首页 > 学术发表知识库 > 圆锥曲线有关的毕业论文

圆锥曲线有关的毕业论文

发布时间:

圆锥曲线有关的毕业论文

圆锥曲线的光学 性质及其应用 历史上第一个考查圆锥曲线的是梅纳库莫斯(公元前375年—325年);大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线。他们两位对圆锥曲线的研究是很实在的:考察不同倾斜角的平面截圆锥其切口所得到的曲线,也就是说如果切口与底面所夹的角小于母线与底面所夹的角,则切口呈现椭圆;若两角相等,则切口呈现抛物线;若前者大于后者,则切口呈现双曲线。并且,阿波罗尼奥还进一步研究了这些圆锥曲线的光学性质,比如椭圆,他发现如果把椭圆焦点F一侧做成镜面,并在F处放置光源,那么经过椭圆镜反射的光线全部通过另一个焦点F。热也和光一样发生反射,所以这时便会被烤焦,这也就是焦点名称的由来。据说这一发现是他在研究椭圆的作法(也就是现行教材中一开始介绍的作法)时得出的。 而圆锥曲线真正从后台走上前台,从学术的象牙塔中进入现实生活的世界里,应归功于德国天文学家开普勒(公元1571年—1630年),开普勒在长期的天文观察及对记录的数据分析中,发现了著名的“开普勒三定律”,其中第一条是:“行星在包含太阳的平面内运动,划出以太阳为焦点的椭圆”,就这样,梅纳库莫斯和阿波罗尼奥出于数学爱好而研究的曲线在近2000年之后于天文学的舞台上登场了。后来哈雷又利用圆锥曲线理论及计算方法准确地预测到哈雷彗星与地球最近点的时刻,1758年在哈雷逝世16年之后,哈雷彗星与地球如期而遇,这引起了全欧洲、乃至全世界的轰动,也进一步推动人们对圆锥曲线研究兴趣的提升。 圆锥曲线的光学性质有大致有三点,即椭圆的光学性质、双曲线的光学性质和抛物线的光学性质。 1:椭圆的光学性质:从椭圆的一个焦点发出的光线或声波在经过椭圆周上反射后,反射都经过椭圆的另一个焦点。(如图1所示) 在圆锥曲线的定义中的定点,之所以称作为焦点,是源于它们的光学上聚焦性质.设一个镜面的轴截面的廓线是椭圆,那么当你把一个射线源置于定点F1处,所有射线通过椭圆反射后,都会集中到另一个定点F2;反过来也是一样(见图7-78).射线集中现象在光学上称为聚焦,因此自然称这两个定点F1,F2为焦点了.椭圆的这种光线特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 图1 2:双曲线的光学性质:如果光源或声源放在双曲线的一个焦点F2处,光线或声波射到双曲线靠近F2的一支上,经过反射以后,就从另一个焦点F1处射出来一样。(如图2所示) 双曲线的光学性质同样也有聚焦性质,但它是反向虚聚焦,即置于双曲线一个焦点处的射线源,被双曲线反射后,其反射线的反向延长线,必定经过另一个焦点双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用 图2 3:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴。(如图3所示) 把抛物线看作为一个焦点在无穷远处的“椭圆”,椭圆从一个焦点处发出的射线,聚焦到另一个焦点的椭圆的光学特性,表现在抛物线上,形式就与椭圆大不相同了:设想射线源在位于无穷远处的那个焦点处,无穷远处出发的射线,经抛物线反射后,到达位于有限位置的另一个焦点,但无穷远处出发的射线,在处于有限位置的你看来,只能是平行于对称轴的射线束(例如太阳虽然离开地球很遥远,但毕竟还没有在无穷远处,就这样,我们都已经觉得太阳光线是平行的,而不是像灯泡那样是散射的光线.)因此平行于对称轴的射线经抛物线反射,必定聚焦于焦点(见图7-80).反之把射线源置于抛物线的焦点(它在有限位置处),经抛物线反射后,所有的射线也要聚到在无穷远处的那个焦点去,因此反射射线也只能是平行于对称轴的,即从焦点发出的射线,经抛物线反射后成为平行于对称轴的射线束. 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样的接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图3 这三个圆锥曲线的光学性质在生活中有着很广泛的应用。 一只小灯泡(图4)发出的光,会分散地射向各方,但把它装在手电筒(图5)里,经适当的调节,就能射出一束比较强的平行光,这是为什么呢? 原因就是手电筒内,在小灯泡后面有一个反光镜,它的形状是抛物面,而它的作用就是能把由焦点发出的光线,以平行光(平行抛物面的轴)射出。探照灯(图6)也是利用这个原理做的。 (图4) (图5) (图6) 再根据光的可逆性,可以设计出用于加热水和食物的太阳灶(图7、图8)。在太阳灶上装有一个可旋转抛物面形的反光镜,当它的轴与太阳光线平行时,太阳光线经反射后集中于焦点处,这一点的温度就会很高。其他如聚光灯、雷达天线、卫星天线、射电望远镜等也都是利用抛物线的光学性质原理制成的。 (图7) (图8) 还有,电影放映机的聚光灯有一个反射镜,它的形状是旋转椭圆面。为了使片门(电影胶片通过的地方)处获得最强的光线,聚光灯泡与片门应分别对应于椭圆的两个焦点处,如下图所示: 由于水波、声波和光波都是波的一种形式,因此有很多类似的性质。如对水波遇到椭圆面、双曲线线面及抛物面的反射情况进行分析: 为了使在展览厅走动的游客们都能听清讲解员的解说,根据圆锥曲线的光学性质及声波的相关原理, 展览厅常设计为椭圆形。 圆锥曲线因其方程简单,线型多变美观,且 具有某些很好的力学性质,因此在建筑方面也不 乏应用;特别是流行于当前的大型薄壳顶棚建筑, 其纵剖线很多就是圆锥曲线. 圆锥曲线的光学性质即椭圆的光学性质、双曲线的光学性质和抛物线的光学性质,它在生活方面有着极其广泛的应用。我们应该不断深入了解和探索它的性质,利用它的性质为人类造福。科学永无止境!

附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性

高考圆锥曲线毕业论文

圆锥曲线的光学 性质及其应用 历史上第一个考查圆锥曲线的是梅纳库莫斯(公元前375年—325年);大约100年后,阿波罗尼奥更详尽、系统地研究了圆锥曲线。他们两位对圆锥曲线的研究是很实在的:考察不同倾斜角的平面截圆锥其切口所得到的曲线,也就是说如果切口与底面所夹的角小于母线与底面所夹的角,则切口呈现椭圆;若两角相等,则切口呈现抛物线;若前者大于后者,则切口呈现双曲线。并且,阿波罗尼奥还进一步研究了这些圆锥曲线的光学性质,比如椭圆,他发现如果把椭圆焦点F一侧做成镜面,并在F处放置光源,那么经过椭圆镜反射的光线全部通过另一个焦点F。热也和光一样发生反射,所以这时便会被烤焦,这也就是焦点名称的由来。据说这一发现是他在研究椭圆的作法(也就是现行教材中一开始介绍的作法)时得出的。 而圆锥曲线真正从后台走上前台,从学术的象牙塔中进入现实生活的世界里,应归功于德国天文学家开普勒(公元1571年—1630年),开普勒在长期的天文观察及对记录的数据分析中,发现了著名的“开普勒三定律”,其中第一条是:“行星在包含太阳的平面内运动,划出以太阳为焦点的椭圆”,就这样,梅纳库莫斯和阿波罗尼奥出于数学爱好而研究的曲线在近2000年之后于天文学的舞台上登场了。后来哈雷又利用圆锥曲线理论及计算方法准确地预测到哈雷彗星与地球最近点的时刻,1758年在哈雷逝世16年之后,哈雷彗星与地球如期而遇,这引起了全欧洲、乃至全世界的轰动,也进一步推动人们对圆锥曲线研究兴趣的提升。 圆锥曲线的光学性质有大致有三点,即椭圆的光学性质、双曲线的光学性质和抛物线的光学性质。 1:椭圆的光学性质:从椭圆的一个焦点发出的光线或声波在经过椭圆周上反射后,反射都经过椭圆的另一个焦点。(如图1所示) 在圆锥曲线的定义中的定点,之所以称作为焦点,是源于它们的光学上聚焦性质.设一个镜面的轴截面的廓线是椭圆,那么当你把一个射线源置于定点F1处,所有射线通过椭圆反射后,都会集中到另一个定点F2;反过来也是一样(见图7-78).射线集中现象在光学上称为聚焦,因此自然称这两个定点F1,F2为焦点了.椭圆的这种光线特性,常被用来设计一些照明设备或聚热装置.例如在F1处放置一个热源,那么红外线也能聚焦于F2处,对F2处的物体加热. 图1 2:双曲线的光学性质:如果光源或声源放在双曲线的一个焦点F2处,光线或声波射到双曲线靠近F2的一支上,经过反射以后,就从另一个焦点F1处射出来一样。(如图2所示) 双曲线的光学性质同样也有聚焦性质,但它是反向虚聚焦,即置于双曲线一个焦点处的射线源,被双曲线反射后,其反射线的反向延长线,必定经过另一个焦点双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用 图2 3:抛物线的光学性质:从抛物线的焦点发出的光线或声波在经过抛物线周上反射后,反射光线平行于抛物线的对称轴。(如图3所示) 把抛物线看作为一个焦点在无穷远处的“椭圆”,椭圆从一个焦点处发出的射线,聚焦到另一个焦点的椭圆的光学特性,表现在抛物线上,形式就与椭圆大不相同了:设想射线源在位于无穷远处的那个焦点处,无穷远处出发的射线,经抛物线反射后,到达位于有限位置的另一个焦点,但无穷远处出发的射线,在处于有限位置的你看来,只能是平行于对称轴的射线束(例如太阳虽然离开地球很遥远,但毕竟还没有在无穷远处,就这样,我们都已经觉得太阳光线是平行的,而不是像灯泡那样是散射的光线.)因此平行于对称轴的射线经抛物线反射,必定聚焦于焦点(见图7-80).反之把射线源置于抛物线的焦点(它在有限位置处),经抛物线反射后,所有的射线也要聚到在无穷远处的那个焦点去,因此反射射线也只能是平行于对称轴的,即从焦点发出的射线,经抛物线反射后成为平行于对称轴的射线束. 抛物线这种聚焦特性,成为聚能装置或定向发射装置的最佳选择.例如探照灯、汽车大灯等反射镜面的纵剖线是抛物线,把光源置于它的焦点处,经镜面反射后能成为平行光束,使照射距离加大,并可通过转动抛物线的对称轴方向,控制照射方向.卫星通讯像碗一样的接收或发射天线,一般也是以抛物线绕对称轴旋转得到的,把接收器置于其焦点,抛物线的对称轴跟踪对准卫星,这样可以把卫星发射的微弱电磁波讯号射线,最大限度地集中到接收器上,保证接收效果;反之,把发射装置安装在焦点,把对称轴跟踪对准卫星,则可以使发射的电磁波讯号射线能平行地到达卫星的接收装置,同样保证接收效果.最常见的太阳能热水器,它也是以抛物线镜面聚集太阳光,以加热焦点处的贮水器的. 图3 这三个圆锥曲线的光学性质在生活中有着很广泛的应用。 一只小灯泡(图4)发出的光,会分散地射向各方,但把它装在手电筒(图5)里,经适当的调节,就能射出一束比较强的平行光,这是为什么呢? 原因就是手电筒内,在小灯泡后面有一个反光镜,它的形状是抛物面,而它的作用就是能把由焦点发出的光线,以平行光(平行抛物面的轴)射出。探照灯(图6)也是利用这个原理做的。 (图4) (图5) (图6) 再根据光的可逆性,可以设计出用于加热水和食物的太阳灶(图7、图8)。在太阳灶上装有一个可旋转抛物面形的反光镜,当它的轴与太阳光线平行时,太阳光线经反射后集中于焦点处,这一点的温度就会很高。其他如聚光灯、雷达天线、卫星天线、射电望远镜等也都是利用抛物线的光学性质原理制成的。 (图7) (图8) 还有,电影放映机的聚光灯有一个反射镜,它的形状是旋转椭圆面。为了使片门(电影胶片通过的地方)处获得最强的光线,聚光灯泡与片门应分别对应于椭圆的两个焦点处,如下图所示: 由于水波、声波和光波都是波的一种形式,因此有很多类似的性质。如对水波遇到椭圆面、双曲线线面及抛物面的反射情况进行分析: 为了使在展览厅走动的游客们都能听清讲解员的解说,根据圆锥曲线的光学性质及声波的相关原理, 展览厅常设计为椭圆形。 圆锥曲线因其方程简单,线型多变美观,且 具有某些很好的力学性质,因此在建筑方面也不 乏应用;特别是流行于当前的大型薄壳顶棚建筑, 其纵剖线很多就是圆锥曲线. 圆锥曲线的光学性质即椭圆的光学性质、双曲线的光学性质和抛物线的光学性质,它在生活方面有着极其广泛的应用。我们应该不断深入了解和探索它的性质,利用它的性质为人类造福。科学永无止境!

附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性

圆锥曲线这方面有什么论文题目

1、题目:题目应简洁、明确、有概括性,字数不宜超过20个字(不同院校可能要求不同)。本专科毕业论文一般无需单独的题目页,硕博士毕业论文一般需要单独的题目页,展示院校、指导教师、答辩时间等信息。英文部分一般需要使用Times NewRoman字体。2、版权声明:一般而言,硕士与博士研究生毕业论文内均需在正文前附版权声明,独立成页。个别本科毕业论文也有此项。3、摘要:要有高度的概括力,语言精练、明确,中文摘要约100—200字(不同院校可能要求不同)。4、关键词:从论文标题或正文中挑选3~5个(不同院校可能要求不同)最能表达主要内容的词作为关键词。关键词之间需要用分号或逗号分开。5、目录:写出目录,标明页码。正文各一级二级标题(根据实际情况,也可以标注更低级标题)、参考文献、附录、致谢等。6、正文:专科毕业论文正文字数一般应在3000字以上,本科文学学士毕业论文通常要求8000字以上,硕士论文可能要求在3万字以上(不同院校可能要求不同)。毕业论文正文:包括前言、本论、结论三个部分。前言(引言)是论文的开头部分,主要说明论文写作的目的、现实意义、对所研究问题的认识,并提出论文的中心论点等。前言要写得简明扼要,篇幅不要太长。本论是毕业论文的主体,包括研究内容与方法、实验材料、实验结果与分析(讨论)等。在本部分要运用各方面的研究方法和实验结果,分析问题,论证观点,尽量反映出自己的科研能力和学术水平。结论是毕业论文的收尾部分,是围绕本论所作的结束语。其基本的要点就是总结全文,加深题意。7、致谢:简述自己通过做毕业论文的体会,并应对指导教师和协助完成论文的有关人员表示谢意。8、参考文献:在毕业论文末尾要列出在论文中参考过的所有专著、论文及其他资料,所列参考文献可以按文中参考或引证的先后顺序排列,也可以按照音序排列(正文中则采用相应的哈佛式参考文献标注而不出现序号)。9、注释:在论文写作过程中,有些问题需要在正文之外加以阐述和说明。10、附录:对于一些不宜放在正文中,但有参考价值的内容,可编入附录中。有时也常将个人简介附于文后。

圆锥曲线问题是高中数学教学的重、难点。你知道怎么写有关圆锥曲线的小论文吗?下面我给你分享高中数学圆锥曲线论文,欢迎阅读。

高中数学圆锥曲线论文篇一:高中数学圆锥曲线的教学研究

圆锥曲线问题是高中数学教学的重、难点.每年的高考中,都会涉及圆锥曲线问题,出题形式多样,既有分值较低的选择题和填空题,也有分值很高的大题.但是学生的得分率普遍不高.圆锥曲线教学的综合性和系统性强.这不仅要求学生理解最基本的知识点,提高运算的速度和准确性,还要求学生能够灵活运用数形结合的方法,找到解题的突破口,化简变形,准确解题.本文主要分析研究高中数学圆锥曲线的教学现状及其相应的对策.

一、高中数学圆锥曲线教学现状

1.从教师角度分析

高中数学教学大纲中对圆锥曲线的教学目标、重难点知识的说明非常清楚.大多数教师都明白圆锥曲线的重要性,而且在课堂上讲解圆锥曲线知识点和解题思路的时候很清晰.不过,学生数学基础是有差异的.对于圆锥曲线的内容,有的学生接受起来容易,有的学生接受起来比较困难.这就要求教师在教学过程中要注重培养学生的学习兴趣,不能单凭过去的教学经验.圆锥曲线经常会用到数形结合思想,有的教师在教学时会告诉学生要运用数形结合的方法,但没有清楚地告诉学生是如何想到用这种解题思想的.教师应当让学生知其然,也要让学生知其所以然.很多学生做不到举一反三,就是因为在学习圆锥曲线知识的时候教师看重结果的正确而忽视了解题思路的理解.

考虑到圆锥曲线知识在高考中所占的比重较大,几乎每一年的高考题中都会有所涉及.因而,在教学过程中教师应当有意识地渗透,让学生清楚圆锥曲线知识学习的重要意义;圆锥曲线与向量、概率等其他模块的数学知识有密切的关系.在教学过程中,教师也要重视学生其他模块数学知识的掌握,从宏观角度提高圆锥曲线教学的效率.

2.从学生角度分析

圆锥曲线的学习对学生的数学运算能力、推理能力、逻辑思维能力等各种数学能力的要求都非常高,对于很多学生来说,圆锥曲线学习起来的难度较大.有的学生对这部分知识有畏惧心理,思想上的负担导致学习的困难加大;有的学生学习方法落后,在学习过程中,只是记忆圆锥曲线的相关概念、结论,或者模仿教材和教师的解题思路,但并没有真正理解概念、结论的意义,没有掌握知识之间内在的关联,尤其是综合运用知识的能力不够,不会举一反三.圆锥曲线的题型有很多种,教师在课堂上一般会对每一种题型都进行详细的讲解,但是有的学生没有及时总结或者总结的时候流于形式,导致在考试中遇到圆锥曲线方面的题目失分.

二、提升高中数学圆锥曲线教学效率的措施

1.培养学生学习圆锥曲线的兴趣

众所周知,兴趣是最好的老师.学生只有真正热爱圆锥曲线的学习,才能事半功倍.所以,教师在圆锥曲线的教学中应当运用有效的方法激发学生的学习兴趣.比如在课堂教学中,教师可以创设问题情境作为课堂导入.学生都在新闻上了解过人造地球卫星运转轨道,教师可以以此为切入点引入圆锥曲线的知识.学生发现了圆锥曲线知识在生活中的运用,学习兴趣就会大大提升.

2.教师要重视演示数学知识的形成过程

考试中的选择题和填空题不必要求学生将解题过程详细呈现出来,不管用何种解题方法,只要结果正确就可以.但是对于试卷中的大题,解题过程相当重要,清晰明了的解题过程是得分的关键,尤其是圆锥曲线的大题解题过程更是如此.因而,教师在进行圆锥曲线的教学时,不能只重视结果,而是应当重视从多方面来讲解解题步骤,通过清晰的演示让学生掌握圆锥曲线的知识.比如圆锥曲线中“多动点”的问题,很多学生不知如何理解,这时教师应当进行演示,让学生知道怎样运用参数求解法、怎样画图等.

3.坚持学生的主体地位

教学活动中,教师是引领者,学生是主体,任何情况下学生的主体地位都不能被削弱.当学生学习圆锥曲线的知识遇到问题的时候,教师要认真解答;教学过程中,教师要了解学生的认知规律,鼓励学生探索,让学生带着浓厚的兴趣融入课堂;教师应当多肯定、赞扬学生,提高学生学习的主动性和积极性.有的圆锥曲线的题目,不只有一种解题方法,对于这些题目,教师应当培养学生自主探究的能力,比较不同的解题方法,在考试中运用准确性和解题速度都高的方法.

三、结语

高中圆锥曲线的难度较大,教师在教学的时候要把握好重难点,循序渐进,切忌急于求成,保证学生夯实基础的前提下,提高难度.圆锥曲线教学过程中要因材施教,结合学生的接受能力来规划教学的进度和难易程度,对于学生提出的问题,教师要耐心认真的解答.教师还应注重培养学生的数形结合思想,从而提高圆锥曲线教学的效率.

高中数学圆锥曲线论文篇二:圆锥曲线学习中的思考

【摘 要】 根据教学中遇到的问题,尝试运用数学教育心理学的有关知识分析学生在学习椭圆时的问题和特点,分析产生的可能原因,根据这些特点将其迁移到双曲线的学习过程中。

【关键词】 椭圆;双曲线;相似性质

学生在学习椭圆和双曲线时,教师可能会更多的关注学生在学习中普遍存在的问题,虽然这些问题是导致学生学习困难的因素之一,但我觉得,因为这些问题在学生中比较普遍,也可以认为是他们学习这部分知识时所表现出的一种共性。归纳起来主要有以下几点:

1、对椭圆的第一定义记忆太深刻,甚至有些机械化,以至于对后面将要讲的双曲线第一定义记忆不清,容易忘记“绝对值”的作用,或者说对“双曲线的一支”还是“两支”深感困惑。

2、在推导椭圆的标准方程时,因为用到二次平方,虽然没有任何技巧性,但因为运算量大,学生就感觉难度很大,我曾经统计过将近有一半的学生自己当堂无法推导出结果。

3、对教材中最后要求的标准形式有些困惑,因为二次平方后出现的是整式形式,这应该说是比较好的形式了,为什么还要画蛇添足,写成分式的形式呢?

4、研究椭圆的几何性质时,学生会感觉发现容易,结论漂亮,但记忆困难,变化多端,运用时想不起来,就是想起来了,也不知道该用哪一条性质,不能灵活应用,甚至有的学生感觉太神奇,摸不着。

5、在学了双曲线之后,学生能发现椭圆与双曲线之间的关系比较密切,有关椭圆和双曲线的计算问题在解决过程中也有类似之处,但普遍感觉双曲线比椭圆难度大很多。

我在接受本科教育时虽然学习过一些有关公共教育学和心理学的基本知识,但对教育心理学领域几乎没有接触。2010年在北京师范大学学习,院方给我们新疆班的教师们开了“数学教育心理学”这门课,时间很短,课时紧张,我也学的比较肤浅。但我还是想借助数学教育心理学的有关知识来尝试分析一下以上的问题。

首先,有关椭圆的第一定义与双曲线的第一定义。

“定义”属于概念的教学,“数学教育心理学”中有关“概念”的理解是:概念是指哲学、逻辑学、心理学等许多学科的研究对象。概念通常包括四个方面:概念的名称、定义、例子和属性。由于数学的研究对象是事物的数量关系和空间形式,而这种关系和形式脱离了事物的具体属性,因此,数学概念有与此相对应的特点。学生的认知结构处于发展过程之中,他们的数学认知结构比较具体而简单、数学知识比较贫乏,在学习新的数学知识时,作为“固着点”的已有知识往往很少或者不具备。

比如:学生在初中学习过圆的定义是“平面内到顶点的距离等于定长的点的轨迹”,此时涉及到的定点只有一个,定长就是所谓的“半径”。而椭圆和双曲线的第一定义中涉及到的定点有两个,并且还有“距离之和”与“距离之差的绝对值”的问题。由圆的图形容易联想到椭圆,但双曲线就比较困难。虽然初中学习过反比例函数,但这个内容也是难点,不太容易和双曲线联系起来。其实,这就是所谓的“经验”,它是概念学习的影响因素之一。

其次,有关用二次平方法化简方程。

在推导椭圆和双曲线的标准方程时,“化简”是必须要过的一关,在这一过程中,用到“二次平方法”以达到去除根号的目的。这种方法应该是学生必备的一种数学技能。

数学技能是从数学知识掌握到数学能力形成和发展的中心环节,它分为“智慧技能”和“动作技能”,而“运算技能”是指能正确运用各种概念、公式、法则进行数学运算,做代数变换等。在此过程中正确运用“数学符号语言”也是必不可少的。在数学学习过程中,数学技能的形成非常重要,数学技能以数学知识的学习为载体,通过实际操作获得动作经验而逐渐形成。

根据学生的学习经历,以往接触比较多的是一次方程,比较复杂的二次函数也只是在一个字母中出现了二次方。但椭圆的方程中,x、y的次数都是二次,从形式上看就比较难,学生在心理接受程度上难。加之,学生虽然会用平方法去根式,但局限在一次平方,像这样的二次平方法不太适应,甚至怀疑自己做错了。另外,由于我们学校是自治区重点中学,生源相对来说比较好,教师在授课时对学生的基础和能力估计过高也是一个不容忽视的因素。

最后,椭圆与双曲线的相关性质。

在教学中我发现,因为椭圆和双曲线的第一定义、第二定义都有类似的部分,学生已经能够感觉到二者的几何性质应该也有相似的地方。我也试图用椭圆的几何性质引导学生类比得出双曲线的相关性质,引导学生的思维自发的“迁移”,但对于那些比较简单的、一般的性质学生可以自行推出。比如:椭圆中的特殊三角形、椭圆的焦半径、椭圆的通径等。而对于稍微复杂一些的性质,学生就有些束手无策了。

通过数学教育心理学的学习,我发现数学学习的迁移不是自动发生的,它受制于许多因素,其中最主要的有数学学习材料的因素、数学活动经验的概括水平以及数学学习定势。

1、迁移需要对新旧学习中的经验进行分析、抽象,概括其中共同的经验成分才能实现,因此,数学学习材料在客观上要有相似性。心理学的研究表明,相似程度的大小决定着迁移效果和范围的大小。

例如:椭圆和双曲线的定义中都有两个定点和一个定长,由这些条件推导出的有关椭圆特殊三角形和焦半径公式的相关性质,学生就比较容易类推到双曲线的,还有可能在焦半径的公式中发现:椭圆的焦半径公式只有一个,而双曲线要根据具体情况(左、右支;上、下支)区别对待。

又如:椭圆的几何性质中有一条是:设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF;这条性质从叙述上比较长,学生可能直觉上认为推不出双曲线的类似性质。实际上,只要教师给学生一些勇气,鼓励他们大胆猜想,容易得出:设过双曲线焦点F作直线与双曲线相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF。再作出图形证明即可。可以说,椭圆和双去想的这条性质相似程度极高。 2、数学学习的迁移是一种学习中习得的数学活动经验对另一种学习的影响,也就是已有经验的具体化与新课题的类化过程或新、旧经验的协调过程。因此,概括水平越低,迁移范围越小,效果越差;反之,迁移的可能性就越大,效果也越好。

例如:在探究椭圆的几何性质中有一条是:以焦点弦PQ为直径的圆必与对应准线相离;学生类比这条性质,可以得到双曲线以焦点弦PQ为直径的圆可能必与对应准线存在着某种关系。而圆与直线的位置关系不外乎有三种:相交、相离、相切。判断圆与直线的位置关系有两种常用的方法:一是用点到直线的距离判断;一种是用方程的根的情况判断。这些知识和技能学生是具备的,因此不难得出双曲线的相关性质,即:以焦点弦PQ为直径的圆必与对应准线相交。

3、定势现象是一种预备性反应或反应的准备,它是在连续活动中发生的。在活动过程中,先前活动经验为后面的活动形成一种准备状态。它使学生倾向于在学习时以一种特定的方式进行反应。由于定势是关于选择活动方向的一种倾向性,因此对迁移来说,定势的影响既可以起促进作用也可以起阻碍作用。

例如:在椭圆的概念中说的是到两定点的距离之和为定长的点的轨迹,而双曲线则是到两定点的距离之差的绝对值为定长的点的轨迹。由于思维定势,容易把“绝对值”忘掉,从而丢失一支双曲线。

鉴于本人所学有限,分析的可能不是很准确,我会在今后的教学中反复思考,逐步改进。

通过以上的分析,我认为:椭圆和双曲线的相关知识有许多共同的切入点,根据学生的学习特点,要抓准这些相似点,教师除了丰富的教学经验外,如果还能运用一定的心理学知识,找到学生学习时的心理活动,可能会带来更好的教学效果。

在全国推进素质教育的今天,在新一轮国家基础教育课程改革实施之际,只关注教师“如何教”的问题显然已经远远不够,于是,对新的教材与学生新的学习方式的研究与探讨就显得十分迫切与必要。只有充分发挥数学教育的功能,全面提高年轻一代的数学素养,每一位数学教师才能为提高全民族素质,造就一代高质量的新型人才贡献自己的一份力量。

参考文献

[1]曹才翰,章建跃.数学教育心理学[M].北京:北京师范大学出版社,2007.

[2]朱文芳.中学生数学学习心理学[M].浙江教育出版社,2005.

[3] ISBN978-7-107-18662-2,数学[S].人民教育出版社,2008.

高中数学圆锥曲线论文篇三:浅谈高考圆锥曲线中的存在性问题

摘 要:在新课标、新考纲和新考试说明的精神指导下,高考数学科解析几何试题与以往大纲课程背景下考查形式和内容,有了显著的变化,这些试题不论在考试评价、命题研究还是高考复习,都成为专家、教师探讨的重点、热点,也是高考命题改革的一块试验田.本文通过对近几年高考数学解析几何试题存在性问题的探究来揭示这些试题是如何贯彻课程标准,反应考试说明的意图,进而思考教师在解析几何的教学与高三复习策略。

关键词:课程标准 数学高考 解析几何 存在性问题 思考

前言

最近几年的高考试题中,存在性问题出现的频率非常高,存在性问题是一种具有开放性和发散性的问题,此类题目的条件和结论不完备,要求学生结合已有的条件进行观察、分析、比较和概括,它对数学思想、数学意识及综合运用数学方法的能力有较高的要求,特别是在解析几何第二问中经常考到“是否存在这样的点”的问题,也就是是否存在定值定点定直线定圆的问题。希望能够为老师的教学、高考复习提供有益的思考.[1]

一、是否存在这样的常数

例1:(2009福建理)已知AB分别为曲线 与轴的左、右两个交点,直线I过点B,且与X轴垂直,S为I上异于点B的一点,连结AS交曲线C于点T.

(Ⅰ)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标;

(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由.

二、是否存在这样的点

【命题立意】:第二问难度较大,是一个探究性的开放试题,判断是否存在满足题设的定点.解决此题要突破两个关键:一是由图形的几何特征,判断出若定点存在,则必在 轴上,二是,题设要求“以PQ为直径的圆恒过点M”应转化为“ 对满足一定关系的m,k恒成立”,这里一定关系是指l与椭圆相切 . 本题主要考查运算求解能力、推理论证力,考查化归与转化思想、数形结合思想、特殊与一般的思想.本题的亮点是体现代数方法对解决几何问题的作用,同时体现图形的几何性质对代数运算的方向和运算量的减小的作用,在推理论证上,体现不同思维方式引发不同的解题方法,对区分不同数学思维层次的学生有很好的作用.

三、是否存在这样的直线

【命题立意】:第二问是开放性问题,判断满足题设的直线是否存在从逻辑思维的角度考虑,假设直线l存在,则l应满足三个条件① (可求k);②l与椭圆有公共点(可建立k与b的不等关系);③l与OA的距离等于4(可建立k与b的相等关系),而确定一条直线只需两个条

件即可.因此,可利用l满足其中两个条件求出,再检验是否满足第三个条件,从而得出l是否存在.这样,本题有多种不同的解法.本题主要考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想.本题的亮点是,背景学生熟悉,试题入口宽,可以用不同的想法和解法解决,使不同思维方式的学生都能做题,提供给学生充分展示自己的平台.[3]

四、是否存在这样的圆

【命题立意】:本题属于探究是否存在的问题,主要考查了椭圆的标准方程的确定,直线与椭圆的位置关系直线与圆的位置关系和待定系数法求方程的方法,能够运用解方程组法研究有关参数问题以及方程的根与系数关系

结束语:1.从教学的角度思考:在教学中要扎扎实实地讲好直线、圆、圆锥曲线及其几何性质等基础知识.教学中要学生先通过画图,直观地理解要解决的几何问题的几何意义,再转化为代数问题求解,通过这个过程学生很容易体会数形结合的思想,体会解析几何的方法;在研究圆锥曲线时,弄清楚曲线方程和参变量的几何意义是第一位的,在此基础上,运用代数方程的方法解决几何问题,在解决几何问题之后,要回到几何意义的理解上.几何是解决问题的出发点也是问题解决之后的落脚点,要避免让学生陷入代数的恒等变形而不理解其几何含义.在分析问题、解决问题中要突出几何要素,注重几何要素的代数化,要在几何要素的引导下进行代数的恒等变形,要让几何图形帮助我们思考问题、确定恒等变形的方向、简化计算,体会几何直观给我们带来的好处.

2.从高三复习备考的角度思考:①认真研读《考试大纲》、《考试说明》明确高考对解析几何基础知识、基本技能、基本思想、基本方法的要求,使复习工作有的放矢;②重视解决解析几何问题通法的训练.从试题分析中可以看出,直线方程、圆的方程,圆锥曲线的方程和基本性质(基本量)是重点考查的知识点,一定要熟悉基本方法,而直线与圆锥曲线的位置关系及其引发的各类问题是主观题的考查热点,要通过典型例题的操作、讲解,帮助学生总结解题思路,思考策略和通行通法,此外,要注意解析几何与其他数学内容的交汇,加强知识整体性的认知,锻炼学生在对参数的运算处理和面对繁杂的数学式子变形时应有的沉着心理和坚强毅力;

参考文献:

[1]中华人民共和国教育部制订.普通高中数学课程标准(实验)[M].北京:人民教育出版社2003

[2福建省教育考试院编.2012年普通高等学校招生全国统一考试福建省数学考试说明[M].福建:福建教育出版社2012

[3]王尚志.数学教学研究与案例[M].北京:高等教育出版社2006

圆锥曲线性质及应用论文开题报告

解析几何与射影几何几乎同时在文艺复兴的法国产生,虽然产生于同一个时代,但实际背景和数学条件却很不一样. 解析几何的实际背景更多的是来自对变量数学的需求.文艺复兴后的欧洲进入了一个生产迅速发展,思想普遍活跃的时代.机械的广泛使用,促使人们对机械性能进行研究,这需要运动学知识和相应的数学理论;建筑的兴盛、河道和堤坝的修建又提出了有关固体力学和流体力学的问题,这些问题的合理解决需要正确的数学计算;航海事业的发展向天文学,实际上也是向数学提出了如何精确测定经纬度、计算各种不同形状船体的面积、体积以及确定重心的方法,望远镜与显微镜的发明,提出了研究凹凸透镜的曲面形状问题.在数学上就需要研究求曲线的切线问题.所有这些都难以仅用初等几何或仅用初等代数在常量数学的范围内解决,于是,人们就试图创设变量数学.作为代数与几何相结合的产物――解析几何,也就在这种背景下问世了. 解析几何的核心思想是通过坐标把几何问题表示成代数形式,然后通过代数方程来表示和研究曲线.要做到这一点,得有数学自身的条件:一是几何学已出现解决问题的乏力状态;二是代数已成熟到能足以有效地解决几何问题的程度. 几何学形成得很早,公元前3世纪产生了具有完整体系的欧几里得的《原本》.半个世纪后,古希腊另一位数学家阿波罗尼斯又著《圆锥曲线论》.如果说《原本》的伟大功绩在于首次建立起几何学的完整演绎体系的话,那么阿波罗尼斯的8卷《圆锥曲线论》以其几乎将圆锥曲线的全部性质网罗殆尽而永垂史册.可以这样说,在解析几何之前的所有研究圆锥曲线的著作中,没有一本达到像《圆锥曲线论》那样的对圆锥曲线研究得如此详尽的程度. 但是,像古希腊所有的几何学一样,阿波罗尼斯的几何是一种静态的几何.它既不把曲线看作是一种动点的轨迹,更没有给它以一般的表示方法.这种局限性在16世纪前,并没有引起注意,因为实践没有向几何学提出可能引起麻烦的课题.16世纪以后的情况就不同了.哥白尼(Copernicus,1473-1543)提出日心说,伽利略(Galileo,1564-1642)由物体运动的研究,得出惯性定律和自由落体定律,这些都向几何学提出了用运动的观点来认识和处理圆锥曲线及其他几何曲线的课题.地球绕太阳运转的轨道是椭圆、物体斜抛运动的轨道是抛物线,这些远不是靠建立在用平面截圆锥而得到的椭圆和抛物线的概念所能把握的.几何学要能反映这类运动的轨道的性质,就必须从观点到方法来一个变革,创立起一种建立在运动观点上的几何学. 16世纪代数的发展恰好为解析几何的诞生创造了条件.我们知道,解析几何的方法是在引进坐标的基础上,把由曲线所决定的两个坐标之间的关系用方程表示出来,通过对方程的研究来反映图形的性质.如果代数尚未符号化,那么即使煞费苦心地引进坐标概念,也不可能建立一般的曲线方程,发挥其具有普遍性的方法的作用.1591年法国数学家韦达第一个在代数中有意识地系统地使用了字母,他不仅用字母表示未知数(这在他之前早有人做了),而且用以表示已知数,包括方程中的系数和常数.这样,代数就从一门以分别解决各种特殊问题的侧重于计算的数学分支,成为一门以研究一般类型的形式和方程的学问.这就为几何曲线建立代数方程铺平了道路.当然,符号代数的形成不只出于韦达一人之手,他之前,斯台文等人曾为建立幂指数概念和符号的使用作出过努力,而像今天这样用a、b、c…表示已知数,用x、y、z…表示未知数却是笛卡尔创始的.总之,17世纪的社会背景和数学自身条件都为解析几何的创建作好了准备,它将等待创立者去完成. 费尔玛的贡献 解析几何是由费尔玛和笛卡尔分别创立的.1601年8月20日费尔玛(Fermat,1601-1665)生于法国图卢兹附近的一个皮革商家庭,大学时专攻法律,毕业后以当律师谋生,曾担任图卢兹地方议会议员和顾问三十余年. 费尔玛虽是一位业余数学家,而且认真研究数学还是在他30岁之后,但他却在17世纪数学史上独占鳌头.在牛顿、莱布尼兹大体完成微积分之前,他是为创立微积分作出贡献最多的人.事实上,如果要在牛顿、莱布尼兹之后再添上一位创立者名字的话,那么写上费尔玛是十分恰当的;他又与惠更斯、帕斯卡一起被誉为概率论的创始人;17世纪的数论更几乎是费尔玛的世界,著名的费尔玛大定理至今仍吸引着一批追求者. 从费尔玛与帕斯卡等人的通信中可知,早在笛卡尔的《几何》发表以前,费尔玛已经用解析几何的方法对阿波罗尼斯某些失传的关于轨迹的证明作出补充.1630年,他把这一工作写成《平面与立体轨迹引论》一本小册子,其中费尔玛通过引进坐标,以一种统一的方式把几何问题翻译为代数的语言――方程,从而通过对方程的研究来揭示图形的几何性质. 费尔玛所用的坐标系与现在常用的直角坐标系不同,它是斜坐标,而且也没有y轴.如考虑一条曲线和它上面的任一点P,选定一条以O为原点的射线,那么P就用线段OQ和PQ表示出来(见图 1),它相当于我们现在所说的x与y. 如果仅就研究的对象而言,费尔玛与阿波罗尼斯并没有什么不同,不同的只是研究的方法.费尔玛的成功之处就在于他把阿波罗尼斯所发现的圆锥曲线的性质通过引进坐标译成了代数的语言,这不仅使得圆锥曲线从圆锥的附属地位解放了出来,而且使各种不同的曲线有了代数方程这种一般的表示方法和统一的研究手段.虽然坐标不是费尔玛发明的,将代数用于几何研究他也不是第一人,但是,除了费尔玛和笛卡尔以外,谁都没有把这两者结合起来,达到用代数方程来表示和研究几何曲线的程度. 笛卡尔的贡献 勒奈?笛卡尔(René Descartes,1596-1650)生于法国杜朗(Touraine)一个小镇的名门之家.笛卡尔从小多病,加上母亲去世早,更受父亲的溺爱.父亲答应他早睡晚起,这就养成了他在晨睡中进行思考的习惯.一则趣话说,他的坐标思想最早就是在朝寝中,躺在床上观察小虫从床顶爬向天花板时发现可以用天花板的框架作基准来确定运动中的小虫位置. 当时法国的习俗,名门出身的人常以在军界和教会里任职为荣,笛卡尔也于1617年在荷兰奥兰治(Orange)的利斯公爵的军队里当了一名骑兵士官.在这期间,有一次笛卡尔上街看到一张用荷兰文写的招贴,引起了他的好奇.正值这时走来了一个荷兰人,笛卡尔便向他询问了招贴里的意思.这个人是荷兰多尔德雷赫特(Dordrecht)大学的校长伊萨克?皮克曼(Isaac Beeckman),校长告诉了笛卡尔招贴上所写的内容,同时也试探一下笛卡尔的数学水平.原来这是一张征解数学难题的广告,带有竞赛的味道.没想到笛卡儿却以不多的时间解答了这些问题,为此深受皮克曼的赞赏.从此极大地增强了笛卡尔学习数学的自信心,并与皮克曼保持了长久的友谊. 1619年正值欧洲“三十年战争”,笛卡尔随军来到德国多瑙河畔的诺伊堡(Neuberg)军营,这时他老是在想着他的哲学和数学问题.1619年11月10日他一连三次做梦构思着他的新哲学和坐标几何学,据说这个梦成了他人生的一个转折点,他决定离开军队去进行哲学和数学研究. 1621年笛卡尔辞去了军职,开始从事数学研究和光学仪器的制造.这期间他听取了几何学家笛沙格和米多尔奇(Mydorge,1585―1647)的讲课,受到很大的启发,同时还与旧友数学家梅尔生(Mersenne,1558―1648)重新建立了联系,接受帮助. 1629年,笛卡尔为避开在巴黎生活中的烦恼,移居到了荷兰.在这以后的20年间,他潜心进行了哲学和数学研究.前四年,他撰写了《宇宙》一书,这本以阐述宇宙物理学为主要内容的著作,也像以往论宇宙的著作一样,遭到了教会的反对和攻击.为了免受哥白尼等人那样的灾祸,笛卡尔只得将书稿搁置下来,直到1664年才发表.1633年~1637年,笛卡尔主要从事《方法论》一书,包括它的三篇附录《折光》、《气象》、《几何》的创作,于1637年6月8日在莱顿发表.书中,笛卡尔论述了正确思想方法的重要性.他认为数学是其他一切科学最可靠的思想方法,只有借助于数学而得出的结论才是可信的.笛卡尔的这一认识与培根宣扬的以实验为基础的归纳法,以两个不同的侧面成为促进早期资本主义时代科学技术发展的主要方法.1641年与1644年,笛卡尔又先后发表了哲学名著《形而上学的沉思》和《哲学原理》. 笛卡尔的巨大成就使他的名望与日俱增,1647年他享受了直接接受法兰西皇帝供薪的荣誉.1649年他又受瑞典女皇克利斯蒂娜(Christina,1626―1689)的邀请,为女皇讲授数学.不幸在瑞典仅几个月,笛卡儿就得了肺炎而去世了. 笛卡尔的解析几何是作为《方法论》一书的附录《几何》出现的,这部分共三卷,第一卷题名为“关于只用圆和直线的作图可能问题”,它的前半部分介绍了用代数方法解解析几何问题的几个例子,尚未使用坐标,因此还不是真正的解析几何.后半部分通过解“帕普斯问题”的具体过程,介绍了解析几何方法,所谓笛卡尔解析几何主要就体现在这一部分中.第二卷题为“曲线的性质”,这里,笛卡尔在批判地吸收古希腊数学家的曲线分类思想的基础上,叙述了对曲线按方程的次数进行系统分类的方法.第三卷题为“关于立体和超立体的作图”,介绍了利用圆锥曲线在代数方法下解立体问题的方法,其中包括笛卡尔在代数学上的两个著名结果:“代数学基本定理”以及“笛卡尔符号法则”. 笛卡尔的《几何》虽然不像现在的解析几何那样,给读者展现出一个从建立坐标系和方程到研究方程的循序过程,但是他通过具体的实例,确定表达了他的新思想和新方法.这种思想和方法尽管在形式上没有现在的解析几何那样完整,但是在本质上它却是地道的解析几何. 笛卡尔表达解析几何的例子,是他对帕普斯(Pappus,约3世纪)问题的解法.帕普斯问题是这样的:“设给定四条直线AB、AD、EF、GH,然后从某点C引直线CB、CD、CF、CH,各与一条所给定直线构成已知角CBA、CDA、CFE、CHG.要求满足CB?CF=CD?CH(*)的点的轨迹.”如图 2. 笛卡尔的解法是:先假定点已经找出来了,为了使问题有个一般的形式,他采取了一个重大的步骤,即把给定直线之一与所求直线之一,例如AB与BC作为主线来考虑,然后使其他的线与它们发生关系.这相当于将AB与BC选作坐标轴. 笛卡尔记AB为x,BC为y,因为三角形ARB的所有的角都是给定的,所以边AB与BR的比一定.若令AB:BR=z:b,那么由于AB=x,因此BR=.因为B在C与R之间,所以CR=y+.假如R在C与B之间,则CR=y-.假如C在B与R之间,则CR=-y+.根据同样的思想,考虑三角形DRC、ESB及FSC,分别提出: . 注意到CB、CD、CF、CH都是关于未知数x、y的一次式,因此把它们代入(*)时,等式两边关于x、y的次数都不会高于二次.即满足帕普斯问题的C点轨迹方程的一般形式应是: y2=Ay+Bxy+Cx+Dx2. 其中A、B、C、D是由已知量组成的简单的代数式.然后,笛卡尔强调指出:“如果我们逐次地给线段y以无限多个不同的值,对于线段x也可找到无限个值.这样被表示出来的C点就可以有无限多个,由此可把所求的曲线表示出来.” 就这样,笛卡尔把以往对立着的两个研究对象“数”与“形”统一起来了,并在数学中引入了变量的思想,从而完成了数学史上一项划时代的变革.这一工作不仅使整个古典几何领域处于代数学的支配之下,而且从此开拓了一个变量数学领域,从而加速了微积分的成熟. 恩格斯高度评价了笛卡尔的革新思想.他说:“数学中的转折点是笛卡儿的变数.有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分和积分也就立刻成为必要的了,而它们也就立刻产生了……”

附件10:论文(设计)管理表一 昌吉学院本科毕业论文(设计)开题报告论文(设计)题目 圆锥曲线切线的几个性质及其应用探究系(院) 数学与应用数学 专业班级 09级数本(2)班 学科 理科学生 姓名 成骏 指导教师 姓名 徐权年学号 0925809070 职称 教授一、 选题的根据(1、内容包括:选题的来源及意义,国内外研究状况,本选题的研究目标、内容创新点及主要参考文献等。2、撰写要求:宋体、小四号。)1.选题的来源及意义圆锥曲线是平面解析几何的核心内容,又是高中数学的重点和难点,因而成为高考中必不可少的考查内容。圆锥曲线的主要内容之一是圆锥曲线切线的相关问题,课本中虽然没有对该类问题进行深入探究。但在考试中却常常出现与圆锥曲线切线相关的题目。而国内外的参考文献中涉及到这方面的研究大都只给出抽象的性质和证明,很少给出性质的相关应用,实际处理具体问题时学生难于灵活运用这些性质,因此,本选题具有十分重要的实际价值和意义2.国内外研究状况从目前参考道德文献资料中所了解的信息看,对圆锥曲线切线的性质,近几年研究者们从各自的角度出发,进行了一定的探讨,得到一系列结果。比如:在《圆锥曲线的一个性质的证明与推广》一文中张留杰得出了准线上任意一点与焦点弦的两端点,焦点弦所在直线的斜率之间的关系的性质:在《圆锥曲线切点弦的一个性质》一文中周伟林得出了圆锥曲线切点弦的共通性质:在《圆锥曲线的一个几何特征》一文中黄堰创得出了圆锥曲线的切线,对称轴以及顶点在圆锥曲线上的三角形的内在性质:在《圆的重要性质在圆锥曲线上的推广》一文中吴翔雁得出了切线长的性质:在《圆锥曲线的一个性质》一文中张家瑞得出了切线,割线间的关系的性质:在《圆锥曲线的一个性质及应用》一文中潘德党得出了圆锥曲线的焦点,准线与切线三者间的位置关系的性质及应用:在《高中几何学习指导》一文中李铭祺得出了切线长相等的性质等等。3.研究目标通过探讨从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线的相关性质及应用,揭示圆锥曲线隐藏的统一特性。4.本文创新点在现有的参考文献的基础上,通过从圆锥曲线外一点向圆锥曲线引两条切线以及割线,引一条切线和过该点的法线,对圆锥曲线切线进行研究,得到了圆锥曲线切线的5个性质并加以应用,以揭示圆锥曲线切线隐藏的统一性质。5.主要参考文献[1]郑观宝.圆锥曲线的一个公共性

圆锥螺母套毕业论文

用CAD绘制零件图1张(附在目录之前),制定数控车削(或铣削)零件加工路线,写数控程序并用仿真软件进行仿真加工。2.撰写课程设计说明书一份,要求内容与设计过程相符,且格式要符合规定要求。

  • 索引序列
  • 圆锥曲线有关的毕业论文
  • 高考圆锥曲线毕业论文
  • 圆锥曲线这方面有什么论文题目
  • 圆锥曲线性质及应用论文开题报告
  • 圆锥螺母套毕业论文
  • 返回顶部