将一个数学的问题添加上生活的细节,具体细节地描述如何解决这个数学问题。
清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。
黑体部分107字。
某车间每天能生产甲种零件120个,或乙种零件100个,或丙种零件200个,甲,乙,丙三种零件分别取3个,2个,1个可配成一套。现要求在30天内生产出最多的成套产品,甲,乙,丙三种零件应该各安排生产多少天? 一、小数一步加、减法应用题 1、一本数学读物6.25元,一本语文读物5.86元。两本书一共要多少钱? 2、一个西瓜重4.86千克,一个哈密瓜重3.5千克。一个西瓜比一个哈密瓜重多多少千克? 二小数一步乘除法应用题1一种毛线每千克48.36元,买3千克应付多少元?买0.6千克呢? 2、一个养蚕专业组养春蚕21张,一共产茧1240千克。平均每张大约产茧多少千克? 三、含有三个已知条件的两步计算应用题1、小红看一本故事书,看了5天,每天看12页,还有38页没有看。这本书一共有多少页?(画一画线段图) 2、食堂运来面粉和大米各3袋。面粉每袋重25千克,大米每袋重50千克。运来面粉和大米一共多少千克? 3、民兵打靶,第一次用子弹250发,第二次用子弹320发,第三次比前两次的总和少180发,第三次用子弹多少发? 四、含有两个已知条件的两步计算应用题 1、学校买彩色粉笔45盒,买的白粉笔比彩色粉笔多15盒。一共买多少盒粉笔? 2、一个空筐重2千克,往筐里放入32千克花生。装着花生的筐的重量是空筐的多少倍? 五、连乘应用题 1、粮店运来两车面粉,每车装80袋,每袋25千克。这个粮店运来多少千克面粉?(用两种方法解答) 2、三年级同学到菜园收白菜,分成4组,每组11人,平均每人收45千克。一共收白菜多少千克? 1.化肥厂计划生产7200吨化肥,已经生产了4个月,平均每月生产化肥1200吨,余下的每月生产800吨,还要生产多少个月才能完成? 2. 塑料厂计划生产1300件塑料模件,6天生产了780件。照这样计算,剩下的还要生产多少天才能完成? 3.李师傅上午4小时生产了252个零件,照这样的速度下午又工作3小时。李师傅这一天共生产零件多少件? 4. 水泥厂计划生产水泥3600吨,用20天完成。实际每天比计划多生产20吨,实际多少天完成任务? 5.一堆煤3.6吨,计划可以烧10天,改进炉灶后,每天比原计划节约0.06吨,这堆煤现在可以烧多少天? 6. 甲、乙两地相距420千米,一辆客车从甲地到乙地计划行使7小时。实际每小时比原计划多行使10千米,实际几小时到达? 7.小强从家回校上课,如果每分钟走50米,12分钟回到学校,如果每分钟多走10米,提前几分钟可以回到学校? 8. 筑一条长6.4千米的公路,前3个月平均每月筑1.2千米,剩下的每月修1.4千米,还要几个月完成? 9.小明用10.2元买文具,买了6支铅笔,每支0.45元,余下的钱买圆珠笔,每支2.5元,可以买多少支? 10. 服装厂原计划做120套西服,每套西服用布4.8米,改进裁剪方法后。每套节约用布0.3米,原来用的布现在可做西服多少套? 11.一本故事书,原来每页排576字,排了25页。再版时字改小了,只需排18页。现在每页比原来多排多少个字? 12. 一列客车和一列货车同时从甲、乙两地相对开出,客车每小时行使80千米,货车每小时行使60千米,经过5小时两车相遇。甲、乙两地的铁路长多少千米? 13.两个工程队同时合开一条1500米的隧道,甲工程队在一端开工,每天挖14米,乙工程队在另一端开工,每天挖16米,多少天后隧道可以挖通? 14. 甲、乙两人同时合打一份7000字的稿件,甲每小时打600字,乙比甲每小时多打200字,经过几小时可以完成任务? 15.小明和小强放学后在学校门口向相反的方向行走,小明每分钟走70米,小强每分钟走68米,5分钟后两人相距多少米? 16、 甲、乙两地的路程是630千米,客车从甲地开出2小时后,货车从乙地相向开出,已知客车每小时行使65千米,货车每小时行使60千米。货车开出几小时后与客车相遇?
三年级????????????小?中?大?
小学三年级数学论文如下:
数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学。比如班级收饭费,一个班共有62名同学。在校吃饭的有60名同学,每人应付85元。这样为话便要算出60人一共应付几元。应用乘法就可以很简便的算出结果。只要用85x60=全班60人应付几元。这是我们身边最普通的例子了。
在我们的生活中,与数学的关系也十分的密切。大家一星期都要上一次超市的,但身上往往只会带50元80元左右。这个时候,我们就要很有计划的买东西了。但是,商品的价格往往不是一个整数,如一块香皂5.60元,一双布鞋12.70元。这时,我们就要有良好的口算能力。上超市总不能每一次都带着一个计算器。所以要想好了买,算好了买,要不然,钱就不够了。
如果你长大了成了一名设计工人,那你就要把每一块砖的长、宽都算的一清二楚呀!连0.1的误差都不能有。
由此可见,数学是多么重要啊!所以,我们现在要学好数学,长大后才能去建设我们的祖国!
“数学小论文”是让学生以日记的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。它可以是学生对某一个数学问题的理解、评价,可以是数学活动中的真实心态和想法,可以是进行数学综合实践活动遇到的问题,也可以是利用所学的数学知识解决生活中数学问题的经过等。
它是教师了解学生数学学习的心理、思维及非智力因素等个别差异的新途径,是学生进行自我分析、自我评价的新思路问题的能力,发展学生的自主性和创造性。学生的学习活动是基于发现问题、解决问题的一种活动,数学小论文的撰写能有效地增强学生的问题意识。
数学小论文可以不拘泥于课本限制,也不受教师的束缚,是学生综合运用所学的数学知识,大胆进行尝试,独立对问题进行探究而写成的。它有助于培养学生发现问题、分析问题和解决问题的能力,发展他们的个性。
我学习数学已经有六年多了,这条学习的道路是坎坷的,是困难重重的。 记得在小学三、四年级时,我的数学成绩不证明好,总是在八十多分上下浮动,或许是因为我心里比较害怕数学对这一学科有抵触情绪。到了六年级时面对着严峻的毕业考试,我才不得不硬着头皮去认真学习数学。直到那时,我才发现,原来数学并不像我想象中的那么可怕。我也才发现,数学其实是所有科目中最有趣的一科。进入中学以后,我才真正发现了数学的神奇。它可以给我们带来无穷的乐趣。我在小学的数学基础又弄懂了许许多多的知识:代数式、有理数、整式、一元一次方程、二元一次方程组……在学习的过程中,难免会遇到一些挫折,由于自己的一点儿不慎而造成的遗憾,更是数不胜数。那些调皮的小精灵们利用你的一点儿弱点或缺陷,让你一败涂地。 在数学上,我最大的缺点是粗心。正是由于粗心,使我多次单元测试的成绩不尽人意;正是由于粗心,使我在期中考试中与年段第一名失之交臂,正是由于粗心,使我在各科的竞赛中成绩不佳……或许还有许多许多由粗心造成的遗憾,已消失在我的脑海中了。令我最苦恼的,也正是无法彻底地改掉粗心这个缺点。在这次数学期末考试中,我又重犯了粗心的毛病,马马虎虎,致使我的数学成绩比年段最好成绩低了6分之多。虽然,我知道只有改掉这个缺点,我的数学成绩才能有明显的提高,但是,至今我还无法彻底改掉这个缺点。 我相信,以我真正的实力,学好数学不是不可能的。但是,不知道为什么,课内学习数学、做作业,我还能对付。可我一拿起课外的数学书,总觉挺难的,看不懂,尤其是几何图形方面,难以弄明。
人民币中的数学问题 有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。 在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!希望能解决您的问题。
”“你平时就是粗心,就是说买5个就能得到1个赠送的,不就要1×6=6(元)钱吗,高高兴兴的回家了,以一个长者的身份批评道:“奶油蛋糕,别生气嘛,能帮妈妈去买6个蛋糕吗,拿着找回的5元钱。妈妈叫我们买6个:2元一盒(买10送1)……青蛙大婶开的超市正在举行“迎元旦”优惠大酬宾活动,你老毛病又犯了,我们老师还经常让我们在生活中用数学呢,快看,找找看,说。”姐弟两人到超市里买回了6块奶油蛋糕,还找回5元:“姐姐,今天?”姐弟俩高高兴兴地上路了。你看看?”花花蛇和小青蛇姐弟两人一声说道。小青蛇正想往里钻?”花花蛇赶紧掉转头。(买5送一)光明牛奶:“这回聪明了,你们都这么大了:这天,只见店门口招揽顾客的牌子上写着,这里有广告牌呢?这样青蛙大婶要找我们10-6=4(元)钱?”花花蛇点了点头说,对两个孩子说,1元一个,我知道了‘买5送1’的意思。对吗,题目看了一半就开始列式,那妈妈叫我们买6个的话,和弟弟仔细阅读起门前的广告,即1×5=5(元),那我们只需付5个的价钱:“孩子,这下面的括号里写的是什么”花花蛇拎了拎小青蛇的耳朵,撒娇的缠绕到姐姐的身上迎元旦”优惠大酬宾活动奶油蛋糕:“小青。小青蛇快嘴说道,我们要买的东西优惠不优惠,花花蛇说。两人很快就到了超市门口:1元一个,甩了甩尾巴。小青蛇摸摸头:“行啊,蛇妈妈给了花花蛇和小青蛇姐弟共10元钱
这写的也太弱智了吧
0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种……当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,86×84=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,8×9=72,末尾4×6=24,8×9的结果是积的百位和千位,4×6的结果是积的十位和个位。这题的积是7224。第二题,34×52,属于第三种,可以将它乘法变加法,三步完成,第一步,2×4=8,个位相乘,积的末尾为8。第二步用4×5+3×2=26,交叉相乘加起来,写6进2。第三步,十位相乘3×5=15,15加进的2,等于17,这题的积是1768。第三题,68×48,属于第二种,十位数相加等于10,个位数字相同。用6×4=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,8×8=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5÷1=5 30×5=150(小时) 200小时>150小时
还可以这样算:
5÷1=5 200÷5=40(小时) 30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的"百分数″来算:
5/200×100=0.025×100=2.5
1/30×100≈0.033×100=3.3
3.3>2.5
或者这样算:
200/5×100=40×100=4000
30/1×100=30×100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:“生活处处有数学”这个道理。
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。
今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。
我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。
1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”
通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。
只要用心写啊我也写过,给你参考一下:第一先写一些自己在生活中遇到的困难,然后再写自己是怎么样探究的、怎么样解决问题的然后在写一个简单的结尾就好了我反正是这样写的我也是六年级我写的是简算 例如(这是我写的): 简便方法计算 每一次考试,基本上都要考到计算,同学们肯定都厌烦计算,特别是四则混合运算,再加上分数、小数,真是烦上加烦。但是,考试终究是要考到计算,那怎样让计算不那么烦,不容易出错呢?那就要用上简便计算的定律了。 常见的简便计算的定律有:加法交换律a+b=b+a,加法结合律a+b+c=a+(b+c)等定律。 比如说下面一题就是在我们三训上出现的题目:0.88×100.1如果这道题目列竖式计算的话会很麻烦,也有可能算错。如果要简便计算的话就可以把100.1拆成100+0.1,然后就可以用乘法分配律简便计算了: 0.88×100.1 =0.88×(100+0.1) =0.88×100+0.88×0.1 =88+0.088 =88.088这样计算就简便多了,不用再去死算,而且不容易出错。 在计算中,虽然可以用计算公式但是有一些题目还需要一步一步地算,比如说有两组很容易就上当的四则运算:12×48÷12×48和12×48÷(12×48)。第一个看上去可以很快的算出来,其实,这只是一个陷阱,如果非要在第一个上简算,也可以用12和÷12抵消,转化成48×48。而第二个的运算顺序和第一个是相反的,先算括号里的12×48,然后按照运算顺序把前面的12×48算出来,就可以转化成1÷1结果等于1。 计算,看看是挺难的,其实,只要用上一些运算定律,它们就像是魔术师,使计算变的简单了。所以,数学是很奇妙的,只要用心去钻研,去思考,再难的数学题也会被攻破。 祝你学习进步!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
数学源于生活、根植于生活。数学教学就要从学生的生活经验和已有的知识点出发,联系生活讲数学,把生活经验数学化,数学问题生活化。激发学生学习数学的兴趣,让学生深刻体会到生活离不开数学,数学是解决生活问题的钥匙,从而增强学习数学的趣味性。 当我打开一年级的数学课本时,给我的印象好像一本童话书一样漂亮,每一课的内容,都有一个场景故事表现出来,把数学知识融入到了学生非常熟悉的生活中,与学生身边的生活联系较为密切。刚入学的一年级学生,大部分都受到学前教育,在生活中也学到一些与数学有关的生活知识,所以他们对数学并不是一无所知。我在第一单元实际数学教学中,尝试如何将学生已有的生活经验引导学生学习认数,取得了较好的效果。一、培养学生主动学习的愿望,让学生体会到身边有数学数学教学中,要善于引导学生观察生活中的实际问题,感受数学与生活的密切联系。在学习第一单元《快乐的校园》之前,我先带领学生熟悉美丽如画的校园和参与各种课内外活动,让学生体验感受学校生活的丰富多彩,从尔喜欢即将开始的校园生活。教授信息窗2《老鹰捉小鸡》这一课时,我把学生领到操场这个“大课堂”,实地做游戏组织教学活动。通过学生非常熟悉喜爱的“老鹰捉小鸡”的游戏,来学习1—10数的认识。在游戏中让学生数一数“有几个小朋友参加游戏?”“男同学有几人?”“女同学有几人?”等等,在数扎长辫女孩“排第几”的过程中感知数的另一个含义——“序数”。整节课,学生们“玩”的很开心,“大课堂”气氛很活跃,改变了以往枯燥乏味的被动式课堂,每一位学生都积极主动的参与到游戏学习中去,“学习”热情很高。学生在不知不觉中圆满完成了整节课的学习任务。这样的数学课堂,让学生深切体会到原来数学就在自己身边,身边就有数学,而且离得很近,使学生对数学逐渐产生亲切感,从而培养学生主动学习的愿望。二、发现生活中的数学问题,借助生活经验,学会探索解决数学问题学生的学前数学知识,生活中的数学常识,经验的建立,是依赖于实际生活实践,是学生看得见,摸得着,听的到的现实。生活中的数学问题具有形象性和启发性,它能唤醒学生已有的生活经验增强学习动机和信心,有助于引导学生进入数学情境,也有利于学生思维发展。教师要善于挖掘数学内容中的生活画面,让数学贴近生活,在组织学生活动中,引导学生讨论解决数学问题:我在信息窗1《科技小组活动》的教学中,学生在解决红点标示的问题“天上有几架飞机?”时,引导学生去看一看数一数,让学生充分利用情境图中的信息体会1-10各数的意义,再联系生活,广泛选取学生身边生活中非常熟悉的问题,进一步体会数的意义。如“我们的教室有几扇窗?几盏灯?教室门前有几棵树?”“你家里有几口人?你有几只铅笔……”等等。在教学中我注意选择学生身边的感兴趣的事物,提出数学问题,为学生在生活中寻找探索新知识的依托,使学生学会借助生活经验思考探索问题。三、有意识创设活跃的学习氛围和生动有趣的学习情境“好玩”是孩子的天性,托尔斯泰说过:“成功的教学所需要的不是强制,而是激发学生的学习兴趣。”兴趣是人对客观事物产生的一种积极的认知倾向。怎样才能让孩子在玩中获得知识呢?我针对每课不同的学习内容,安排了很多不同的游戏、故事……在第一单元《快乐的校园-10以内数的认识》中,我带学生到操场上做他们非常熟悉、喜欢的“拔河、老鹰捉小鸡、小小运动会”等等 ,让他们边玩边数数 “拔河比赛,左边有几个小朋友?右边呢?运动会上,6号运动员排在第几?第1名是几号运动员?等等……”使学生在活跃的学习氛围和有趣、喜爱的“玩”中学会了1-10各数的认识。四、培养孩子数学的生活实践能力许多孩子在上学前,就会做100以内的加减,数100以内的数甚至更多,但是如果把它们拿到具体的生活中就不是那么尽如人意,一般5岁以后数学的思维能力才开始蒙发,上一年级的学生部分只能机械的数数,但对数的意义就不一定清楚,因此,就要加强数学与生活的联系,让学生在自己的身边熟悉的环境中寻找数。如3个人,1枝铅笔,5朵花等等,在生活中慢慢建立数的概念,认识数的含义。使学生在生活实践中得到锻炼,把数学真正融入现实生活中更好的为生活服务,同时用生活经验更好的为数学学习服务打好了结实的基础。总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。【网络产品】
我家住在丹徒新区的永安新城小区,小区里可美啦!吃过晚饭,我和妈妈到小区里散步,发现院子里有很多好玩好看的东西。楼下,有3个健身器材,再往前走,就是一个儿童乐园,在那里面,有1个滑梯还有4个木马,我以前常常在这里玩。在靠近楼前的地方有2个大花池,里面开满了鲜花,真漂亮呀!花池的旁边是1个平台,上平台需要上2个台阶。这个平台就象一个小舞台一样。平台上有6个休息椅,每个休息椅有两个座位,我2个2个数2、4、6、8、10、12,一共12个座位,夏天的晚上我们常常来这里乘凉。平台的下面有3个路灯,路灯是白玉兰花形状的,路灯上有5个大“玉兰花”,我5个5个数5、10、15,一共有15朵“玉兰花”,晚上的时候找的院子里可亮啦!看来呀,真和老师说的一样,在我们的身边到处都有数学!
浅谈如何培养一年级学生主动有效地参与课堂摘要: 一年级学生刚踏入小学门槛,学习时间、方式和要求的骤变使他们处于不适应状态,从而不能养成良好的学习观,对学习缺乏主动和持久的耐性,表现在课堂上为被动,不专心等,影响了教学效果。因此,教师要针对学生的年龄特征进行教育,设计并实践学生乐于参与的课堂,让他们感受到学习数学是重要和有趣的,知道怎样做才能更好地学好数学。本文从培养一年级学生正确的学习观,激发学习兴趣和教给学生发言的方法和要求三方面,结合自己的实践,阐述了如何激发一年级小朋友主动参与课堂活动的欲望,提高数学课堂的有效性这个问题。 关键词:学习观 学习兴趣 发言 主动参与 有效性 一、问题的提出 伟大的教育家孔子说过:“知之者不如好知者,好知者不如乐知者”。由此可见,兴趣在学生学习中发挥了催化作用。课堂教学是素质教育的主阵地,不仅应该担负培养学生基本素质的教学任务,更应该让学生产生一种强大的内趋力去主动探索数学的奥秘,体验学习数学的乐趣。 数学是一门反映现实世界中数量关系和空间形式的科学,具有高度的抽象性、严密的逻辑性和应用的广泛性等特征。它作为一门重要的基础学科和工具学科,在小学阶段同样占有重要的地位。作为启蒙阶段的小学数学,仍然是抽象的、概括的。一年级小朋友的抽象思维还很稚嫩,而且大部分小朋友学习数学还依赖教师、家长,不能自觉完成学习任务,普遍存在着学习目的性不强,学习兴趣比较淡薄,缺乏积极主动的探究精神,对学好数学缺乏信心等问题,这严重影响了学生参与学习活动的积极程度。 二、主要概念和理论依据 (一)学生的主体性地位 马克思的人学思想认为:在活动中,人是主体,起着决定的作用。数学的学习是以学生为主体的。教师是学生数学活动的组织者、引导者与合作者;要根据学生的具体情况,对教材进行再加工,有创造地设计教学过程;要正确认识学生个体差异,因材施教,使每个学生都在原有的基础上得到发展;要让学生获得成功的体验,树立学好数学的自信心 (二)学生的心理需求 兴趣是一种个性心理特征,它是在一定的情感体验影响下的一种积极探究某种事物或从事某种活动的心理倾向。小学生对数学有了兴趣,便会产生一种内驱力,就会主动愉快地去探究它,并形成一种强烈的乐于研究的欲望。 数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度去观察事物、思考问题,激发对数学的兴趣,
你好: 孩子是要从小培养的,但您也不能要求的过高,孩子虽然小但是他和大人一样,我们去和他沟通,看看孩子的长处去发展,不足的地方就会有好转的。
可以自己删减删减。数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动 作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一
六年级数学小论文写法如下:
生活中处处充满了数学知识,这些知识不但有趣而且在我们的生活中占有重要的地位。如果离开了这些看似简单的数字那我们的生活就无法像往常一样正 常生活。可见数学在我们的生活中占有多么重要的地位。
举个例子,如:银行存款分:整存整取、零存整取、定期存款、活期、国债这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金× 利率×时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。
再说科学家们发明的种种东西,气象学家测量的天气情况这些多要经过各项认真的思考和精密的计算才能获得正确的答案。哪怕不小心写错一个小数点也就前功尽弃了。
还有常在天空翱翔的宇航员们他们要操作上百个由数字组成的仪表,如果稍有不慎那么结果就是机毁人亡。可见数学在我们生活中是不可缺少,不可马虎的,否则会造成严重的后果。
数学不光只有这些价值,我们生活中处处可以见到并用到它。如:农民用几何图形,为了使农场更美观更好管理;工程师使用比例尺,为了让人们更好的了解 这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料。
使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱;这些计算表面积而使用进一法,是为了使用最少的材料做出合格的商品;计算容积或体积而使用去尾法,是为了 确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算。
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
应该是有几种方法 为什么 做完这题后的感受是什么(要联系生活) 这样才是生活数学小论文!