MrStoneLiu
回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条
angelwhere?
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
DoughnutTOP
关于人工智能的定义众说不一。美国 斯坦福大学人工智能研究中心尼尔逊教授 下过这样一个定义:“人工智能是关于知识 的学科——怎样表示知识以及怎样获得知 识并使用知识的科学 。” 而麻省理工学院 的温斯顿教授认为:“人工智能就是研究如 何使计算机去做过去只有人才能做的智能 工作。”人们普遍认为人工智能(Artificial Intelligence),英文缩写为 AI,也称机器智 能。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系 统的一门新的技术科学。它是从计算机应 用系统的角度出发 , 研究如何制造出人造 的智能机器或智能系统 , 来模拟人类智能 活动的能力, 以延伸人们智能的科学。 人工智能就其本质而言 , 是对人的思 维的信息过程的模拟。人工智能不是人的 智能 , 更不会超过人的智能。 对于人的思 维模拟可以从两条道路进行, 一是结构模 拟 , 仿照人脑的结构机制 , 制造出 “类人 脑”的机器;二是功能模拟,暂时撇开人脑 的内部结构, 而从其功能过程进行模拟。 人工智能可以分为强人工智能和弱人 工智能。强人工智能观点认为有可能制造 出真正能推理 (Reasoning) 和解决问题 (Problem solving)的智能机器,并且,这样的 机器能将被认为是有知觉的, 有自我意识 的。弱人工智能观点认为不可能制造出能 真正地推理和解决问题的智能机器 , 这些 机器只不过看起来像是智能的 , 但并不真 正拥有智能 , 也不会有自主意识。 人工智 能的研究经历了以下几个阶段: 第一阶段:20 世纪 50 年代人工智能的兴 起和冷落。人工智能概念首次提出后,出现了 一批显著的成果,如机器定理证明、跳棋程序、 LISP 表处理语言等。但由于解法推理能力有 限,以及机器翻译失败等,使人工智能走入低 谷。这一阶段的特点是:重视问题求解的方 法,忽视知识重要性。第二阶段:20 世纪 60 年代末到 70 年代,专 家系统出现使人工智能研究出现新高潮。 DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究 和开发,将人工智能引向了实用化。1969 年成立了国际人工智能联合会议(IJCAI)。 第三阶段:20 世纪 80 年代,随着第五代计 算机的研制,人工智能得到了很大发展。日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使 逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。 第四阶段:20 世纪 80 年代末,神经网络飞 速发展。1987 年,美国召开第一次神经网络 国际会议,宣告了这一新学科的诞生。此后, 各国在神经网络方面的投资逐渐增加,神经网 络迅速发展起来。 第五阶段:20 世纪 90 年代,人工智能出现 新的研究高潮。由于网络技术特别是国际互 连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问 题求解,而且研究多个智能主体的多目标问题求解,将人工智能面向实用。人工智能研究范畴有自然语言处理 , 知识表现,智能搜索,推理,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人 工生命,神经网络,复杂系统等。目前,人工智能是与具体领域相结合进行研究的,有如下领域:(1)专家系统。依靠人 类已有的知识建立起来的知识系统,目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域。(2)机器学习。主要在三 个方面进行:一是研究人类学习的机理、人 脑思维的过程;二是机器学习的方法;三是建立针对具体任务的学习系统。(3)模式识别。研究如何使机器具有感知能力,主要研究视觉 模式和听觉模式的识别。(4)理解自然语言。计算机如能“听懂”人的语言,便可以直接用口语操作计算机,这将给人们带极大的便 利。(5)机器人学。机器人是一种能模拟人的行为的机械,对它的研究经历了三代发展过程:第一代(程序控制)机器人:这种机器人只能刻板地按程序完成工作,环境稍有变化就会出问题,甚至发生危险。第二代(自适应)机器人:这种机器人配备有相应的感觉传感器, 能取得作业环境、操作对象等简单的信息,并由机器人体内的计算机进行分析处理,控制机器人的动作。第三代(智能)机器人:智能机 器人具有类似人的智能,它装备了高灵敏度传感器,因而具有超过人的视觉、听觉、 、嗅觉、触觉的能力,能对感知的信息进行分析,控制自 己的行为,处理环境发生的变化,完成各种复杂的任务。而且有自我学习、归纳、总结、提高已掌握知识的能力。(6)智能决策支持系统。20 世纪 80 年代以来专家系统在许多方面取得 成功,将人工智能中特别是智能和知识处理技术应用于决策支持系统,扩大了决策支持系统 的应用范围,提高了系统解决问题的能力,这就成为智能决策支持系统。(7)人工神经网络。在研究人脑的奥秘中得到启发,试图用大量的 处理单元模仿人脑神经系统工程结构和工作机理。
跟你是一个专业的,之前我也在为论文苦恼了半天,网上的范文和能搜到的资料,大都不全面,一般能有个正文就不错了,开题报告、中期报告什么的都没有,关键是没有数据和分析
智能科学与技术是面向前沿高新技术的基础性专业,覆盖面很广。专业涉及机器人技术,以新一代网络计算为基础的智能系统,微机电系统(MEMS),与国民经济、工业生产及日
给全国十五,六种学报,杂志审稿占用了我业余生活的大部分时间,每年的审稿量少说有100篇近年来,觉得稿件质量大不如前在我前几年开始审稿时,一审的通过率在90%以上
能
太多了。你不是本专业的吧?可以去图书馆主页搜一下关键字,然后找几篇文章看看,你会有眉目的。
优质论文问答问答知识库