• 回答数

    9

  • 浏览数

    311

年~you(yu)
首页 > 论文问答 > 大数据平台主要采用了什么核心技术

9个回答 默认排序
  • 默认排序
  • 按时间排序

基督城里

已采纳
大数据技术,简而言之,就是提取大数据价值的技术,是根据特定目标,经过数据收集与存储、数据筛选、算法分析与预测、数据分析结果展示等,为做出正确决策提供依据,其处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据处理手段所无法完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的IT技术。想要成为炙手可热的大数据技术人才,这些大数据的核心技术一定要知晓!一、大数据基础阶段大数据基础阶段需掌握的技术有:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis以及hadoop mapreduce hdfs yarn等。1、Linux命令对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令2、 RedisRedis是一个key-value存储系统,其出现很大程度补偿了memcached这类key/value存储的不足,在部分场合可以对关系数据库起到很好的补充作用,它提供了Java,C/C++,C#,PHP,JavaScript,Perl,Object-C,Python,Ruby,Erlang等客户端,使用很方便,大数据开发需掌握Redis的安装、配置及相关使用方法。二、大数据存储阶段大数据存储阶段需掌握的技术有:hbase、hive、sqoop等。1、HBaseHBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。2、HiveHive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。三、大数据架构设计阶段大数据架构设计阶段需掌握的技术有:Flume分布式、Zookeeper、Kafka等。1、KafkaKafka是一种高吞吐量的分布式发布订阅消息系统,其在大数据开发应用上的目的是通过Hadoop的并行加载机制来统一线上和离线的消息处理,也是为了通过集群来提供实时的消息。大数据开发需掌握Kafka架构原理及各组件的作用和使用方法及相关功能的实现!2、FlumeFlume是一款高可用、高可靠、分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。大数据开发需掌握其安装、配置以及相关使用方法。3、ZooKeeperZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。四、大数据实时计算阶段大数据实时计算阶段需掌握的技术有:Mahout、Spark、storm。1、SparkSpark是专为大规模数据处理而设计的快速通用的计算引擎,其提供了一个全面、统一的框架用于管理各种不同性质的数据集和数据源的大数据处理的需求,大数据开发需掌握Spark基础、SparkJob、Spark RDD、spark job部署与资源分配、Spark shuffle、Spark内存管理、Spark广播变量、Spark SQL、Spark Streaming以及Spark ML等相关知识。2、stormStorm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。Storm可以方便地在一个计算机集群中编写与扩展复杂的实时计算,Storm用于实时处理,就好比 Hadoop 用于批处理。Storm保证每个消息都会得到处理,而且它很快——在一个小集群中,每秒可以处理数以百万计的消息。五、大数据数据采集阶段大数据数据采集阶段需掌握的技术有:Python、Scala。1、Python与数据分析Python是面向对象的编程语言,拥有丰富的库,使用简单,应用广泛,在大数据领域也有所应用,主要可用于数据采集、数据分析以及数据可视化等,因此,大数据开发需学习一定的Python知识。2、ScalaScala是一门多范式的编程语言,大数据开发重要框架Spark是采用Scala语言设计的,想要学好Spark框架,拥有Scala基础是必不可少的,因此,大数据开发需掌握Scala编程基础知识!以上只是一些简单的大数据核心技术总结,比较零散,想要学习大数据的同学,还是要按照一定到的技术路线图学习!
206 评论

张小电1301

258 评论

shenli83浪漫满屋

楼上说的对,目前国内基本就是hadoop生态做分布式存储,实时计算框架的话spark和flink。基本都是开源技术,可以多关注一下官方了解,也可以关注一些好的微信公众号如“自学帮”,里边都有各个组件的详细说明

222 评论

小蟠桃儿

实时处理 flink框架,批处理spark框架。

260 评论

兔纸来个兔宝宝

大数据是非常重要的。大数据对于科技的发展有着重要的支撑作用。

291 评论

玉江style

大叔就是什么学的合理只要你天天的是学习学习

174 评论

xuemei1987

人工智能数据采集是指在人工智能领域,根据特定项为训练机器学习数学模型所使用的的训练数据集的要求,在一定的既定标准下收集和衡量数据和信息的过程,并输出一套有序的数据。澳鹏提供的数据采集服务,提升规模化机器学习。作为训练数据服务的行业领先者,我们能够快速交付涵盖多种数据类型大量优质数据,包括图像、视频、语音、音频和文本,以满足客户特定 AI 项目的需求

168 评论

偶与吃货

大数据的核心技术主要在于创新,然后创新的数据在一种合理化的一种要求,两者之间的一个共性

139 评论

奇异果香

总的来说大数据有5个部分。数据采集,数据存储,数据清洗,数据挖掘,数据可视化。还有新兴的实时流处理,可能还有别的

209 评论

相关问答

  • 大数据平台主要采用了什么核心技术

    大数据技术,简而言之,就是提取大数据价值的技术,是根据特定目标,经过数据收集与存储、数据筛选、算法分析与预测、数据分析结果展示等,为做出正确决策提供依据,其处理

    年~you(yu) 8人参与回答 2023-12-05
  • 大数据平台核心技术考核答案

    人工智能数据采集是指在人工智能领域,根据特定项为训练机器学习数学模型所使用的的训练数据集的要求,在一定的既定标准下收集和衡量数据和信息的过程,并输出一套有序的数

    最好的我~ 6人参与回答 2023-12-07
  • 大数据核心技术是什么

    大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。1、数据采集与预处理:Flume

    jewelleryz 8人参与回答 2023-12-12
  • 大数据的什么是大数据技术的核心

    大数据是非常重要的。大数据对于科技的发展有着重要的支撑作用。

    初心&依恋 5人参与回答 2023-12-08
  • 大数据核心技术

    大叔就是什么学的合理只要你天天的是学习学习

    我有歼击机 8人参与回答 2023-12-05