方式 71.5 上转换发光材料的应用 81.6 本论文研究目的及内容 8第二章 红外激光显示材料的合成与表征 102.1 红外激光显示材料的合成 102.1.1 实验药品 102.1.2 实验仪器 102.1.3 样品的制备 112.2 红外激光显示材料的表征 122.2.1 XRD 122.2.2 荧光光谱 12第三章 结果与讨论 143.1 基质材料的确定 143.2 助熔剂的选择 153.3 烧结时间的确定 153.4 烧结温度的确定 163.5 掺杂浓度的确定 17结 论 21参考文献 22致 谢 23第一章 绪论1.1 稀土元素的光谱理论简介1.1.1 稀土元素简介稀土元素是指周期表中IIIB族,原子序数为21的钪(Sc):39的钇(Y)和原子序数57至71的镧系中的镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),共17个元素[1]。稀土元素的原子具有未充满的受到外界屏蔽的4f和5d电子组态,因此具有丰富的电子能级和长寿命激发态,能级跃迁通道多达20余万个,可以产生多种多样的辐射吸收和发射。稀土化合物发光是基于它们的4f电子在f-f组态之内或f-d组态之间的跃迁。稀土发光材料具有许多优点:(1)与一般元素相比,稀土元素4f电子层构型的特点,使其化合物具有多种荧光特性;(2)稀土元素由于4f电子处于内存轨道,受外层s和P轨道的有效屏蔽,很难受到外部环境的干扰,4f能级差极小,f-f跃迁呈现尖锐的线状光谱,发光的色纯度高;(3)荧光寿命跨越从纳秒到毫秒6个数量级;(4)吸收激发能量的能力强,转换效率高;(5)物理化学性质稳定,可承受大功率的电子束、高能辐射和强紫外光的作用。1.1.2稀土离子能级稀土离子具有4f电子壳层,但在原子和自由离子的状态由于宇称禁戒,不能发生f-f电子跃迁[3&7]。在固体中由于奇次晶场项的作用宇称禁戒被解除,可以产生f-f跃迁,4f轨道的主量子数是4,轨道量子数是3,比其他的s,p,d轨道量子数都大,能级较多。除f-f跃迁外,还有4f-5d,4f-6s,4f-6p电子跃迁。由于5d,6s,6p能级处于更高的能级位置,所以跃迁波长较短,除个别离子外,大多数都在真空紫外区域。由于4f壳层受到5s2,5p6壳层的屏蔽作用,对外场作用的反应不敏感,所以在固体中其能级和光谱都具有原子状态特征。因此,f-f跃迁的光谱为锐线,4f壳层到其他组态的跃迁是带状光谱,因为其他组态是外壳层,受环境影响较大。稀土离子在化合物中一般出现三价状态,在可见和红外光区观察的光谱大都属于4fN组态内的跃迁,在给定组态后确定光谱项的一般方法是利用角动量耦合和泡利原理选出合理的光谱项,但这种方法在电子数多,量子数大时,相当麻烦且容易出错。所以,对稀土离子不太适合。利用群论方法,采用U7>R7>G2>R3群链的分支规则可以方便地给出4fN组态的全部正确的光谱项,通常用大写的英文字母表示光谱项的总轨道角动量的量子数的数目,如S,P,D,F,G,H,I,K,L,M,N,O,Q……分别表示总轨道角动量的量子数为0,1,2,3,4,5,6,7,8,9,10,11,12,……,25+l表示光谱项的多重性,S是总自旋量子数。在光谱学中,用符号2S+1L表示光谱项。1.1.3 晶体场理论晶体场理论认为,当稀土离子掺入到晶体中,受到周围晶格离子的影响时,其能级不同自由离子的情况。这个影响主要来自周围离子产生的静电场,通常称为晶体场[2]。晶体场使离子的能级劈裂和跃迁几率发生变化。稀土离子在固体中形成典型的分立发光中心。在分立发光中心中,参与发光跃迁的电子是形成中心离子本身的电子,电子的跃迁发生在离子本身的能级之间。中心的发光性质主要取决于离子本身,而基质晶格的影响是次要的。稀土离子的4f电子能量比5s,5p轨道高,但是5s,5p轨道在4f轨道的外面,因而5s,5p轨道上的电子对晶体场起屏蔽作用,使4f电子受到晶体场的影响大大减小。稀土离子4f电子受到晶体场的作用远远小于电子之间的库仑作用,也远远小于4f电子的自旋—轨道作用。考虑到电子之间的库仑作用和自旋—轨道作用,4f电子能级用2J+I LJ表示。晶体场将使具有总角动量量子数J的能级分裂,分裂的形式和大小取决于晶体场的强度和对称性。稀土离子4f能级的这种分裂,对周围环境(配位情况、晶场强度、对称性)非常敏感,可作为探针来研究晶体、非晶态材料、有机分子和生物分子中稀土离子所在局部环境的结构,且2J+I LJ能级重心在不同的晶体中大致相同,稀土离子4f电子发光有特征性,因而很容易根据谱线位置辨认是什么稀土离子在发光。1.1.4 基质晶格的影响基质晶格对f→d跃迁的光谱位置有着强烈的影响,另外其对f→f跃迁的影响表现在三个方面:(1)可改变三价稀土离子在晶体场所处位置的对称性,使不同跃迁的谱强度发生明显的变化;(2)可影响某些能级的分裂;(3)某些基质的阴离子团可吸收激发能量并传递给稀土离子而使其发光,即基质中的阴离子团起敏化中心的作用。特别是阴离子团的中心离子(Me)和介于中间的氧离子O2-以及取代基质中阳离子位置的稀土离子(RE)形成一直线,即Me-O-RE接近180°时,基质阴离子团对稀土离子的能量传递最有效。1.2 上转换发光材料的发展概况发光是物体内部以某种方式吸收的能量转换为光辐射的过程。发光学的内容包括物体发光的条件、过程和规律,发光材料与器件的设计原理、制备方法和应用,以及光和物质的相互作用等基本物理现象。发光物理及其材料科学在信息、能源、材料、航天航空、生命科学和环境科学技术中的应用必将促进光电子产业的迅猛发展,这对全球的信息高速公路的建设以及国家经济和科技的发展起着举足轻重的推动作用。三价镧系稀土离子具有极丰富的电子能谱,因为稀土元素原子的电子构型中存在4f轨道,为多种能级跃迁创造了条件,在适当波长的激光的激发下可以产生众多的激光谱线,可从红外光谱区扩展到紫外光谱区。因此,稀土离子发光研究一直备受人们的关注。60年代末,Auzel在钨酸镱钠玻璃中意外发现,当基质材料中掺入Yb3+离子时,Er3+、Ho3+和Tm3+稀土离子在红外光激发下可发出可见光,并提出了“上转换发光”的观点[5&4]。所谓的上转换材料就是指受到光激发时,可以发射比激发波长短的荧光的材料。其特点是激发光光子能量低于发射光子的能量,这是违反Stokes定律的。因此上转换发光又称为“反Stokes发光”。从七十年代开始,上转换的研究转移到单频激光上转换。到了八十年代由于半导体激光器泵浦源的发展及开发可见光激光器的需求,使其得到快速发展。特别是近年来随着激光技术和激光材料的进一步发展,频率上转换在紧凑型可见激光器、光纤放大器等领域的巨大应用潜力更激起广大科学工作者的兴趣,把上转换发光的研究推向高潮,并取得了突破性实用化的进展。随着频率上转换材料研究的深入和激光技术的发展,人们在考虑拓宽其应用领域和将已有的研究成果转换成高科技产品。1996年在CLEO会议上,Downing与Macfarlanc等人合作提出了三色三维显示方法,双频上转换三维立体显示被评为1996年物理学最新成就之一,这种显示方法不仅可以再现各种实物的立体图像,而且可以随心所欲的显示各类经计算机处理的高速动态立体图像,具有全固化、实物化、高分辨、可靠性高、运行速度快等优点[15]。上转换发光材料的另一项很有意义的应用就是荧光防伪或安全识别,这是一个应用前景极其广阔的新兴研究方向。由于在一种红外光激发下,发出多条可见光谱线且各条谱线的相对强度比较灵敏地依赖于上转换材料的基质材料与材料的制作工艺,因而仿造难、保密强、防伪效果非常可靠。目前,研究的稀土离子主要集中在Nd3+,Er3+,Ho3+,Tm3+和Pr3+等三价阳离子。Yb3+离子由于其特有的能级特性,是一种最常用的敏化离子。一般来说,要制备高效的上转换材料,首先要寻找合适的基质材料,当前研究的上转换材料多达上百种,有玻璃、陶瓷、多晶粉末和单晶。其化合物可分为:(1)氟化物;(2)氧化物;(3)卤氧化物;(4)硫氧化物;(5)硫化物等。迄今为止,上转换发光研究取得了很大的进展,人们已在氟化物玻璃、氟氧化物玻璃及多种晶体中得到了不同掺杂稀土离子的蓝绿上转换荧光。1.3 上转换发光的基本理论通过多光子机制把长波辐射转换成短波辐射称为上转换,其特点是吸收光子的能量低于发射光子的能量[2&8]。稀土离子上转换发光是基于稀土离子4f电子能级间的跃迁产生的。由于4f外壳层电子对4f电子的屏蔽作用,使得4f电子态间的跃迁受基质的影响很小,每种稀土离子都有其确定的能级位置,不同稀土离子的上转换发光过程不同。目前可以把上转过程归结于三种形式:激发态吸收、光子雪崩和能量传递上转换。1.3.1激发态吸收激发态吸收(Excited Stated Absorption简写为ESA)是上转换发光中的最基本过程,如图1-1所示。首先,发光中心处于基态能级E0的电子吸收一个ω1的光子,跃迁到中间亚稳态E1上,E1上的电子又吸收一个ω2光子,跃迁到高能级E2上,当处于能级E2上的电子向基态跃迁时,就发射一个高能光子。图1-1 上转换的激发态吸收过程1.3.2 光子雪崩上转换光子雪崩上转换发光于1979年在LaCl3∶Pr3+材料中首次发现。1997年,N. Rakov等报道了在掺Er3+氟化物玻璃中也出现了雪崩上转换。由于它可以作为上转换激光器的激发机制,而引起了人们的广泛的注意。“光子雪崩”过程是激发态吸收和能量传输相结合的过程,如图1-2所示,一个四能级系统,Mo、M1、M2分别为基态和中间亚稳态,E为发射光子的高能级。激发光对应于M1→E的共振吸收。虽然激发光光子能量同基态吸收不共振,但总会有少量的基态电子被激发到E与M2之间,而后弛豫到M2上。M2上的电子和其他离子的基态电子发生能量传输I,产生两个位于M1的电子。一个M1的电子在吸收一个ω1的光子后激发到高能级E。而E能级的电子又与其他离子的基态相互作用,产生能量传输II,则产生三个为位于M1的电子,如此循环,E能级上的电子数量像雪崩一样急剧地增加。当E能级的电子向基态跃迁时,就发出能量为ω的高能光子。此过程就为上转换的“光子雪崩”过程。图1-2 光子雪崩上转换1.3.3能量传递上转换能量转移(Energy Transfer,简写成ET)是两个能量相近的激发态离子通过非辐射过程藕合,一个回到低能态,把能量转移给另一个离子,使之跃迁到更高的能态。图1-3列出了发生能量传递的几种可能途径:(a)是最普通的一种能量传递方式,处于激发态的施主离子把能量传给处于激发态的受主离子,使受主离子跃迁到更高的激发态去;(b)过程称为多步连续能量传递,在这一过程中,只有施主离子可以吸收入射光子的能量,处于激发态的施主离子与处于基态的受主离子间通过第一步能量传递,把受主离子跃迁到中间态,然后再通过第二步能量传递把受主离子激发到更高的激发态;(c)过程可命名为交叉弛豫能量传递(Cross Relaxation Up-conversion,简称CR),这种能量传递通常发生在相同离子间,在这个过程中,两个相同的离子通过能量传递,使一个离子跃迁到更高的激发态,而另一个离子弛豫到较低的激发态或基态上去;(d)过程为合作发光过程的原理图,两个激发态的稀土离子不通过第三个离子的参与而直接发光,他的一个明显的特征是没有与发射光子能量匹配的能级,这是一种奇特的上转换发光现象;(e)过程为合作敏化上转换,两个处于激发态的稀土离子同时跃迁到基态,而使受主离子跃迁到较高的能态。(a)普通能量传递 (b)多步连续能量传递(c)交叉弛豫能量传递 (d)合作发光能量传递(e)合作敏化上转换能量传递图1-3 几种能量传递过程的示意图稀土离子的上转换发光都是多光子过程,在多光子过程中,激发光的强度与上转换荧光的强度有如下关系:Itamin ∝ Iexcitationn其中Itamin表示上转换荧光强度,Iexcitation表示激发光强度,在双对数坐标下,上转换荧光的强度与激发光的强度的曲线为一直线,其斜率即为上转换过程所需的光子数n,这个关系是确定上转换过程是几光子过程的有效方法。1.4 敏化机制与掺杂方式1.4.1 敏化机制通过敏化作用提高稀土离子上转换发光效率是常用的一种方法[9]。其实质是敏化离子吸收激发能并把能量传递给激活离子,实现激活离子高能级的粒子数布居,从而提高激活离子的转换效率,这个过程可以表述如下:Dexc+A→D+AexcD表示施主离子,A是受主离子,下标“exc”表示该离子处于激发态。Yb3+离子由于特有的能级结构,是最常用的也是最主要的一种敏化离子。(1)直接上转换敏化对与稀土激活中心(如Er3+,Tm3+,Ho3+)和敏化中心Yb3+共掺的发光材料,由于Yb3+的2F5/2能级在910-1000nm均有较强吸收,吸收波长与高功率红外半导体激光器的波长相匹配。若用激光直接激发敏化中心Yb3+,通过Yb3+离子对激活中心的多步能量传递,可再将稀土激活中心激发至高能级而产生上转换荧光,这类过程会导致上转换荧光明显增强,称之为直接上转换敏化。图1-4以Yb3+/Tm3+共掺杂为例给出了该激发过程的示意图。图1-4 直接上转换敏化(2)间接上转换敏化由于Yb3+离子对910-1000 nm间泵浦激光吸收很大,泵浦激光的穿透深度非常小,因此虽然在表面的直接上转换敏化能极大的提高上转换效率,但它却无法应用到上转换光纤系统中。针对这种情况,国际上与1995-1996年首次提出了“间接上转换敏化”方法[7]。间接上转换敏化的模型首先在Tm3+/Yb3+双掺杂体系中提出的:当激活中心为Tm3+时,如果激发波长与Tm3+的3H6→3H4吸收共振,激活中心Tm3+就被激发至3H4能级,随后处于3H4能级的Tm3+离子与位于2F5/2能级的Yb3+离子发生能量传递,使Yb3+离子的2F5/2能级上有一定的粒子数布居。然后处于激发态2F5/2的Yb3+离子再与Tm3+进行能量传递,实现Tm3+的1G4能级的粒子数布居,这样就通过Tm3+→Yb3+→Tm3+献的能量过程间接地把Tm3+离子激发到了更高能级1G4。从而导致了Tm3+离子的蓝色上转换荧光。图1-5给出了间接上转换敏化的示意图。考虑到稀土离子的敏化作用与前述的上转换机理,在实现上转换发光的掺杂方式通常要考虑如下几点:(1)敏化离子在激发波长处有较大的吸收截面和较高的掺杂浓度;(2)敏化离子与激活离子之间有较大的能量传递几率;(3)激活离子中间能级有较长的寿命。图1-5 间接上转换敏化1.4.2 掺杂方式表1-1给出了当前研究比较多的掺杂体系,表中同时列出了某一掺杂体系对应的激发波长、基质材料、敏化机制等。表1-1 常见的掺杂体系稀土离子组合 激发波长 基质材料 敏化机制单掺杂 Er3+ 980nm ZrO2纳米晶体 —Nd3+ 576nm ZnO–SiO2–B2O3 —Tm3+ 660nm AlF3/CaF2/BaF2/YF3 —双掺杂 Yb3+:Er3+ 980nm Ca3Al2Ge3O12玻璃 直接敏化Yb3+:Ho3+ 980nm YVO4 直接敏化Yb3+:Tm3+ 800nm 氟氧化物玻璃 间接敏化Yb3+:Tb3+ 1064nm 硅sol–gel玻璃 合作敏化Yb3+:Eu3+ 973nm 硅sol–gel玻璃 合作敏化Yb3+:Pr3+ 1064nm LnF3/ZnF2/SrF2 BaF2/GaF2/NaF 直接敏化Nd3+:Pr3+ 796nm ZrF4基玻璃 直接敏化三掺杂 Yb3+: Nd3+ :Tm3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Nd3+ :Ho3+ 800nm ZrF4基玻璃 间接敏化Yb3+: Er3+ :Tm3+ 980nm PbF2:CdF2玻璃 直接敏化1.5 上转换发光材料的应用稀土掺杂的基质材料在波长较长的红外光激发下,可发出波长较短的红、绿、蓝、紫等可见光。通常情况下,上转换可见光包含多个波带,每个波带有多条光谱线,这些谱线的不同强度组合可合成不同颜色的可见光[7]。掺杂离子、基质材料、样品制备条件的改变,都会引起各荧光带的相对强度变化,不同样品具有独特的谱线强度分布与色比关系(我们定义上转换荧光光谱中各荧光波段中的峰值相对强度比称为色比,通常以某以一波段的峰值强度为标准)。因而上转换发光材料可应用到荧光防伪或安全识别上来。上转换发光材料在荧光防伪或安全识别应用上的一个研究重点是制备上转换效率高,具有特色的防伪材料,实现上转换荧光防伪材料能够以配比控制色比;也就是通过调整稀土离子种类、浓度以及基质材料的种类、结构和配比,达到控制色比关系。1.6 本论文研究目的及内容Nd:YAG激光器发出1064nm的激光,在激光打孔、激光焊接、激光核聚变等领域具有广泛的应用价值,是最常用的激光波段。然而,由于人眼对1064nm的红外光不可见,因此,需要采用对1064nm激光响应的红外激光显示材料制备的显示卡进行调准和校正。本论文采用氟化物作为基质,掺杂稀土离子,通过配方和工艺研究,制备对1064nm响应的红外激光显示材料。研究组分配比、烧结温度、气氛和时间等对粉体性能的影响。并采用XRD和荧光光谱分析等测试手段对粉体进行表征。确定最佳烧结温度、组分配比,最终获得对1064nm具有优异红外转换性能的红外激光显示材料。第二章 红外激光显示材料的合成与表征经过多年研究,红外响应发光材料取得了很大进展,现已实现了氟化物玻璃、氟氧化物玻璃、及多种晶体中不同稀土离子掺杂的蓝绿上转换荧光。然而上转换荧光的效率距离实际实用还有很大的差距,尤其是蓝光,其效率更低。因此,寻找新的红外激光显示材料仍在研究之中,本文主要研究对1064nm响应的发光材料。本章研究了双掺杂Er3+/Yb3+不同基质材料的蓝绿上转换荧光,得到了发光效果较好的稀土掺杂氟化物的红外激光显示材料,得到了一些有意义的研究结果。2.1 红外激光显示材料的合成2.1.1 实验药品(1)合成材料所用的化学试剂主要有:LaF3,BaF2,Na2SiF6,NaF,氢氟酸,浓硝酸等。稀土化合物为Er2O3、Yb2O3,纯度在4N以上。(2)ErF3、YbF3的配制制备Yb3+/Er3+共掺氟化物的红外激光显示材料使用的ErF3,YbF3是在实验室合成的。实验采用稀土氧化物,称取适量的Er2O3,Yb2O3放在烧杯1和烧杯2中,滴加稍微过量的硝酸(浓度约为8mol/L),置于恒温加热磁力搅拌器上搅拌,直至烧杯1中出现粉红色溶液、烧杯2中出现无色溶液停止。其化学反应如下:Er2O3+6HNO3→2Er(NO3)3+3H2OYb2O3+6HNO3→2Yb(NO3)3+3H2O再往烧杯1和烧杯2中分别都加入氢氟酸,烧杯1中生成粉红色ErF3沉淀,烧杯2中生成白色絮状YbF3沉淀,其化学反应如下:Er(NO3)3+3HF→ErF3↓+3HNO3Yb(NO3)3+3HF→YbF3↓+3HNO3生成的ErF3、YbF3沉淀使用循环水式多用真空泵进行分离,并多次使用蒸馏水进行洗涤,将从溶液中分离得到的沉淀倒入烧杯放入电热恒温干燥箱,在100℃条件下保温12小时,得到了实验所需的ErF3、YbF3,装入广口瓶中备用。2.1.2 实验仪器SH23-2恒温加热磁力搅拌器(上海梅颖浦仪器仪表制造有限公司)PL 203电子分析天平(梅特勒一托多利仪器上海有限公司)202-0AB型电热恒温干燥箱(天津市泰斯特仪器有限公司)SHB-111型循环水式多用真空泵(郑州长城科工贸有限公司)WGY-10型荧光分光光度计(天津市港东科技发展有限公司)DXJ-2000型晶体分析仪(丹东方圆仪器有限公司)1064nm半导体激光器(长春新产业光电技术有限公司)4-13型箱式电阻炉(沈阳市节能电炉厂)2.1.3 样品的制备(1)实验方法本实验样品制备方法是:以稀土化合物YbF3、ErF3,基质氟化物为原料,引入适量的助熔剂,采用高温固相法合成红外激光显示材料。高温固相法是将高纯度的发光基质和激活剂、辅助激活剂以及助熔剂一起,经微粉化后机械混合均匀,在较高温下进行固相反应,冷却后粉碎、筛分即得到样品[8]。这种固体原料混合物以固态形式直接参与反应的固相反应法是制备多晶粉末红外激光显示材料最为广泛使用的方法。在室温下固体一般并不相互反应,高温固相反应的过程分为产物成核和生长两部分,晶核的生成一般是比较困难的,因为在成核过程中,原料的晶格结构和原子排列必须作出很大调整,甚至重新排列。显然,这种调整和重排要消耗很多能量。因而,固相反应只能在高温下发生,而且一般情况下反应速度很慢。根据Wagner反应机理可知,影响固体反应速度的三种重要因素有:①反应固体之间的接触面积及其表面积;②产物相的成核速度;③离子通过各物相特别是通过产物相时的扩散速度。而任何固体的表面积均随其颗粒度的减小而急剧增加,因此,在固态反应中,将反应物充分研磨是非常必要的[6]。而同时由于在反应过程中在不同反应物与产物相之间的不同界面处可能形成的物相组成是不同的,因此可能导致产物组成的不均匀,所以固态反应需要进行多次研磨以使产物组成均匀。另外,如果体系存在气相和液相,往往能够帮助物质输运,在固相反应中起到重要作用,因此在固相反应法制备发光材料时往往加入适量助熔剂。在有助熔剂存在的情况下,高温固相反应的传质过程可通过蒸发-凝聚、扩散和粘滞流动等多种机制进行。(2)实验步骤根据配方中各组分的摩尔百分含量(表3-1,表3-2,表3-3中给出了实验所需主要样品的成分与掺杂稀土离子浓度),准确计算各试剂的质量,使用电子天平精确称量后,把原料置于玛瑙研钵中研磨均匀后装入陶瓷坩埚中(粉体敦实后大概占坩埚体积的1/3),再放入电阻炉中保温一段时间。冷却之后即得到了实验所述的红外激光显示材料样品。图2-1为实验流程图:图2-1 实验流程图2.2 红外激光显示材料的表征2.2.1 XRDX射线衍射分析是当今研究晶体精细结构、物相分析、晶粒集合和取向等问题的最有效的方法之一[10&9]。通常采用粉末状晶体或多晶体为试样的X射线衍射分析被称为粉末法X射线衍射分析。1967年,Hugo M.Rietveld鉴于计算机处理大量数据的能力,在粉末中子衍射结构分析中,提出了全粉末衍射图最小二乘拟合结构修正法。1977年,Malmros等人把这个方法引入X射线粉末衍射分析中,从此Rietveld分析法的研究开始迅速发展起来[16&10]。本实验采用丹东方圆仪器有限公司生产的DXJ-2000型晶体分析仪对粉末样品进行数据采集,主要测试参数为:Cu靶Kα线,管压45kV,管流35Ma,狭缝DSlmm、RS0.3mm.、SS1 mm,扫描速度10度/min(普通扫描)、0.02度/min(步进扫描),通过测试明确所制备的材料是否形成特定晶体结构的晶相,也可以简单判断随着掺杂量的增加,是否在基质中有第二相形成或者掺杂的物质同基质一起形成固溶体。

论文提纲:硅基超连续谱的研究进展 1. 引言 超连续谱(Supercontinuum,SC)是指当一束高强度的短脉冲通过非线性材料时,经过一系列非线性效应与线性色散的共同作用,使得出射光中产生许多新的频率成分,从而使频谱得到极大展宽的一种现象。超连续谱光源在光子学集成回路中有着重要作用,特别是在波分复用系统中扮演着重要角色。使用展宽的激光光源,筛选出所需的波长信道,比使用独立的光源更节省能源,也更利于集成。另外,超连续谱光源在光源检测、生物医学、高精密光学频率测量等方面有着重要应用。产生超连续谱的介质需具有非常高的非线性系数以及可调的色散系数,可用于超连续谱产生的介质很多,例如,单模光纤,光子晶体光纤(Photonic CrystalFiber,PCF),硅波导,泥酸锂等。目前以光纤为介质产生超连续谱的技术已经较为成熟,实现了大范围的光谱展宽。通过大量的实验研究证实,在非线性效应强、色散可调的介质中,可在低功率、短距离上实现超连续谱的产生。例如Kumar 等人用75 cm 的SF6 保偏光纤已得到了展宽从350 nm 到2200 nm 的超连续[1];B. A. Cumberland 使用50 W 的掺Yb 光纤激光器泵浦一段20 m 长的高非线性光子晶体光纤,最终得到输出功率为29 W 的超连续谱[2]。 然而光纤中非线性效应较弱,即使使用经过特殊设计的光子晶体光纤也要有几十厘米的长度才能得到有效展宽,不利于集成化设计。 近几年,具有低损耗、低功率、小体积等特性的硅波导受到人们的广泛重视。对硅波导中各种现象机理的研究也日趋成熟。拉曼放大、四波混频、自相位调制等非线性效应已成功运用于硅波导器件中。硅的三阶非线性效应比普通光纤高许多,例如,硅的Kerr 系数比普通单模光纤大100 倍,拉曼增益系数比普通单模光纤高三个数量级。并且,硅具有高折射率,能够将光很好地限制在一个很小的范围。通过对硅波导尺寸、几何结构的合理设计,可以实现对其色散系数的可控性。硅波导所具有特殊的色散和非线性特性,使其比普通光纤更易产生超连续谱。随着CMOS 技术的发展成熟,在硅波导中产生超连续谱将有利于超连续谱的应用向集成化、小型化发展。与光纤相比,硅波导具有无可替代的优势,可望在通信领域获得全新的应用,硅材料中实现超连续谱将为全光通讯翻开崭新的一页。 2.超连续谱的产生机制 超连续谱的产生是多种非线性效应与色散共同作用的结果。脉冲光在硅波导中传播,各种非线性效应,诸如,自相位调制(Self-Phase Modulation,SPM),交叉相位调制(Cross-PhaseModulation,XPM),参量过程,拉曼散射都会起作用。当高强度的短脉冲通过非线性介质时,入射光的瞬时高光强会引起自身的相位调制,即自相位调制。自相位调制会产生新的波长,这是出射光谱展宽的重要来源。随着光谱成分的增加,交叉相位调制,参量过程以及内拉曼散射作用逐渐增强,使得频谱进一步展宽。 然而,硅是一种半导体材料,具有一些特殊的非线性性质,如双光子吸收(Two-photoabsorption ,TPA)以及由双光子吸收产生的自由载流子(Free-carrier absorption,FCA)对入射光的影响,而这种影响可以分为相位调制和吸收两部分,因此硅中超连续谱的产生机制比普通光纤更为复杂。双光子吸收是指在强激光作用下,介质分子同时吸收两个光子通过一个虚中间态跃迁到高能态的过程。双光子吸收带来大量能量损失,降低光脉冲的峰值功率,从而限制了脉冲展宽。同时,双光子吸收过程中会产生大量的自由载流子,高浓度的自由载流子对光脉冲产生相位调制作用而使其蓝移,且调制作用与自由载流子浓度成正比。而脉冲后沿会积累大量的载流子,因此脉冲后沿的出射频谱展宽蓝移。于此同时,自由载流子对脉冲后沿产生吸收,使脉冲在时域上整体前移。另外,硅中拉曼散射与光纤中也有很大不同,硅基波导中的拉曼散射增益谱很窄只有105 GHz,并且响应时间约为10 ps,若使用飞秒脉冲入射,拉曼效应可以忽略。 激光脉冲在硅波导中传播,可以用广义非线性薛定谔方程描述如下式。 其中,右边第一项描述了硅波导中的色散效应,βm 表示m 阶色散系数,第二项描述了自由载流子产生的相移以及自由载流子吸收项,σn 表示自由载流子产生的相移大小,σα 表示自由载流子吸收大小,第三项描述了非线性Kerr 效应以及双光子吸收项,n2 为Kerr 效应系数,βT 为双光子吸收系数,ā 为波导有效截面积。 在超连续谱的产生过程中,哪种效应起决定作用主要取决于初始入射脉冲的参数和介质的线性色散特性。若用皮秒脉冲入射,色散效应较弱,光脉冲主要在非线性效应,特别是自相位调制作用下发生展宽,一般范围有限。若用飞秒脉冲入射,在波导的反常色散区,波导的色散效应和自相位调制效应会相互平衡,出现孤子传播态。光谱展宽初期以自相位调制为主,之后发生高阶孤子分裂,并伴随孤子辐射,随着光谱成分的增加四波混频效应逐渐增强。 在反常色散区,相位匹配条件很易满足,故能得到较宽的超连续谱。 3.自相位调制(SPM)诱导的频谱展宽 随着硅器件在通信系统的广泛应用,人们对硅波导中产生超连续谱作了大量工作,同时也取得了许多重大的成果。理论研究表明,对于一般的短脉冲,脉冲传播的色散长度远大于所用的波导长度,此时色散效应可以忽略,自相位调制效应起主要地位,从而导致出射频谱的展宽。 2004 年,Jalali 研究小组首次通过实验在硅波导中获得超连续谱,得到了2 倍展宽的出射光谱[3]。他们使用被动锁模光纤激光器产生脉宽为1 ps 的短脉冲,通过3 dB 带通滤波器对光谱整形后经由掺铒光纤放大器放大得到脉宽为4 ps,峰值功率为110 W(相当于光功率密度为2.2 GW/cm2)的入射脉冲光。脊型硅波导的有效面积为5 μm2,总长度2 cm。实验结果所示。从图中可清楚地看到出射光谱的宽度大约是入射光谱宽度的2 倍。光谱展宽主要是由自相位调制效应造成的。在考虑双光子吸收效应的情况下,通过理论模拟,将入射峰值功率增加10 倍可以得到5 倍展宽的出射光谱。此实验证实了利用硅波导可以产生超连续谱,同时揭开了在较低泵光功率下产生超连续谱的新篇章。 之后,Jalali 研究小组又讨论了硅波导中自由载流子对超连续谱产生的影响[4]。众所周知,Kerr 效应、自由载流子效应均对频谱的相移有贡献。Kerr 效应使得脉冲前沿红移、后沿蓝移。而自由载流子效应使得脉冲整体蓝移。由此可知脉冲后沿得到很大的蓝移展宽。但是,脉冲后沿积累了更多的自由载流子,光脉冲衰减更为严重。他们通过理论模拟分析了自由载流子对出射光谱展宽的作用,如图2 所示,只考虑Kerr 效应带来的相移时,展宽因子大约为8,考虑自由载流子对相移的影响后,展宽因子迅速增大大约为28,最后考虑自由载流子吸收后,展宽因子下降到12。由此可知,自由载流子对频谱展宽(尤其使得频谱蓝移)有着重要作用,但其浓度的增加导致的吸收也会削弱光谱展宽。 2006 年,E.dulkeith 等人研究了入射光波长以及峰值功率对光谱展宽的影响[5]。硅波导截面为470×226 nm、长4 mm。入射脉冲脉宽1.8 ps、周期1 kHz、中心波长1550 nm。改变入射光功率可以看到,在功率较低时,波导工作在线性区域,出射光谱的形状和位置几乎没有变化,随着功率的增加,出射光谱的展宽随之增大。实验结果如图3 所示。实验中使用皮秒脉冲作为入射光,色散作用在脉冲传播过程中并不显著,脉冲展宽主要来自自相位调制的作用。从图中可以清楚地看到,脉冲展宽并不对称,这主要是因为在脉冲后沿比前沿积累更多的自由载流子,因此后沿的相移更大,导致脉冲展宽的不对称性。 4.孤子分裂与超连续谱的产生 从上面的实验结论可以看到,由于存在双光子吸收对脉冲功率的损耗,利用SPM 并不能得到较大的展宽。为了克服这一缺点,必须在TPA 带来大的损失前实现频谱展宽。此时,可以借鉴光纤中孤子分裂以及超连续谱产生的方法,利用高阶孤子在波导入射端的孤子分裂现象来得到频谱的展宽。 2007 年,Richard M. Osgood. Jr 等人观察到展宽350 nm 的超连续谱[6]。硅波导横截面积520×220 nm2,长4.7 mm,入射脉冲脉宽100 fs,周期250 kHz。中心波长在1300 nm 到1600nm 之间变化,此波长范围正处于波导的反常色散区,能够得到更有效的超连续谱。实验结果如图4 所示,随着入射峰值功率的增加展宽也逐渐增加。在λ<1700 nm 时,双光子吸收对最大功率有限制作用,但仍能得到较大展宽。 此外他们还观察了超连续谱对波长的依赖性。从图5 中可以看到,中心波长越靠近零色散区(ZGVD),出射光谱展宽越大。这是由于在零色散区线性色散小,非线性作用在脉冲传播过程中占据主要地位。在短波方向有突起的平滑的峰,由于短波方向的光学损耗大,随着中心波长向短波方向移动,峰值越来越小,因此短波方向频谱展宽受到限制。三阶色散微扰导致的孤子分裂以及孤子辐射的影响,在长波方向突起的峰,随着中心波长向长波方向移动,峰值越来越大,这对超连续谱的产生有着决定性作用。 同年,Lianghong Yin 等人通过数值模拟利用入射飞秒脉冲作为高阶孤子得到展宽达400nm 的超连续谱[7]。模拟用直波导截面宽0.8 μm,高0.7 μm,长1.2 cm,入射脉冲带宽50 fs、峰值功率25 W。此时,入射光脉宽远小于自由载流子寿命,而脉冲周期大于自由载流子寿命,故自由载流子吸收在超连续谱的产生过程中不起重要作用。同时从理论上得出双光子吸收只对输入的最大功率有衔制作用,而不影响超连续谱的产生。并且由于Si 的晶格结构,使得受激拉曼散射依赖于硅波导的结构以及入射光的偏振特性,故合理选择硅波导的结构以及入射光的偏振特性,可以忽略受激拉曼散射的.影响。模拟中使用N=3 的三阶孤子脉冲,在三阶色散的微扰下分裂成为低阶孤子并伴有色散波,此时出射脉冲得到较大展宽,结果如图6 所示。这是自硅波导超连续谱研究以来在硅波导中能产生的最宽的光谱。 5.硅基超连续谱的应用 随着波分复用技术的广泛应用,为了寻找更好的光源,掀起对超连续谱光源的研究热潮。 硅波导中产生超连续谱将使全光网络向小型化发展,前景诱人,将硅基波导中产生的超连续谱应用到实际,将为全光网络翻开崭新的一页。 波分复用技术是光通信系统的一大优势,要实现能够高速传递信号的片上光通讯系统,波分复用技术是必不可少的,而超连续谱这是一种有效的解决方案。2007 年,Jalali 研究小组成功实现超连续谱的硅基集成化并将展示了其在波分复用系统中的应用潜力[8]。实验中,他们将微盘共振器与硅波导共同集成在一个三维芯片上,使用未集成在芯片上的脉宽为3 ps的激光脉冲作为入射光,脉冲沿着硅波导传播,利用自相位调制效应得到展宽的光谱,然后以微盘共振器作为光滤波器将超连续谱中不同的光谱成分有硅波导中分别导出,从而实现多个波长信道。实验中硅波导与微盘共振器的集成和工作原理如图7 所示。该装置得到的最远信道离入射脉冲中心波长3.1 nm,使硅基超连续谱应用于片上集成的波分复用技术成为可能。 另外,硅基超连续谱还可以在拉曼泵浦方面产生应用。硅波导中的高拉曼增益系数使拉曼散射成为在硅波导中实现激光振荡和放大的有效途径,然而,硅的拉曼增益带宽非常窄,限制了拉曼放大的带宽,从而制约了其在实际应用中的范围。随着硅波导中超连续谱的研究逐渐深入,利用超连续谱的产生机制,在硅波导中产生超连续谱的同时实现拉曼散射效应,由此来增大拉曼增益带宽成为一种可能的解决方法。2008 年,Jalali 研究小组成功实现这一构想,获得展宽的拉曼增益谱[9]。实验中使用中心波长1550 nm 的皮秒脉冲作为泵浦光源,激光脉冲在硅波导中受到Kerr 效应和自由载流子效应的共同作用而发生展宽,从而使拉曼增益谱获得扩展。实验在中心波长为1638 nm 处获得了宽度超过10 nm 的拉曼增益谱。为了观察入射脉宽对拉曼增益展宽的影响,实验中使用两个脉宽不同的入射脉冲,分别为3 ps、42 ps,得到的拉曼增益谱如图8 所示,对于3 ps 的入射脉冲,拉曼展宽频谱起伏不定,并且由于自由载流子的作用频谱明显蓝移。对于42 ps 的入射脉冲,拉曼展宽频谱同样蓝移,但频谱变化相对平滑。另外,在入射功率较大时,能过得到较大的拉曼展宽。实验证明,通过改变脉冲的性质,例如,脉冲功率、脉宽、脉冲 啁 啾,可以实现对增益范围和形状的调节,从而应用于实现集成化的光信号传输以及可调硅基激光器的研制。 6.结论 硅在电子器件的发展过程中起着举足轻重的作用,目前大部分的器件使用硅作为芯片材料,在硅波导中产生超连续谱将有利于硅基光子器件的实现,并向集成化、小型化发展。目前,实验中能得到的硅基超连续谱宽度仅为400 nm,在实际应用的波分复用系统中,还存在各种各样的损耗,使得展宽大大减小,因此还需进一步的研究,合理设计硅波导的色散特性,减小有效面积增大非线性强度,从而进一步增大展宽,使得硅基超连续谱更加实用化。 ;

红外光谱对餐盒的研究论文

食品安全分析涉及的方面太多了!涉及食品安全的项目检测都属于食品安全分析例如:转基因食品检测技术概述固相萃取技术在食品安全检测中的应用快速溶剂萃取技术在食品安全检测中的应用凝胶净化色谱技术在食品安全检测中的应用畜禽肉水分含量快速检测技术水产品中甲醛的快速检测动物性食品中瘦肉精的快速检测方法冷冻饮品中甜蜜素测定方法的研究食品中氟化物检测方法的研究进展氟化物检测方法在食品分析中的应用毛细管电泳法快速鉴别食用合成色素毛细管电泳法快速测定黄酒中种添加剂毛细管电泳法测定乳及乳制品中大豆蛋白毛细管电泳法测定三聚氰胺、三聚氰酸及其酰胺类化合物乳与乳制品中三聚氰胺的限量值及其检测标准稻米新鲜度测定新方法开发酶抑制法快速检定果蔬中的农药残留农药残留快检技术比较蔬菜中残留有机氯农药分析的前处理方法食源性致病微生物快速检测技术及其应用基于多重荧光定量PCR技术的食源性致病菌检测微生物快检试纸在食品安全中的应用畜禽肉致病微生物交叉污染现状分析微生物快速检测技术在地震灾区生活饮用水中的应用微生物检测技术在保障奥运食品安全中的实践分子马达生物传感器在食品安全中的应用探索表面等离子体共振技术在食品检测中的应用表面等离子体共振技术测定畜禽肉中泰乐菌素残留表面等离子体共振技术快速筛查猪肉中磺胺类药物残留气相色谱法测定食品中的抗氧化剂凝胶净化-气相色谱法测定蔬菜中百菌清残留气相色谱-质谱法测定动物性食品中特布他林残留气相色谱-质谱法测定动物性食品中甲氧酪胺残留液相色谱法测定鱼肉中种磺胺类药物残留利用液相色谱-荧光法检测动物性食品中恩诺沙星残留液相色谱-质谱联用技术分析大环内酯类抗生素液相色谱-质谱法检测禽肉中五种大环内酯类抗生素水产品中硝基呋喃的检测西瓜中植物激素乙烯利的检测食品烹饪过程中生成的丙烯酰胺的检测铝的检测与人体健康柴鸡蛋与笼养鸡鸡蛋品质的比较禽蛋中苏丹红的检测鸡精调味料品质检验甜味剂的危害与检测检测红毛丹中的合成色素咖啡因的危害与检测分析测试百科网乐意为你解答实验中碰到的各种问题,祝你实验顺利.食用油中抗氧化剂分析方法的探讨紫皮花生是否染色的分析掺假蜂蜜的检测食品添加剂双乙酸钠与食品的防腐保鲜蔬菜中硝酸盐和亚硝酸盐的分析研究进展离子色谱法测定蔬菜中硝酸盐和亚硝酸盐离子色谱法测定食品中的吊白块离子色谱法测定水中的生物胺离子色谱法测定水体中种生物胺含量离子色谱法测定土壤中植物激素乙烯利离子色谱-紫外检测法测定牛奶中的三聚氰胺食品中溴酸盐的离子色谱分析食品包装材料的污染物来源及对健康的危害食品接触材料中挥发性有机物的色质联用分析食品包装材料及其制品微波下的安全性衰减全反射-傅立叶红外光谱法在食品包装材料中的应用袋泡茶包装中可挥发性物质逸出分析糖果包装材料中双酚A检测方法的研究聚碳酸酯饮水桶中有害成分的分析一次性餐盒中有害成分的分析·蛋白质含量的测定·食品中水分的测定·肉制品中亚硝酸盐的测定·食品中铅的测定·氨基酸总量(氨态氮)的测定·水果中维生素c的测定·粗脂肪的定量测定·食品中灰分的测定·食品的比重测定·食品中淀粉的测定·砷的测定(古蔡氏测砷法)·牛乳酸度的测定·牛乳中脂肪的测定·酱油中山梨酸、苯甲酸的测定·食品中粗纤维的测定·食品中总汞的测定·食品中着色剂的测定·小香槟(汽酒)中总糖的测定·蘑菇罐头中漂白剂的测定·气相色谱法测定午餐肉中的有机氯农药·糕干粉中铜元素的测定

刘颂豪院士是我国著名光学家,首批博士生导师。1951年起,在中国科学院长春、上海和安徽光学精密机械研究所从事光学和雷射研究。50年代参加建立我国光学玻璃研究基地,系统研究稀土玻璃的成分与性质,发明稀土光学玻璃新品种,获国家科委发明奖和中科院优秀奖。60年代初研究成功高功率红外连续固体雷射器,是我国雷射领域的主要开拓者之一。

70年代在雷射远距离打靶和雷射靶材破坏机理研究中,取得重要成果。80年代建立第一个雷射光谱学开放实验室,在非线性光谱学和光敏治癌机理研究中,取得多项国际领先的科研成果,获得国家、中国科学院和军队科技进步奖。创建我国第一个雷射生命科学实验室和光孤子实验室,在若干前沿领域中取得创造性成果。近年来在广东建成了雷射与光电子产学研三结合得高新技术基地,科研成果卓著,多次获得广东省自然科学奖。

刘颂豪教授曾任中国科学院安徽光学精密机械研究所所长、合肥分院院长、华南师范大学校长,全国政协委员。现为中国科协全国委员、广东省科协副主席、中国光学学会常务理事。1995年当选为美国光学学会会士(Fellow),1999年当选为中国科学院院士。

刘颂豪教授是我国著名光学和雷射专家,首批博士生导师,中国科学院院士。

1951年起,先后在中国科学院长春、上海和安徽光学精密机械研究所从事光学和雷射研究。

50年代初参加建立中国光学玻璃研制基地,系统研究稀土玻璃成份与性质的关系,发明了稀土光学玻璃新品种,获国家科委发明奖和中科院优秀奖。

60年代初70年代研究雷射与物质相互作用,发现受激克尔散射效应,对雷射武器研究提出了重要发展方向,研究了雷射对靶材和光电元件的相互作用效应,为国防科学研究提供了重要参数和宝贵资料,获国防科委重大科研成果奖。

80年代初创建我国第一个雷射光谱开放实验室,率先建立超声分子束雷射光谱学实验方法并与交叉分子束、半导体雷射探测光谱技术结合,用于化学反应动力学和基础物理研究。

先后在国内外重要学术刊物及国际会议上发表论文400多篇、专著三部。

高阶相干喇曼散射光谱学,《物理学报》31,3,328-336(1982),刘颂豪等。论文详细介绍方解石的相干反斯托克斯喇曼散光谱(CARS)和相干斯托克斯喇曼散射光谱(CSRS)的实验结果及理论解释,还观察到微微秒相干反斯托克斯喇曼散射。此论文在81年在国际雷射光谱学会议上发表后,深得很高的学术评价,刘颂豪教授在会议上被增选为国际雷射光谱学会议常设指导委员会委员(当时中国唯一委员。)

强光光学及其套用,(广东省优秀科技专著基金会推荐与资助出版的专著) 广东科技出版社(1995),刘颂豪,赫光先本书专门介绍随雷射技术的出现而发展形成的一门新兴分支学科---强光光学(非线性光学)。书中着重介绍各种强光光学效应的基本原理、实验技术、研究成果、套用前景和发展展望。

培养研究生65名、博士生30名、博士后11名。

率先在国内开展雷射生命科学研究,首次探测到蛋白质分子产生的双光子诱发萤光,取得多项具有国际水平的科研成果,获国家、中国科学院和军队科技进步奖。近十多年来在广东建成雷射与光电子学产学研三结合的高新技术基地,建立我国第一个雷射生命科学实验室及光孤子实验室,科研成果卓著,在光纤通信新技术、雷射加工、纳米材料等方面取得重要进展。1996年获广东省自然科学一等奖和高教厅科技进步一等奖。1998年获广东省科技突出成果奖一等奖。

中国科学院院士;教授;博士生导师;华南师范大学A岗教师;中国科协全国委员;广东省科协副主席;中国光学学会常务理事;美国光学学会会士(Fellow)。历任中国科学院上海光学精密机械研究所研究员,安徽光学精密机械研究所研究员、所长,中科院合肥分院副院长,华南师范大学校长,华南量子电子学研究所所长。1958年研制成功稀土光学玻璃。是我国雷射研究的开拓者之一,曾首先研制成功氟化钙掺U3+和DY2+红外雷射器。近年来从事分子束光谱和雷射生物分子光谱等方面的研究。

该著者自出版以来深受国内外同行专家、学者及广大读者的热情关注,多位院士、教授撰文向读者推荐,他们认为:

1、它是我国第一部全面系统论述强光光学(非线性光学)的高层次学术专著,具国际先进水平。它的出版发行对国内雷射科研教学的推动与层次的提高有重要贡献。

2、专著反映了我国近年来在此领域的研究工作状况,科研成果及其对其促进此学科发展的贡献,汇总了著者多年从事此领域研究所取得的科研成果和技术创见。书中引用的共500篇重要参考文献中有100多篇是国内作者的,而该专著作者占其中62篇。这在国内同类籍中是罕见的。 3、该书初稿已多次用于为高等院校的教师和研究生讲课,深受好评。该专著连同部分论文获广东省高教厅自然科学一等奖,第四届广东省优秀图书一等奖和全国优秀科技图书二等奖

PhysicsofNonlinearOptics,GuangS.he,SongH.liuWorld

Scientific,1999 该专著出版后,在美国专业杂志陆续刊登专家的评价和推荐意见,现选其中Photonics&

Photoniews,2000,10,61(美国光学学会主办杂志)

刘颂豪院士是我国著名的光学家、雷射专家,首批博士生导师,在光学、雷射及其套用研究的前沿领域,取得多项重要成果,做出了非凡的贡献。

在5月科技活动周和6月科技活动月里,采访刘颂豪院士是一件难事,因为他太忙了。聘请刘颂豪院士做学术讲座的报告,一个接着一个,使他应接不暇。而且,在广东省第10个科技活动月里,他为青少年编著的科普书籍,也处在出版的收尾阶段,工作的忙累可想而知。

年逾古稀的刘颂豪院士,身体硬朗,精神矍铄。他说,科学是无国界的,但科学家有祖国。科学使人类进步,使社会发展,科学也能使国富民强。历史一次次证明,落后了"就要挨打"的道理,所以,科学是强国救国的有力武器。

刘颂豪院士向记者讲述了他小时候的亲身经历。1937年,广州沦陷时期,一次他随祖父回乡过"卡子"的时候,见到日本鬼子粗暴地对中国人搜身,强迫他们鞠躬的情景,少年的他,就立下宏愿:"奋发向上,献身科学,为祖国的富强,为中国人争一口气"。

从此,"用科学减轻人们生存的苦难,用心血成就祖国的前程"成为刘颂豪院士维系一生的信念。这个信念使他迈进了科学的门槛,在神秘莫测、妙趣横生的光学世界里,他不知疲倦地进行科学研究,使其套用,为我国国防、医学、农业、通信等领域做出了贡献。

什么是科学?刘颂豪院士认为,科学就是发现,就是敢于否定过去学说的勇气。创新是科学家唯一的使命。

抱着严谨的科学态度,刘颂豪院士不断向自己挑战。50年代,他重点研究光学领域,攻克的难关是光学玻璃,发明了稀土光学玻璃新品种,摆脱了依赖进口的局面。

60至70年代,他研究雷射领域,重点是研究雷射与物质相互作用的关系,对雷射武器研究提供了重要参数和宝贵资料,并提出了重要发展方向,受到国防部高度重视。

80至90年代,他重点研究雷射和交叉学科领域的关系,将雷射光谱技术用于生物学和医学,创建了我国第一个雷射生命科学实验室,将雷射技术用于农业和通信。

近年来,随着社会对光学领域的重视,科研环境的改变,刘颂豪院士的工作又有了新突破。他组织建立了具有较高水平和实力的光学产学研究基地,并建立了四个设备先进、学科前沿的实验室。例如,雷射生命科学实验室,把物理、雷射、生物、医学等不同领域的专家、技术和研究手段结合在一起,合力从事边缘科学的创新研究,1991年它成为省重点实验室,同年,经国家批准,建立了我国第一个以光生物学为主攻方向的博士后流动站。它们对整个华南地区的光学研究和产业的发展起到重要推动作用。

目前,刘颂豪院士作为广东"光谷"专家组主要成员参与"光谷"的建设,为广东"光谷"的筹建做了大量的工作。

11月1-3日、11月15-17日,刘颂豪院士分别两次抵达武汉光电国家实验室出席了光电国家实验室的学术咨询委员会会议(受聘为光电国家实验室学术咨询委员会委员)以及光电国家实验室(筹)建设计和可行性论证会,为我国光电国家实验室的建设献计献策,并对国家实验室在建设过程中出现的问题和成功经验与有关专家进行了交流。

11月2日,刘颂豪院士在武汉出席第五届"中国光谷"国际光电子博览会暨中俄雷射技术合作论坛,并作题为《陶瓷雷射器的研究进展》的专题报告。

11月25日,刘颂豪院士出席肇庆市院士活动基地揭幕仪式并代表院士讲话。

11月25日,华南师范大学信息光电子科技学院承办的"全国雷射加工学术会议"在广州市华泰宾馆隆重开幕,刘院士在会议期间和全国的雷射加工专家进行了学术和信息交流。

11月26日,刘颂豪院士出席长三角光子科技创新论坛及2006安徽博士科技论坛并作题为《光子科技与光子产业》的学术报告。

12月2日刘颂豪院士邀请武汉大学著名经络专家胡济民教授上午9:00-10:40在雷射大楼七楼会议室作学术报告,之后刘院士与胡济民教授以及光子中医实验室的老师和同学进行了中医经络方面的学术交流。

12月2日中午,刘院士邀请广州医学院终身教授谢楠柱先生、香港著名中医学专家劳医生夫妇、暨南大学路大祥副校长以及莫飞智博士来校,参观了实验室并与光子中医学实验室的骨干老师就我院光子中医学的973课题及科研合作进行了讨论。

12月6日上午,刘院士在雷射大楼接见了广州市青少年科技能力促进会陈莉副会长和任海鹰秘书长,听取了青促会的工作汇报,并对如何有效提高青少年科技能力素养提出了宝贵的建议和指导。

12月7日,刘院士在顺德参加了"全国国小科学教学研讨会",教育部专家和10省区及广东省各地市的代表共200多人参加了会议,刘院士出席开幕式并在当天下午的论坛上作了"21世纪科学技术的发展和光子学技术"报告,并和小学生们进行了愉快的对话和交流。

12月8日,刘院士出席了中山大学承办的"第三届能源与环境材料国际研讨会"开幕式并作发言,会议期间,刘院士和全球各个地区的能源、环境材料专家进行了交流。

在"科技活动周"期间,广州市东山区邀请两位科学家与中小学生面对面交谈。在这次活动里,刘颂豪用多媒体的形式给孩子们讲述了光电子科学技术的发展,对生产和生活的影响。学生们"着迷"了,问了他许多有关问题。

这件事对刘颂豪触动很大,他觉得他要讲述的东西太多了,孩子们需要掌握和了解的知识太多了。他决定出版科普书籍,开启青少年对科学的兴趣和梦想。他的建议得到了广东省、市科协的大力支持,在十几位教授、专家的支持下,他们利用20多天的时间,完成了《21世纪科普知识100例》书籍。书中图文并茂地介绍了当前最新科学技术知识及其套用,让中小学生尽情地在知识的海洋里遨游,树立远大志向,成为科教兴国的建设者和接班人。

该书的内容,凸显了我国"十五"规划中重点发展的科学技术和相关产业,有最新科技、前沿科学和热点问题。他指著目录中"光子中医学"题目说:"这个领域的研究我花了20多年的时间,同样题目的论文有5000多字,但在这本书里,只有300字。孩子们能够掌握相关知识就可以了。"

刘颂豪认为,科学要从小抓起,这与艺术、体育很相似。要为青少年创造学习的条件,比如,书籍、展览、各种科技活动、比赛等。青年兴、国家兴;青年强,国家强。

刘颂豪院士献身科学事业50年了,但他仍不断追寻着,探索著……

光谱学与光谱分析联系编辑

首席顾问:王大珩顾问:何怡贞张存浩徐叙瑢陆婉珍刘颂豪陈星旦冼鼎昌朱清时魏复盛林建华李安模杨树森Ramon M. Barnes (USA) J. A. C. Broekaert (Germany)R. Van Grieken (Belgium)Lev A. Gribov (Russia)Peter R. Griffiths (USA)James A. Holcombe (USA)Gary M. Hieftje (USA) B. V. L′vov (Russia)Kay Niemax (Germany) Isao Noda (Japan)Yukihiro Ozaki (Japan) J.P.Reid (UK)R. E. Sturgeon (Canada)社长:孟广政主编:黄本立常务副主编:宋增福副 主 编:聂玉昕高松徐怡庄张新荣李灿田中群江桂斌常俊标孙汉文孙世刚顾仁敖黄矛罗立强常务编委:王小如王彦吉尹明刘会洲孙素琴朱伯荣齐文启闫宏涛汪力陈荣严秀平陈杭亭金钦汉杨小震杨芃原张鹏翔张汉辉张韫宏赵冰姚元根龚旗煌徐广通徐征谢孟峡编委:马万云王海水王建华尤静林邓李才江云宝刘克玲刘颖毕树平刘燕德牟兰任发政李攻科李宏建李萍陈晓波陈金忠陈忠明沈异凡应义斌汪媛卓尚军杨武孟继武郑怀礼金泽祥周群袁洪福胡继明俞书勤姜艳霞张国宝张卓勇张录达倪永年徐可欣晋卫军黄世华莫育俊韩东海蒋治良葛茂发魏琴编辑部主任:黄强责 任 编 辑:孟昭红助 理 编 辑:范辉,朱义祥

从收稿、审稿到确定稿件是否录用,约需3个月左右.不存在加急,有关系可以。

期刊名称:光谱学与光谱分析GUANGPUXUE YU GUANGPU FENXISPECTROSCOPY AND SPECTRAL ANALYSISSPECTROSC SPECT ANALGUANG PU XUE YU GUANG PU FEN XISPECTROSC. SPECTR. ANALKuang P'U Hsueh Yu Kuang P'U Fen HsiSpectroscopy and Spectral Analysis1000-0593GYGFED同行评议:是 本刊收录在: Ei Compendex (2013年) 本刊收录在: Ei Compendex (2015年) 本刊收录在: MEDLINE(2011年) 本刊收录在Web of Science: SCIE(2012版) 本刊收录在Web of Science: SCIE(2013版) 本刊收录在Web of Science: SCIE(2016版) 本刊收录在: 中国科学引文数据库(CSCD)来源期刊(2009-2010)CSCD核心库(C) 本刊收录在: 中国科学引文数据库(CSCD)来源期刊库(2013-2014)CSCD核心库(C) 本刊收录在: 中国科学引文数据库(CSCD)来源期刊核心库(2011-2012) 本刊收录在: 中国科技期刊引证报告(2013年版)《引证报告》2013年版影响因子:0.679 本刊收录在: 中国科技期刊引证报告(2014年版)《引证报告》2014年版影响因子:0.692 本刊收录在: 中国科技期刊引证报告(2015年版)《引证报告》2015年版影响因子:0.657 本刊收录在: 中文核心期刊要目总览(2008年版)排序:物理 - 第14位 本刊收录在: 中文核心期刊要目总览(2011年版)排序:物理类 - 第12位 本刊收录在: 中文核心期刊要目总览(2014年版)排序:物理 - 第 9 位 点击: 查看SCI影响因子(2014)Impact Factor: 0.292, Rank: 8147 主题分类:Earth Sciences: GeochemistryEarth Sciences: GeologyO4:物理: O4:物理Physics: General and Others

光谱学与光谱分析期刊如何

没有。《光谱学与光谱分析》是1981年创办的中文学术期刊,月刊,中国光学学会主办,中国科学技术协会主管,投的光谱学与光谱分析期刊会在3个月可以被检索,期刊主要刊登激光光谱测量、红外、拉曼、紫外、可见光谱、发射光谱、吸收光谱、X-射线荧光光谱、激光显微光谱、光谱化学分析、国内外光谱化学分析最新进展、开创性研究论文、学科发展前沿和最新进展、综合评述、研究简报、问题讨论、书刊评述。

期刊名称:光谱学与光谱分析GUANGPUXUE YU GUANGPU FENXISPECTROSCOPY AND SPECTRAL ANALYSISSPECTROSC SPECT ANALGUANG PU XUE YU GUANG PU FEN XISPECTROSC. SPECTR. ANALKuang P'U Hsueh Yu Kuang P'U Fen HsiSpectroscopy and Spectral Analysis1000-0593GYGFED同行评议:是 本刊收录在: Ei Compendex (2013年) 本刊收录在: Ei Compendex (2015年) 本刊收录在: MEDLINE(2011年) 本刊收录在Web of Science: SCIE(2012版) 本刊收录在Web of Science: SCIE(2013版) 本刊收录在Web of Science: SCIE(2016版) 本刊收录在: 中国科学引文数据库(CSCD)来源期刊(2009-2010)CSCD核心库(C) 本刊收录在: 中国科学引文数据库(CSCD)来源期刊库(2013-2014)CSCD核心库(C) 本刊收录在: 中国科学引文数据库(CSCD)来源期刊核心库(2011-2012) 本刊收录在: 中国科技期刊引证报告(2013年版)《引证报告》2013年版影响因子:0.679 本刊收录在: 中国科技期刊引证报告(2014年版)《引证报告》2014年版影响因子:0.692 本刊收录在: 中国科技期刊引证报告(2015年版)《引证报告》2015年版影响因子:0.657 本刊收录在: 中文核心期刊要目总览(2008年版)排序:物理 - 第14位 本刊收录在: 中文核心期刊要目总览(2011年版)排序:物理类 - 第12位 本刊收录在: 中文核心期刊要目总览(2014年版)排序:物理 - 第 9 位 点击: 查看SCI影响因子(2014)Impact Factor: 0.292, Rank: 8147 主题分类:Earth Sciences: GeochemistryEarth Sciences: GeologyO4:物理: O4:物理Physics: General and Others

不好发!它是中国科学界的知名期刊,因此审批是相当严格的!

高光谱分类方法研究论文

高光谱遥感在地质应用研究中,光谱分类技术亦很重要。用得较多的方法有最大似然性法(MLC),人工神经元网络法(ANN)和高光谱角度制图法(SAM)。

1.最大似然性法(MLC)

MLC法可谓是经典的分类方法,已在宽波段遥感图像分类中普遍采用。它主要根据相似的光谱性质和属于某类的概率最大的假设来指定每个象元的类别。MLC法最大优点是能快速指定被分类象元到若干类之中的一类中去。但对于高光谱数据。如再加上类别数较多时,MLC法的运算速度则明显减慢,且所需的训练样本亦很大。为了减少计算工作量,Jia&Richards(1994)发现通过将高光谱数据分成几个波长组能够减少处理时间。他们改进的MLC法称简化最大似然性判别函数(SMLDF)。依据所有波段间的相关性分成若干连续的波段组,由这些不同波段组构成每个类别的协方差阵,再从每个波段组计算出判别函数值,最后求所有波段组产生的函数值的和.对每个象元分类。该法与传统的MLC比较,能显著地减少计算时间,特别是对高光谱数据的处理更为明显,同时能保证几乎与传统MLC结果的精度相同。另外,这种方法所要求的每类训练样本数明显地比传统MLC所要求的少。因此可降低准备训练样本的成本。其基本算法简述如下。

传统的MLC算法的判别函数由下式表示:

中亚地区高光谱遥感地物蚀变信息识别与提取

i=1,2,…C

式中:x为象元光谱向量,mi为第i类均值向量,∑i为第i类N×N的协方差阵,其中N为总光谱波段数,C是类别数。式(4-9)的判别准则一般如下:对于j(j=1,2,…,C;j≠i),假如gi(x)>gj(x)则

x∈ωi (4-10)

式中:ωi为第i类光谱类别。

如前所述,这种方法已被广泛应用在宽波段遥感中,如对MSS、TM及SPOTHRV数据的MLC分类。随着光谱维(波段数)N的增大(如AVIRIS数据的波段数大于200),有两个难题需要解决:一是由于N的增大相应分类时间成平方增长;二是对于一些小类别,为了保证可靠的估计结果,所需要的训练样本可能不够。Jia & Richards(1994)对光谱数据先分成几个波段组再进行分类的技术(SMLDF)就是针对上述两大难题设计的。高光谱数据相邻波段间的相关性一般都比较高,与相隔较远的波段相关性较低。

2.人工神经元网络技术(ANN)

人工神经元网络(ANN)技术能被用于多源数据的综合分析,特别是处理没有一定分布(如正态)、定性或名义的数据(Yang等,1997;Gong,1996;Sui,1994;Peddle等,1994;和Bendikts-son等,1993)。因此这类技术备受重视,已在遥感图像分类(如Civco,1993;Salu & Tilton,1993;Dreyer,1993;Azimi-Ssdjadi等,1993;Kanellopoulos等,1992;Liu&Xiao,1991)、自然资源分析与预测(如 Gopal&Woodcock,1996;Gong等,1994;Guan&Gert-ner,1991a&1991b;Yin&Xu,1991)及特征提取(如Fiset等,1996)中得到应用。神经元网络首先要求一定数量的具有已知样本特征的训练样本,然后用训练好的网络结构对待处理样本(象元)进行分类处理。在高光谱地质遥感中,ANN技术被用来识别矿物和成图(如Yang等,1997;Benediktsson等,1995)。ANN技术的不足之处是在高光谱数据分析中由于波段多(输入模式多),常需要很长的迭代时间,且不易找到全局最佳解。另外,不能事先确定ANN的结构参数值,一般需根据具体数据集的实验确定(Gong等,1997)。

3.光谱角度制图法

光谱角度制图法(SAM,即夹角余弦方法)通过计算一个测试光谱(象元光谱)与一个参考光谱之间的“角度”来确定它们两者之间的相似性。参考光谱可以是实验室光谱或野外测定光谱或是从图像上提取的象元光谱。这种方法假设图像数据已被缩减到“视反射率”,即所有暗辐射和路经辐射偏差已经去除。它被用于处理一个光谱维数等于波段数的光谱空间中的一个向量(Knlse等,1993 a;Baugh等,1998)。下面通过两波段(二维)的一个简单例子来说明参考光谱和测试光谱的关系。它们的位置可考虑是二维空间中的两个光谱点。各个光谱点连到原点可以代表所有不同照度的物质。照度低的象元比起具有相同光谱特征但照度高的象元往往集中在原点附近(暗点)。SAM通过下式确定测试光谱ti与一个参考光谱ri的相似性:

中亚地区高光谱遥感地物蚀变信息识别与提取

式中:nb等于波段数。这种两个光谱之间相似性度量并不受增益因素影响,因为两个向量之间的角度不受向量本身长度的影响。这一点在光谱分类上可以减弱地形对照度的影响(它的影响反映在同一方向直线的不同位置上)。结果,实验室光谱可直接用来与遥感图像视反射率光谱比较而达到光谱分类识别的目的。具体应用SAM方法直接实现光谱匹配分类可参考童庆禧等(1997)在总结Board-man(1990)的SAM方法基础上提出的执行流程。利用高光谱数据,这种技术在地质矿物分类成图中的应用较有潜力。例如,Miyatake&Lee(1997)应用SAM技术和高光谱数据在美国内华达州的北Cuprite和Goldfield 地区编制的交错矿物图。Yang等(1997)和 Baugh等(1998)也利用此法和AVIRIS图像数据分别在美国内华达州Cuprite矿产区和南Cedar山区编制矿产图,获得成功。

高光谱影像比普通的遥感影像多一维的光谱数据,决定了它有着比普通遥感影像更多针对光谱维的独特处理方法。高光谱的影像空间获得了扩展,数据量剧增,因此可以从高光谱遥感影像中获得更多更有价值的针对性的信息,尤其是在地物微量信息的识别、提取和分类中。

高光谱遥感影像通常使用一个影像立方体(image cube)来表示,每一层都代表光谱中的一个波段,影像的每一个像元都可以用一个光谱向量来表示,这样形成高光谱遥感影像特有的影像空间特征。

(1)影像空间

从搭载不同传感器的各类遥感平台上能获得不同空间分辨率、不同时相的遥感影像,对不同的区域,不同的地物也会产生不同的遥感影像。通常把这种不同空间分辨率、不同时相、不同范围的遥感影像所表达的地理空间称为影像空间,如图1.2(a)所示。

(2)光谱空间

高光谱遥感影像的光谱空间是由各个像元的波段值和灰度值所形成的,每一个像元可以分成很多波段,而每一个波段都对应着一个灰度值(像元反射率),通常把这种由波段表示横坐标,反射率表示纵坐标形成的二维曲线称作光谱空间,如图1.2(b)所示。

(3)特征空间

在一幅高光谱遥感影像中含有M个像元,而每一个像元认作是n个波段描述的n维向量,其包含了该像元全部的光谱信息,在n维空间中表现为一个点信息,一幅高光谱遥感影像就是由M个这样的点所组成的空间称为特征空间,如图1.2(c)所示。

在特征空间中每一个点都是一个像元的光谱向量,表示为

高光谱遥感影像信息提取技术

根据用来表示各个像元的光谱向量的特征,把聚集在一起构成n维空间的若干个点群归为一类,可以划分成一类地物。这样根据点群的位置、分布中心和分布规律来划分不同的点群界限,可以完成不同地物的划分,从而达到对高光谱遥感影像信息提取的目的。

图1.2 高光谱遥感影像的空间特征

  • 索引序列
  • 光谱的主要研究论文
  • 红外光谱对餐盒的研究论文
  • 光谱学与光谱分析联系编辑
  • 光谱学与光谱分析期刊如何
  • 高光谱分类方法研究论文
  • 返回顶部