首页 > 学术发表知识库 > 自动化专业相关英文论文题目

自动化专业相关英文论文题目

发布时间:

自动化专业相关英文论文题目

能源约束的发电调度的基础上物价预测包括预期价值与风险

基于价格预测(预期价值与风险)的能源受限时期。理由:based on 后面紧跟的Price Forecasts Including Expected Values and Risk是限定前面的Energy Constrained Generation Dispatch。即Based on 后面的是条件状语

1. PLC控制花样喷泉.doc 2. S7-200PLC在数控车床控制系统中的应用3. PLC控制五层电梯设计 4. 超高压水射流机器人切割系统电气控制设计5. 基于PLC的恒压供水系统设计 6. 西门子PLC交通灯毕业设计7. 双恒压供水西门子PLC毕业设计 8. 世纪星组态 PLC控制自动配料系统毕业论文9. 三菱梯形图PLC控制四层电梯 10.三菱PLC五层电梯控制11.全自动洗衣机西门子PLC控制 12.欧姆龙PLC控制交通灯13.基于PLC电机故障诊断系统设计 14.双恒压无塔供水系统plc设计毕业论文15.工业用洗衣机的PLC控制 16.PLC在配料生产线上的应用 毕业论文17.变频调速恒压供水系统 18.PLC电梯控制毕业论文19.基于PLC电梯控制设计 20.基于PLC中断技术的集选电梯控制系统实现21.自动送料装车系统PLC控制设计 22.简易电梯控制模型的设计与实现.doc23.PLC在数控机床中的应用 24.机械手PLC控制设计25.PLC控制锅炉输煤系统 26.PLC控制自动门的课程设计 27.基于PLC的三层电梯控制系统设计 28.交流变频调速PLC控制电梯系统设计毕业论文29.PLC控制的自动售货机毕业设计论文 30.PLC在变电站变压器自动化中的应用31.PLC在电网备用自动投入中的应用305022336

用于分布式在线UPS中的并联逆变器的一种无线控制器A Wireless Controller for Parallel Inverters in Distributed Online UPS SystemsJosep M. Guerrero', Luis Garcia de Vicufia", Jose Matas'*, Jaume Miret", and Miguel Castilla". Departament #Enginyeria de Sistemes, Automatica i Informhtica Industrial. Universitat Polithica de CatalunyaC. Comte d'Urgell, 187.08036 -Barcelona. Spain. Email: .. Departament #Enginyeria Electrbnica. Universitat Polit6cnica de CatalunyaAV. Victor BaLguer s/n. 08800I - Vilanova i la Geltrh. SpainAbsiract - In this paper, a novel controller for parallelconnectedonline-UPS inverters without control wireinterconnections is presented. The wireless control technique isbased on the well-known droop method, which consists inintroducing P-oand Q-V schemes into the inverters, in order toshare properly the power drawn to the loads. The droop methodhas been widely used in applications of load sharing betweendifferent parallel-connected inverters. However, this methodhas several drawbacks that limited its application, such as atrade-off between output-voltage regulation and power sharingaccuracy, slow transient response, and frequency and phasedeviation. This last disadvantage makes impracticable themethod in online-UPS systems, since in this case every modulemust be in phase with the utility ac mains. To overcome theselimitations, we propose a novel control scheme, endowing to theparalleled-UPS system a proper transient response, strictlyfrequency and phase synchronization with the ac mains, andexcellent power sharing. Simulation and experimental resultsare reported confirming the validity of the proposed approach.1. INTRODUCTIONThe parallel operation of distributed Uninterruptible PowerSupplies (UPS) is presented as a suitable solution to supplycritical and sensitive loads, when high reliability and poweravailability are required. In the last years, many controlschemes for parallel-connected inverters has been raised,which are derived from parallel-schemes of dc-dc converters[I], such as the master-slave control [2], or the democraticcontrol [3]. In contrast, novel control schemes have beenappeared recently, such as the chain-structure control [4], orthe distributed control [ 5 ] . However, all these schemes needcontrol interconnections between modules and, hence, thereliability of the system is reduced since they can be a sourceof noise and failures. Moreover, these communication wireslimited the physical situation ofthe modules [6].In this sense, several control techniques has been proposedwithout control interconnections, such as the droop method.In this method, the control loop achieves good power sharingmaking tight adjustments over the output voltage frequencyand amplitude of the inverter, with the objective tocompensate the active and reactive power unbalances [7].This concept is derived from the power system theory, inwhich the frequency of a generator drops when the powerdrawn to the utility line increases [8].0-7803-7906-3/03/$17.00 02003 IEEE. 1637However, this control approach has an inherent trade-offbetween voltage regulation and power sharing. In addition,this method exhibits slow dynamic-response, since it requireslow-pass filters to calculate the average value of the activeand reactive power. Hence, the stability and the dynamics ofthe whole system are hardly influenced by the characteristicsof these filters and by the value of the droop coefficients,which are bounded by the maximum allowed deviations ofthe output voltage amplitude and frequency.Besides, when active power increases, the droopcharacteristic causes a frequency deviation from the nominalvalue and, consequently, it results in a variable phasedifference between the mains and the inverter output voltage.This fact can be a problem when the bypass switch mustconnect the utility line directly to the critical bus in stead ofits phase difference. In [9], two possibilities are presented inorder to achieve phase synchronization for parallel lineinteractiveUPS systems. The first one is to locate a particularmodule near the bypass switch, which must to synchronizethe output voltage to the mains while supporting overloadcondition before switch on. The second possibility is to waitfor the instant when phase matching is produced to connectthe bypass.However, the mentioned two folds cannot be applied to aparallel online-UPS system, since maximum transfer timeought to be less than a % of line period, and all the modulesmust be always synchronized with the mains when it ispresent. Hence, the modules should be prepared to transferdirectly the energy from the mains to the critical bus in caseof overload or failure [lo].In our previous works [11][12], we proposed differentcontrol schemes to overcome several limitations of theconventional droop method. However, these controllers bythemselves are inappropriate to apply to a parallel online-UPS system. In this paper, a novel wireless control scheme isproposed to parallel different online UPS modules with highperformance and restricted requirements. The controllerprovides: 1) proper transient response; 2) power sharingaccuracy; 3) stable frequency operation; and 4) good phasematching between the output-voltage and the utility line.Thus, this new approach is especially suitable for paralleled-UPS systems with true redundancy, high reliability andpower availability. Simulation and experimental results arereported, confirming the validity of this control scheme.Fig. 1. Equivalenl cimuif ofan invener connecled 10 a bust"Fig. 2. P-odraop function.11. REVlEW OF THE CONVENTIONAL DROOP METHODFig. 1 shows the equivalent circuit of an inverter connectedto a common bus through coupled impedance. When thisimpedance is inductive, the active and reactive powers drawnto the load can be expressed asEVcosQ - V2 Q=where Xis the output reactance of an inverter; Q is the phaseangle between the output voltage of the inverter and thevoltage of the common bus; E and V are the amplitude of theoutput voltage of the inverter and the bus voltage,respectively.From the above equations it can be derived that the activepower P is predominately dependent on the power angle Q,while the reactive power Q mostly depends on the outputvoltageamplitude. Consequently, most of wireless-control ofparalleled-inverters uses the conventional droop method,which introduces the following droops in the amplitude Eand the frequency U of the inverter output voltageu = w -mP (3)E = E ' - n Q , (4)being W* and E' the output voltage frequency and amplitudeat no load, respectively; m and n are the droop coefficientsfor the frequency and amplitude, respectively.Furthermore, a coupled inductance is needed between theinverter output and the critical bus that fixes the outputimpedance, in order to ensure a proper power flow. However,it is bulky and increase:; the size and the cost of the UPSmodules. In addition, tho output voltage is highly distortedwhen supplying nonlinezr loads since the output impedanceis a pure inductance.It is well known that if droop coefficients are increased,then good power sharing is achieved at the expense ofdegrading the voltage regulation (see Fig. 2).The inherent trade-off of this scheme restricts thementioned coefficients, which can be a serious limitation interms of transient response, power sharing accuracy, andsystem stability.On the other hand, lo carry out the droop functions,expressed by (3) and (4), it is necessary to calculate theaverage value over one line-cycle of the output active andreactive instantaneous power. This can be implemented bymeans of low pass filters with a smaller bandwidth than thatof the closed-loop inverter. Consequently, the powercalculation filters and droop coefficients determine, to a largeextent, the dynamics and the stability of the paralleledinvertersystem [ 131.In conclusion, the droop method has several intrinsicproblems to be applied 1.0 a wireless paralleled-system ofonline UPS, which can he summed-up as follows:Static trade-off between the output-voltage regulation(frequency and amplitude) and the power-sharingaccuracy (active an4d reactive).2) Limited transient response. The system dynamicsdepends on the power-calculation filter characteristics,the droop coefficients, and the output impedances.Lost of ac mains synchronization. The frequency andphase deviations, due to the frequency droop, makeimpracticable this method to a parallel-connectedonline UPS system, in which every UPS should becontinuously synchronized to the public ac supply.1)3)111. PROPOSED CONTROL FOR PARALLEL ONLINE UPSINVERTERSIn this work, we will try to overcome the above limitationsand to synthesize a novel control strategy withoutcommunication wires that could be appropriate to highperformanceparalleled industrial UPS. The objective is toconnect online UPS inverters in parallel without usingcontrol interconnections. This kind of systems, also namedinverter-preferred, should be continuously synchronized tothe utility line. When an overload or an inverter failureoccurs, a static bypass switch may connect the input line tothe load, bypassing the inve:rter [14][15].Fig. 3 shows the general diagram of a distributed onlineUPS system. This system consists of two buses: the utilitybus, which is connected lo the public ac mains; and thesecure bus, connected to the distributed critical loads. Theinterface between these buses is based on a number of onlineUPS modules connected in parallel, which providescontinuously power to the: loads [16]. The UPS modulesinclude a rectifier, a set of batteries, an inverter, and a staticbypass switch.11638Q ac mainsutility busI I Ij distributed loads !Fig. 3. Online distributed UPS system.syposr /I 4(4Fig. 4. Operation modes of an online UPS.(a) Normal operation. (b) Bypass operation. (c) Mains failureThe main operation modes of a distributed online UPS1) Normal operation: The power flows to the load, fromthe utility through the distributed UPS units.2) Mains failure: When the public ac mains fails, theUPS inverters supply the power to the loads, from thebatteries, without disruption.Bypass operation: When an overload situation occurs,the bypass switch must connect the critical busdirectly to the ac mains, in order to guarantee thecontinuous supply of the loads, avoiding the damageof the UPS modules.For this reason, the output-voltage waveform should besynchronized to the mains, when this last is present.system are listed below (see Fig. 5):3)Nevertheless, as we state before, the conventional droopmethod can not satisfy the need for synchronization with theutility, due to the frequency variation of the inverters, whichprovokes a phase deviation.To obtain the required performance, we present a transientP-w droop without frequency-deviation in steady-state,proposed previously by OUT in [ 111w=o -mP (5)where is the active power signal without the dccomponent,which is done by. -I t -1sP= p ,( s + t - ' ) ( s + o , )being zthe time constant of the transient droop action.The transient droop function ensures a stable frequencyregulation under steady-state conditions, and 'at the sametime, achieves active power balance by adjusting thefrequency of the modules during a load transient. Besides, toadjust the phase of the modules we propose an additionalsynchronizing loop, yieldingo=w'-m%k,A$, (7)where A$ is the phase difference between the inverter and themains; and k, is the proportional constant of the frequencyadjust. The steady-state frequency reference w* can beobtained by measuring the utility line frequency.The second term of the previous equality trends to zero insteady state, leading tow = w' - k4($ -@'), (8)being $and $* the phase angles of the output voltage inverterand the utility mains, respectively.Taking into account that w = d $ / d t , we can obtain thenext differential equation, which is stable fork, positived$ *dt dt- + km$ = - + k,$' . (9)Thus, when phase difference increases, frequency willdecrease slightly and, hence, all :he UPS modules will besynchronized with the utility, while sharing the power drawnto the loads.IV. CONTROLLIEMRP LEMENTATIONFig. 5 depicts the block diagram of the proposedcontroller. The average active power P , without the dccomponent, can be obtained by means of multiplying theoutput voltage by the output current, and filtering the product........................................................................................io",.LSj'nchronirorion loop.......................................................................................Fig. 5. Block diagram of the proposed controller.using a band-pass filter. In a similar way, the averagereactive power is obtained, hut in this case the output-voltagemust be delayed 90 degrees, and using a low-pass filter.In order to adjust the output voltage frequency, equation(7) is implemented, which corresponds to the frequencymains drooped by two transient-terms: the transient activepower signal term; and the phase difference term, whichis added in order to synchronize the output voltage with theac mains, in a phase-locked loop (PLL) fashion. The outputvoltageamplitude is regulated by using the conventionaldroop method (4).Finally, the physical coupled inductance can be avoided byusing a virtual inductor [17]. This concept consists inemulated an inductance behavior, by drooping the outputvoltage proportionally to the time derivative of the outputcurrent. However, when supplying nonlinear loads, the highordercurrent-harmonics can increase too much the outputvoltageTHD. This can be easily solved by using a high-passfilter instead of a pure-derivative term of the output current,which is useful to share linear and nonlinear loads [I 1][12].Furthermore, the proper design of this output inductance canreduce, to a large extent, the unbalance line-impedanceimpact over the power sharing accuracy.v. SIMULATION AND EXPERIMENTARELS ULTSThe proposed control scheme, (4) and (7), was simulatedwith the parameters listed in Table 1 and the scheme shownin Fig. 6, for a two paralleled inverters system. Thecoefficients m, n, T, and kv were chosen to ensure stability,proper transient response and good phase matching. Fig. 7shows the waveforms of the frequency, circulating currents,phase difference between the modules and the utility line,and the evolution of the active and reactive powers. Note theexcellent synchronization between the modules and theACmiiinr 4 j. ...L...I.P...S...1... ..........................B...u...n...r.r..r..e..s... ................................... iFig. 6. Parallel operation oftwa online UPS modules,mains, and, at the same time, the good power sharingobtained. This characteristik let us to apply the controller tothe online UPS paralleled systems.Two I-kVA UPS modules were built and tested in order toshow the validity of the proposed approach. Each UPSinverter consisted of a single-phase IGBT full-bridge with aswitching frequency of 20 kHz and an LC output filter, withthe following parameters: 1. = 1 mH, C = 20 WF, Vi" = 400V,v, = 220 V, I50 Hz. The controllers of these inverters werebased on three loops: an inner current-loop, an outer PIcontroller that ensures voltage regulation, and the loadsharingcontroller, based on (4) and (7). The last controllerwas implemented by means of a TMS320LF2407A, fixedpoint40 MHz digital sigrial processor (DSP) from TexasInstruments (see Fig. 8), using the parameters listed in TableI. The DSP-controller also includes a PLL block in order tosynchronize the inverter with the common bus. When thisoccurs, the static bypass switch is tumed on, and the droopbasedcontrol is initiated.1640big 7 Wa\cfc)rms for twu.invencr, ;mnectcd in parallel. rpchrontred io Ihc ac mdnl.(a) Frequencics ufhoth UPS (b) Clrculattng currcni among modulcs. (CJ Phmc d!Nercn;: betucen ihc UPS a#>dth e ai mum(d) Ikiril uf the phze diNmncc (e) md (0 Activc and rcactlw pouerr "I ooih UPSNote that the iimc-acs arc deliheratcly JiNercni due in thc disiinct timuion*uni) ofthe \ inrblrr1641TABLEI.PARAMETEROSF THE PARALLELESDYS TEM.Filter Order I IFilter Cut-off Frequency I 0, I 10 I ragsFig. 8 shows the output-current transient response of theUPS inverters. First, the two UPS are operating in parallelwithout load. Notice that a small reactive current is circlingbetween the modules, due to the measurement mismatches.Then, a nonlinear load, with a crest factor of 3, is connectedsuddenly. This result shows the good dynamics and loadsharingof the paralleled system when sharing a nonlinearload.Fig. 8. Output current for the two paralleled UPS, during the connection of Bcommon nonlinear load with a crest factor of 3. (Axis-x: 20 mddiv. Axis-y:5 Mdiv.).VI. CONCLUSIONSIn this paper, a novel load-sharing controller for parallelconnectedonline UPS systems, was proposed. The controlleris based on the droop method, which avoids the use ofcontrol interconnections. In a sharp contrast with theconventional droop method, the controller presented is ableto keep the output-voltage frequency and phase strictlysynchronized with the utility ac mains, while maintaininggood load sharing for linear and nonlinear loads. This fact letus to extend the droop method to paralleled online UPS.On the other hand, the proposed controller emulates aspecial kind of impedance, avoiding the use of a physicalcoupled inductance. Th.e results reported here show theeffectiveness of the proposed approach.

自动化专业就业相关论文题目

1.机械设计制造及自动化专业毕业论文选题2.双侧驱动式旋耕灭茬机设计3.温室用小型电动旋耕机设计4.玉米对心种子播种机设计5.多功能机械手设计6.越障行走机的结构设计7.秸杆原料育苗钵成型机的设计8.耐磨材料应用现状与发展趋势研究9.代写论文抠抠巴贰衫七贰杉贰零巴10.揉性清洗技术在汽车发动机清洗中的应用11.液体菌种自动接种装置的设计12.果蔬高压电场保鲜技术及装置研究13.新型变质白口铸铁犁铧及旋耕刀材料成份配比的试验研究14.气缸盖试漏机设计15.南瓜种子分选机振动筛片及工作参数的优化设计学术堂提供更多论文知识

自动化专业相关论文题目最新

1、 [电气自动化]轧辊磨床电气控制系统 摘要轧辊磨床是现代工业生产中不可缺少的一种重要生产设备,主要用于冶金、造纸等行业。磨床是利用磨具对工件表面进行磨削加工的机床,大多数的磨床是使用高速旋转的砂轮进行磨削加工。磨床能加工硬度较高的材料,如... 类别:毕业论文 大小:515 KB 日期:2008-06-10 2、 [电气自动化]基于单片机的宽频程控波形发生器 摘要随着工业自动化水平的迅速提高,计算机在工业领域的广泛应用,人们对工业自动化的要求越来越高,种类繁多的控制设备和过程监控装置在工业领域的应用,使得传统的工业控制软件已无法满足用户的各种需求。通用工业... 类别:毕业论文 大小:830 KB 日期:2008-06-10 3、 [电气自动化]基于单片机的MOSFET驱动电路设计 摘要:当今世界随着电子技术的迅猛发展,MOSFET作为一种场效应晶体管大量的存在于我们的生产生活中并发挥着越来越重要的作用。本文以MOSFET的特性和工作原理为基础,逐步深入的介绍了以MOSFET为基... 类别:毕业论文 大小:1.18 MB 日期:2008-06-10 4、 [电气自动化]油田联合站自动监控方案设计 摘 要为加快信息化建设,满足生产、管理、决策等部门及时生产过程数据的迫切需求,结合化工装置过程控制的具体情况,确定了生产信息管理系统的结构,即:以实时数据库作为数据存储的平台,以过程数据采集为基础和以... 类别:毕业论文 大小:158 KB 日期:2008-06-10 5、 [电气自动化]未确知数学在电力系统安全评价中的应用 2008-06-07 09:46 38,912 封面.doc2008-06-07 09:46 419,328 幻灯片.ppt2008-06-07 09:... 类别:毕业论文 大小:278 KB 日期:2008-06-09

自动化相关的论文题目

自动化是一门涉及学科较多、应用广泛的综合性科学技术。作为一个系统工程,它由5个单元组成。下面,我为大家分享自动化相关的论文题目,希望对大家有所帮助!

No.1.自动化专业人才培养探索

No.2.自动化流水线实训系统的设计

No.3.电力自动化继电保护的安全管理

No.4.浅析电气自动化控制系统的设计思想

No.5.基于PLC的工业自动化控制技术探讨

No.6.工业自动化控制技术向智能家居的演进

No.7.矿井主扇风机自动化与信息化改造

No.8.基于IEC的变电站自动化系统安全风险评估

No.9.浅析集控站综合自动化系统运行中存在的问题

No.10.数字化变电站自动化技术的应用

No.11.如何提高综合自动化变电站的抗电磁干扰能力

No.12.自动化专业人才培养方案和课程体系的改革与实践

No.13.配电网自动化技术问题初探

No.14.楼宇自动化系统的监控方式及节能分析

No.15.地铁自动化控制相关系统的对比及应用

No.16.基于调度策略的自动化仓库系统优化问题研究

No.17.基于组态软件的综合自动化平台的设计与实现

No.18.基于PLC和运动控制器的电气自动化实验平台的设计

No.19.矿井自动化项目技术管理模式浅论

No.20.铁路变电站自动化监控系统的研制

No.21.馈线自动化自适应快速保护控制方案

No.22.高速制管机上的自动化系统解决方案

No.23.智能变电站是变电站综合自动化的发展目标

No.24.煤矿自动化与信息化技术回顾与展望

No.25.以先进自动化技术确保中线调水畅通

No.26.绿色理念背景下电厂自动化控制系统研究

No.27.大型自动化控制系统故障报警技术应用研究

No.28.煤矿电气自动化控制系统优化设计

No.29.配网自动化相关技术的研究

No.30.中心城市大型配电自动化设计方案与应用

No.31.自动化专业卓越工程师课程体系的改革与实践

No.32.综合自动化变电站电压量传输新方式

No.33.浅谈析电气自动化中的接地及保护

No.34.办公自动化在飞行中的应用

No.35.天津城市核心区配电自动化技术实施与进展

No.36.配电自动化系统中配电终端配置数量规划

No.37.倍福科技自动化技术助力高性能设备状态监测

No.38.渠道自动化控制系统与运行设计探析

No.39.自动化仓储系统优化方法的研究

No.40.配网自动化建设与运行管理问题探微

No.41.浅谈变电站综合自动化系统的`结构形式

No.42.变电站综合自动化通信系统运行维护分析

No.43.无功补偿技术在电气自动化中的应用

No.44.基于PIE的高分遥感泥石流自动化变化检测方法研究

No.45.电力自动化技术的新发展

No.46.配电自动化试点工程技术特点及应用成效分析

No.47.藁城新区水厂的自动化建设

No.48.配电自动化若干问题的探讨

No.49.工业自动化仪表故障分析及解决方法探析

No.50.建筑电气自动化系统安装的施工技术探讨

No.51.浅谈自动化仪表日常维护与故障解决

No.52.浅谈电力自动化管理系统

No.53.浅谈自动化控制系统及热工仪表的维护与管理

No.54.电气自动化工程控制系统的现状及其发展趋势

No.55.动力部一降压变电站综合自动化系统改造及应用

No.56.新型智能配电自动化终端自描述功能的实现

No.57.水电厂电气自动化控制设备的可靠性探讨

No.58.国外配网自动化建设模式对我国配网建设的启示

No.59.现场总线与工厂底层自动化及信息集成技术

No.60.铝工业电气自动化的现状与发展趋势

1.PLC控制花样喷泉.doc 2.S7-200PLC在数控车床控制系统中的应用3.PLC控制五层电梯设计 4.超高压水射流机器人切割系统电气控制设计5.基于PLC的恒压供水系统设计 6.西门子PLC交通灯毕业设计7.双恒压供水西门子PLC毕业设计 8.世纪星组态PLC控制自动配料系统毕业论文9.三菱梯形图PLC控制四层电梯 10.三菱PLC五层电梯控制11.全自动洗衣机西门子PLC控制 12.欧姆龙PLC控制交通灯13.基于PLC电机故障诊断系统设计 14.双恒压无塔供水系统plc设计毕业论文15.工业用洗衣机的PLC控制 16.PLC在配料生产线上的应用毕业论文17.变频调速恒压供水系统 18.PLC电梯控制毕业论文19.基于PLC电梯控制设计 20.基于PLC中断技术的集选电梯控制系统实现

有关自动化专业的英文论文题目

用于分布式在线UPS中的并联逆变器的一种无线控制器A Wireless Controller for Parallel Inverters in Distributed Online UPS SystemsJosep M. Guerrero', Luis Garcia de Vicufia", Jose Matas'*, Jaume Miret", and Miguel Castilla". Departament #Enginyeria de Sistemes, Automatica i Informhtica Industrial. Universitat Polithica de CatalunyaC. Comte d'Urgell, 187.08036 -Barcelona. Spain. Email: .. Departament #Enginyeria Electrbnica. Universitat Polit6cnica de CatalunyaAV. Victor BaLguer s/n. 08800I - Vilanova i la Geltrh. SpainAbsiract - In this paper, a novel controller for parallelconnectedonline-UPS inverters without control wireinterconnections is presented. The wireless control technique isbased on the well-known droop method, which consists inintroducing P-oand Q-V schemes into the inverters, in order toshare properly the power drawn to the loads. The droop methodhas been widely used in applications of load sharing betweendifferent parallel-connected inverters. However, this methodhas several drawbacks that limited its application, such as atrade-off between output-voltage regulation and power sharingaccuracy, slow transient response, and frequency and phasedeviation. This last disadvantage makes impracticable themethod in online-UPS systems, since in this case every modulemust be in phase with the utility ac mains. To overcome theselimitations, we propose a novel control scheme, endowing to theparalleled-UPS system a proper transient response, strictlyfrequency and phase synchronization with the ac mains, andexcellent power sharing. Simulation and experimental resultsare reported confirming the validity of the proposed approach.1. INTRODUCTIONThe parallel operation of distributed Uninterruptible PowerSupplies (UPS) is presented as a suitable solution to supplycritical and sensitive loads, when high reliability and poweravailability are required. In the last years, many controlschemes for parallel-connected inverters has been raised,which are derived from parallel-schemes of dc-dc converters[I], such as the master-slave control [2], or the democraticcontrol [3]. In contrast, novel control schemes have beenappeared recently, such as the chain-structure control [4], orthe distributed control [ 5 ] . However, all these schemes needcontrol interconnections between modules and, hence, thereliability of the system is reduced since they can be a sourceof noise and failures. Moreover, these communication wireslimited the physical situation ofthe modules [6].In this sense, several control techniques has been proposedwithout control interconnections, such as the droop method.In this method, the control loop achieves good power sharingmaking tight adjustments over the output voltage frequencyand amplitude of the inverter, with the objective tocompensate the active and reactive power unbalances [7].This concept is derived from the power system theory, inwhich the frequency of a generator drops when the powerdrawn to the utility line increases [8].0-7803-7906-3/03/$17.00 02003 IEEE. 1637However, this control approach has an inherent trade-offbetween voltage regulation and power sharing. In addition,this method exhibits slow dynamic-response, since it requireslow-pass filters to calculate the average value of the activeand reactive power. Hence, the stability and the dynamics ofthe whole system are hardly influenced by the characteristicsof these filters and by the value of the droop coefficients,which are bounded by the maximum allowed deviations ofthe output voltage amplitude and frequency.Besides, when active power increases, the droopcharacteristic causes a frequency deviation from the nominalvalue and, consequently, it results in a variable phasedifference between the mains and the inverter output voltage.This fact can be a problem when the bypass switch mustconnect the utility line directly to the critical bus in stead ofits phase difference. In [9], two possibilities are presented inorder to achieve phase synchronization for parallel lineinteractiveUPS systems. The first one is to locate a particularmodule near the bypass switch, which must to synchronizethe output voltage to the mains while supporting overloadcondition before switch on. The second possibility is to waitfor the instant when phase matching is produced to connectthe bypass.However, the mentioned two folds cannot be applied to aparallel online-UPS system, since maximum transfer timeought to be less than a % of line period, and all the modulesmust be always synchronized with the mains when it ispresent. Hence, the modules should be prepared to transferdirectly the energy from the mains to the critical bus in caseof overload or failure [lo].In our previous works [11][12], we proposed differentcontrol schemes to overcome several limitations of theconventional droop method. However, these controllers bythemselves are inappropriate to apply to a parallel online-UPS system. In this paper, a novel wireless control scheme isproposed to parallel different online UPS modules with highperformance and restricted requirements. The controllerprovides: 1) proper transient response; 2) power sharingaccuracy; 3) stable frequency operation; and 4) good phasematching between the output-voltage and the utility line.Thus, this new approach is especially suitable for paralleled-UPS systems with true redundancy, high reliability andpower availability. Simulation and experimental results arereported, confirming the validity of this control scheme.Fig. 1. Equivalenl cimuif ofan invener connecled 10 a bust"Fig. 2. P-odraop function.11. REVlEW OF THE CONVENTIONAL DROOP METHODFig. 1 shows the equivalent circuit of an inverter connectedto a common bus through coupled impedance. When thisimpedance is inductive, the active and reactive powers drawnto the load can be expressed asEVcosQ - V2 Q=where Xis the output reactance of an inverter; Q is the phaseangle between the output voltage of the inverter and thevoltage of the common bus; E and V are the amplitude of theoutput voltage of the inverter and the bus voltage,respectively.From the above equations it can be derived that the activepower P is predominately dependent on the power angle Q,while the reactive power Q mostly depends on the outputvoltageamplitude. Consequently, most of wireless-control ofparalleled-inverters uses the conventional droop method,which introduces the following droops in the amplitude Eand the frequency U of the inverter output voltageu = w -mP (3)E = E ' - n Q , (4)being W* and E' the output voltage frequency and amplitudeat no load, respectively; m and n are the droop coefficientsfor the frequency and amplitude, respectively.Furthermore, a coupled inductance is needed between theinverter output and the critical bus that fixes the outputimpedance, in order to ensure a proper power flow. However,it is bulky and increase:; the size and the cost of the UPSmodules. In addition, tho output voltage is highly distortedwhen supplying nonlinezr loads since the output impedanceis a pure inductance.It is well known that if droop coefficients are increased,then good power sharing is achieved at the expense ofdegrading the voltage regulation (see Fig. 2).The inherent trade-off of this scheme restricts thementioned coefficients, which can be a serious limitation interms of transient response, power sharing accuracy, andsystem stability.On the other hand, lo carry out the droop functions,expressed by (3) and (4), it is necessary to calculate theaverage value over one line-cycle of the output active andreactive instantaneous power. This can be implemented bymeans of low pass filters with a smaller bandwidth than thatof the closed-loop inverter. Consequently, the powercalculation filters and droop coefficients determine, to a largeextent, the dynamics and the stability of the paralleledinvertersystem [ 131.In conclusion, the droop method has several intrinsicproblems to be applied 1.0 a wireless paralleled-system ofonline UPS, which can he summed-up as follows:Static trade-off between the output-voltage regulation(frequency and amplitude) and the power-sharingaccuracy (active an4d reactive).2) Limited transient response. The system dynamicsdepends on the power-calculation filter characteristics,the droop coefficients, and the output impedances.Lost of ac mains synchronization. The frequency andphase deviations, due to the frequency droop, makeimpracticable this method to a parallel-connectedonline UPS system, in which every UPS should becontinuously synchronized to the public ac supply.1)3)111. PROPOSED CONTROL FOR PARALLEL ONLINE UPSINVERTERSIn this work, we will try to overcome the above limitationsand to synthesize a novel control strategy withoutcommunication wires that could be appropriate to highperformanceparalleled industrial UPS. The objective is toconnect online UPS inverters in parallel without usingcontrol interconnections. This kind of systems, also namedinverter-preferred, should be continuously synchronized tothe utility line. When an overload or an inverter failureoccurs, a static bypass switch may connect the input line tothe load, bypassing the inve:rter [14][15].Fig. 3 shows the general diagram of a distributed onlineUPS system. This system consists of two buses: the utilitybus, which is connected lo the public ac mains; and thesecure bus, connected to the distributed critical loads. Theinterface between these buses is based on a number of onlineUPS modules connected in parallel, which providescontinuously power to the: loads [16]. The UPS modulesinclude a rectifier, a set of batteries, an inverter, and a staticbypass switch.11638Q ac mainsutility busI I Ij distributed loads !Fig. 3. Online distributed UPS system.syposr /I 4(4Fig. 4. Operation modes of an online UPS.(a) Normal operation. (b) Bypass operation. (c) Mains failureThe main operation modes of a distributed online UPS1) Normal operation: The power flows to the load, fromthe utility through the distributed UPS units.2) Mains failure: When the public ac mains fails, theUPS inverters supply the power to the loads, from thebatteries, without disruption.Bypass operation: When an overload situation occurs,the bypass switch must connect the critical busdirectly to the ac mains, in order to guarantee thecontinuous supply of the loads, avoiding the damageof the UPS modules.For this reason, the output-voltage waveform should besynchronized to the mains, when this last is present.system are listed below (see Fig. 5):3)Nevertheless, as we state before, the conventional droopmethod can not satisfy the need for synchronization with theutility, due to the frequency variation of the inverters, whichprovokes a phase deviation.To obtain the required performance, we present a transientP-w droop without frequency-deviation in steady-state,proposed previously by OUT in [ 111w=o -mP (5)where is the active power signal without the dccomponent,which is done by. -I t -1sP= p ,( s + t - ' ) ( s + o , )being zthe time constant of the transient droop action.The transient droop function ensures a stable frequencyregulation under steady-state conditions, and 'at the sametime, achieves active power balance by adjusting thefrequency of the modules during a load transient. Besides, toadjust the phase of the modules we propose an additionalsynchronizing loop, yieldingo=w'-m%k,A$, (7)where A$ is the phase difference between the inverter and themains; and k, is the proportional constant of the frequencyadjust. The steady-state frequency reference w* can beobtained by measuring the utility line frequency.The second term of the previous equality trends to zero insteady state, leading tow = w' - k4($ -@'), (8)being $and $* the phase angles of the output voltage inverterand the utility mains, respectively.Taking into account that w = d $ / d t , we can obtain thenext differential equation, which is stable fork, positived$ *dt dt- + km$ = - + k,$' . (9)Thus, when phase difference increases, frequency willdecrease slightly and, hence, all :he UPS modules will besynchronized with the utility, while sharing the power drawnto the loads.IV. CONTROLLIEMRP LEMENTATIONFig. 5 depicts the block diagram of the proposedcontroller. The average active power P , without the dccomponent, can be obtained by means of multiplying theoutput voltage by the output current, and filtering the product........................................................................................io",.LSj'nchronirorion loop.......................................................................................Fig. 5. Block diagram of the proposed controller.using a band-pass filter. In a similar way, the averagereactive power is obtained, hut in this case the output-voltagemust be delayed 90 degrees, and using a low-pass filter.In order to adjust the output voltage frequency, equation(7) is implemented, which corresponds to the frequencymains drooped by two transient-terms: the transient activepower signal term; and the phase difference term, whichis added in order to synchronize the output voltage with theac mains, in a phase-locked loop (PLL) fashion. The outputvoltageamplitude is regulated by using the conventionaldroop method (4).Finally, the physical coupled inductance can be avoided byusing a virtual inductor [17]. This concept consists inemulated an inductance behavior, by drooping the outputvoltage proportionally to the time derivative of the outputcurrent. However, when supplying nonlinear loads, the highordercurrent-harmonics can increase too much the outputvoltageTHD. This can be easily solved by using a high-passfilter instead of a pure-derivative term of the output current,which is useful to share linear and nonlinear loads [I 1][12].Furthermore, the proper design of this output inductance canreduce, to a large extent, the unbalance line-impedanceimpact over the power sharing accuracy.v. SIMULATION AND EXPERIMENTARELS ULTSThe proposed control scheme, (4) and (7), was simulatedwith the parameters listed in Table 1 and the scheme shownin Fig. 6, for a two paralleled inverters system. Thecoefficients m, n, T, and kv were chosen to ensure stability,proper transient response and good phase matching. Fig. 7shows the waveforms of the frequency, circulating currents,phase difference between the modules and the utility line,and the evolution of the active and reactive powers. Note theexcellent synchronization between the modules and theACmiiinr 4 j. ...L...I.P...S...1... ..........................B...u...n...r.r..r..e..s... ................................... iFig. 6. Parallel operation oftwa online UPS modules,mains, and, at the same time, the good power sharingobtained. This characteristik let us to apply the controller tothe online UPS paralleled systems.Two I-kVA UPS modules were built and tested in order toshow the validity of the proposed approach. Each UPSinverter consisted of a single-phase IGBT full-bridge with aswitching frequency of 20 kHz and an LC output filter, withthe following parameters: 1. = 1 mH, C = 20 WF, Vi" = 400V,v, = 220 V, I50 Hz. The controllers of these inverters werebased on three loops: an inner current-loop, an outer PIcontroller that ensures voltage regulation, and the loadsharingcontroller, based on (4) and (7). The last controllerwas implemented by means of a TMS320LF2407A, fixedpoint40 MHz digital sigrial processor (DSP) from TexasInstruments (see Fig. 8), using the parameters listed in TableI. The DSP-controller also includes a PLL block in order tosynchronize the inverter with the common bus. When thisoccurs, the static bypass switch is tumed on, and the droopbasedcontrol is initiated.1640big 7 Wa\cfc)rms for twu.invencr, ;mnectcd in parallel. rpchrontred io Ihc ac mdnl.(a) Frequencics ufhoth UPS (b) Clrculattng currcni among modulcs. (CJ Phmc d!Nercn;: betucen ihc UPS a#>dth e ai mum(d) Ikiril uf the phze diNmncc (e) md (0 Activc and rcactlw pouerr "I ooih UPSNote that the iimc-acs arc deliheratcly JiNercni due in thc disiinct timuion*uni) ofthe \ inrblrr1641TABLEI.PARAMETEROSF THE PARALLELESDYS TEM.Filter Order I IFilter Cut-off Frequency I 0, I 10 I ragsFig. 8 shows the output-current transient response of theUPS inverters. First, the two UPS are operating in parallelwithout load. Notice that a small reactive current is circlingbetween the modules, due to the measurement mismatches.Then, a nonlinear load, with a crest factor of 3, is connectedsuddenly. This result shows the good dynamics and loadsharingof the paralleled system when sharing a nonlinearload.Fig. 8. Output current for the two paralleled UPS, during the connection of Bcommon nonlinear load with a crest factor of 3. (Axis-x: 20 mddiv. Axis-y:5 Mdiv.).VI. CONCLUSIONSIn this paper, a novel load-sharing controller for parallelconnectedonline UPS systems, was proposed. The controlleris based on the droop method, which avoids the use ofcontrol interconnections. In a sharp contrast with theconventional droop method, the controller presented is ableto keep the output-voltage frequency and phase strictlysynchronized with the utility ac mains, while maintaininggood load sharing for linear and nonlinear loads. This fact letus to extend the droop method to paralleled online UPS.On the other hand, the proposed controller emulates aspecial kind of impedance, avoiding the use of a physicalcoupled inductance. Th.e results reported here show theeffectiveness of the proposed approach.

不会写论文还这么嚣张?不就是250分吗得到了又怎么地?能吃呀?

Welding Automation Research in the engineering school is largely focused on problems involving sensing, modeling, and control of welding processes, i.e., welding automation. Faculty and students from electrical engineering, mechanical engineering, and material science are involved in the welding automation research. The overall objective of this research is to provide both greater productivity and enhanced quality for welding in the manufacturing environment.http://eecs.vanderbilt.edu/researchgroups/weldingautomation

这个不能复制过来的啊,你在百度知道搜索一下就知道了啊

关于电气自动化专业论文题目

电气工程毕业论文题目

随着经济生活水平的不断提高,人们对电气安装工程质量有了更高的要求。以下是电气工程毕业论文题目,欢迎阅读。

1、建筑电气工程施工中的质量控制和安全管理强化策略探讨

2、建筑电气施工质量问题及应对措施分析

3、探究建筑电气工程的智能化技术应用

4、基于Android的建筑电气无线监控系统研究与实现

5、《民用建筑电气设计规范》相关释疑

6、建筑电气低压配电设计中各种接地系统的探讨

7、建筑电气工程中的强电施工与设计方法分析

8、建筑电气工程施工质量控制要点分析

9、提高建筑电气工程施工管理的措施

10、建筑电气工程的智能化技术应用分析

11、基于REVIT的建筑电气BIM协同设计分析

12、建筑电气自动化系统安装的施工技术探讨

13、关于建筑电气在节能方面的几点思考

14、建筑电气设计中的消防设计之我见

15、建筑电气中供配电线路设计的思考

16、建筑电气工程安装技术要点探析

17、建筑电气照明节能设计略谈

18、建筑电气与智能化专业人才培养模式改革思路

19、切实提高文物建筑电气火灾防控能力[N]

20、论建筑电气工程的施工质量管理

21、建筑电气设计安装问题及解决对策

22、建筑电气施工质量通病与控制措施探析

23、建筑电气强电部分设计的.相关问题和应对策略

24、住宅小区的建筑电气设计探析

25、建筑电气火灾的现状、问题和防控

26、浅析建筑电气技术在智能建筑中的应用

27、智能化技术在建筑电气工程中的应用

28、高层楼宇建筑电气节能技术研究

29、建筑电气技术在工程中的应用及发展趋势

30、建筑电气工程安装技术要点分析及应用

31、DB模式下建筑电气工程投标报价、设计与造价管理

32、建筑电气的施工现场安全与管理问题分析

33、试论建筑电气安装工程中的问题及对策

34、基于Revit软件的建筑电气设计分析

35、建筑电气设计节能方面的应用

36、建筑电气项目的节能技术

37、建筑电气系统提高照明质量的措施研究

38、民用建筑电气照明系统节能技术分析

39、建筑电气节能问题研究

40、建筑电气施工质量控制要点分析

41、浅析建筑电气专业设备及管线标识的标注

42、建筑电气在住宅节能设计中的应用

43、建筑电气技术在智能建筑建设领域的应用分析

44、建筑电气监控系统监控服务与配置平台开发

45、建筑电气监控系统总线节点的功能可配置性开发

46、基于灰色层次分析法的建筑电气节能设计方案优选

47、简论我国建筑电气设计规范

48、建筑电气工程安装技术要点分析及应用研究

49、建筑电气工程的智能化技术应用分析

50、新时期建筑电气节能途径探讨

51、浅谈建筑电气设计中的节能技术措施

52、建筑电气配电线路的配电方式及防火措施探讨

53、建筑电气系统故障诊断方法研究

54、浅谈建筑电气消防审核和验收中的常见问题

55、建筑电气工程施工管理及质量控制

56、建筑电气安装工程中常见问题分析与预防

57、建筑电气中的SPD电压保护方法研究

58、浅谈建筑电气工程施工中常见的质量通病及防治措施

59、建筑电气工程安装技术要点分析及应用

60、建筑电气安装中防雷接地施工技术的应用与质量管理

61、建筑电气设计中的节能措施探讨

62、建筑电气设计原则与可行性措施

63、建筑电气防水设计探讨

64、建筑电气工程的质量管理和控制措施研究

65、探究建筑设计中的电气消防设计

66、建筑电气工程施工质量控制要点探析

67、关于建筑电气中的消防设计探讨

68、试论建筑电气设计中的节能措施

69、建筑电气照明节能设计研究

70、建筑电气中的低压电气安装

71、建筑工程电气设备安装施工技术的要点分析

72、基于建筑信息模型的电气特性计算仿真

73、高职院校建筑电气课程实践性教学改革探索

74、建筑电气照明节能设计的探讨

75、建筑电气施工质量控制综述

76、建筑电气节能技术的合理应用

77、高层建筑电气设计中低压配电系统安全性探讨

78、建筑电气自动化控制系统的应用

79、对现代建筑电气设计的特点及发展的探讨

80、电力电缆在建筑电气工程中的应用研究

81、建筑电气系统的节能设计

82、基于智能负荷控制器的建筑电气优化布线研究

83、建筑电气设备的电气节能设计研究

84、建筑电气节能问题的研究

85、超高层建筑电气设计关键技术解析

86、小波消噪和人工蜂群优化神经网络的建筑电气故障诊断

87、谐波对建筑电气设计的影响及对策分析

88、试论关于智能化建筑与建筑电气

89、对现代建筑电气设计中的问题探讨

90、建筑节能在建筑电气设计中的应用

91、浅谈病房建筑电气设计中应注意的问题

92、浅谈建筑电气节能技术的应用

93、建筑电气设计存在的问题及主要对策

94、建筑电气消防工程设计及施工策略研究

95、高层建筑电气中的低压配电设计分析

96、建筑电气的低压电气安装技术探讨

97、浅析建筑电气工程施工中的质量控制与安全管理

98、试论建筑电气设计中存在的问题与解决对策

99、BIM技术在建筑电气设计中的应用研究

100、建筑电气工程的施工质量管理的策略构建

楼主大大要和你的文章内容适合哦

楼主是什么歇学习阶段呢,你擅长什么呢?

电力是发展生产和提高人类生活水平的重要物质基础,电力的应用在不断深化和发展,电气自动化是国民经济和人民生活现代化的重要标志。学术堂整理了十五个电气工程论文题目供大家进行参考:1、短路电流计算曲线的算法研究及与IEC短路电流计算法的对比2、计算曲线法用于大容量机组短路电流计算的评估3、崇明电网配置低压减载装置的必要性和可行性研究4、电压稳定计算中配网模型的研究5、上海电网电压稳定极限运行能力分析6、发电机励磁系统模型对短路电流计算结果的影响7、联络线功率对上海电网电压稳定极限运行的影响8、采用“干预法”估计谐波阻抗9、波过程试验装置的研制10、直流电源中可控硅控制电路的设计11、应用于波过程试验装置的频率可调方波发生器的研制12、水位测量仪的液晶显示器电路的设计13、基于R232、R485的无线数据通信系统的设计14、直流电源中脉冲宽度控制电路的设计15、红外温度测试系统中数据采集电路的设计

  • 索引序列
  • 自动化专业相关英文论文题目
  • 自动化专业就业相关论文题目
  • 自动化专业相关论文题目最新
  • 有关自动化专业的英文论文题目
  • 关于电气自动化专业论文题目
  • 返回顶部