• 回答数

    2

  • 浏览数

    122

曰月無塵
首页 > 期刊论文 > 煤层气毕业论文前言

2个回答 默认排序
  • 默认排序
  • 按时间排序

流云归晚

已采纳

庚勐1 孙粉锦1 李贵中1 刘萍1 梁丽1 李林地2

(1.中国石油勘探开发研究院廊坊分院;2.中国石化石油勘探开发研究院.)

摘要:煤层气作为一种重要的非常规天然气能源,在成藏方式、储集类型、开发手段上与常规天然气藏存在很大差异。煤层不仅是煤层气的生气层,同时也是储气层,而且煤层气多以吸附态赋存于煤层中。因此,在煤层气井压裂施工过程中压裂液对煤储层的伤害不仅体现在宏观的渗流能力伤害方面,更主要体现在对吸附在煤表面的煤层气吸附解吸伤害影响上。本文针对煤层气的吸附解吸影响因素进行了综合分析评价,具体分析了煤的成分与煤中化学元素组成对煤层气吸附解吸的影响;确定了煤层气吸附解吸伤害实验评价方法;提出了压裂液与煤层润湿性是评价压裂液对煤层气解吸附伤害程度的衡量参数。利用该评价模式对两处不同煤质特征样品进行了含有粘土防膨剂的压裂液及活性水对煤层气解吸附伤害影响评价。该研究成果为煤层气井压裂施工过程中的压裂液选择具备理论指导作用。

关键词:煤层气 吸附-解吸 压裂液 润湿角 伤害机理

基金项目: 国家科技重大专项项目 37“煤层气完井与高效增产技术及装备研制”项目 ( 2008ZX05037) 资助。

作者简介: 庚勐,男,1981 年生,硕士研究生,2009 年毕业于中国石油大学 ( 北京) ,从事煤层气地质评价研究。地址: ( 065007) 河北省廊坊市广阳区万庄 44#煤层气所。电话 ( ,。E mail:gengmengxi@ petrochina. com. cn。

Research on the Mechanism of Coalbed Methane Desorption Damages Caused by Fracturing Fluid

GENG Meng1,SUN Fenjin1,LI Guizhong1,LIU Ping1,LIANG Li1,LI Lindi2

( 1. Langfang Branch,PetroChina Petroleum Exploration and Development Research Institute, Lang-fang,Hebei 065007,China; 2. Sinopec Petroleum Exploration & Production Research Institute,Beijing 100083,China. )

Abstract: Coal-bed methane is an important unconventional natural energy resource. Compared to convention- al gas reservoir,it has greater difference with the ways of reservoir modes and storage types and exploration meth- ods. Coal seam is the generation and storage of the gas which prefers to exist with adsorption behavior. Therefore, the damage caused by fracturing fluid during the fracture treatment not only displayed on the harm to filtration ca- pability,moreover the influence on the adsorption & desorption of the gas being on the coal surface. This article makes synthetic analysis and appraisal of the coal bed methane absorption & desorption affecting factors. It analyzes the influence of the coal component and chemical elements composition to coal-bed methane absorption-desorption, establishes the coal-bed methane absorption & desorption damage experimental evaluation methods,proposes that fracturing fluid and coal seam wettability are the measuring parameters for evaluating the damage degree of the frac- turing fluid to coal-bed methane desorption. It evaluates the damages of the fracturing liquid and active water con- taining clay antiswelling agent with two samples of different coal quality features. The result has theoretical guid- ance on choosing fracturing liquid during coal-bed methane fracturing operation.

Keywords: coal-bed methane; adsorption & desorption; fracturing fluid; wetting angle; damage mecha- nism

1 前言

煤层气作为一种重要的非常规天然气资源越来越受到世界各国的重视,2010年美国煤层气年产量已突破560亿方,达到常规天然气产量的一半;中国煤层气储量丰富,煤层气勘探开发利用的产业化进程也正在快速进行。煤层气开发技术不断突破,但由于煤储层的特殊性质,压裂施工成为获得工业气流的重要手段,而煤层气多以吸附态赋存于煤层中,使得压裂施工中对煤储层造成的伤害因素大大增加,其中压裂液与煤储层的配伍性显得格外重要。

2 煤层气吸附解吸机理

煤层气在煤中主要以吸附态赋存外,还有游离态和水溶态赋存方式。煤是具有裂缝系统和基质孔隙的双孔结构,该结构控制了其中气体的储集和运移。煤层其主要吸附于煤的孔隙中,受到温度压力等条件影响,造成热运动能力改变,从而实现在煤表面的吸附和解吸[1]。

煤层气的吸附和解吸主要区别于以下四个方面:(1)作用过程。吸附是一种自发的热演化生烃排烃过程;解吸则是一种被动的人为排水降压过程。(2)作用时间。吸附过程要经历漫长的年代,要以百万年计算;而解吸过程则非常短暂,只需要几分钟或者几小时。(3)作用类型。吸附包括了物理吸附和化学吸附两种形式,化学吸附是以离子键吸附,需要能量较大,但所占吸附气比例很小,物理吸附则具备了热能低、速度快、可逆和无选择性等特点;解吸过程则是单一的物理过程。(4)作用条件。吸附是通过煤演化过程中逐渐脱水、增压实现的;解吸则是一个相对恒温过程[2]。

通过对煤层气的吸附解吸原理分析可知,压裂液对煤层气的吸附解吸影响主要发生在解吸附过程中。

3 煤层气解吸附影响因素分析

煤对气体的吸附能力受多种因素的影响,通常情况下主要影响因素有压力、温度、矿物质含量、水分含量、煤阶、岩性、气体组分等[3]。本研究中使用了同一地区同一批次煤岩样品,等温吸附实验是在室内利用纯甲烷气体进行吸附解吸实验;人为规避了以上常规因素对煤层气解吸附的影响,可以将各种压裂液配方对煤层气解吸附的影响在同一标准下进行比较。

压裂液对煤层气解吸附的影响主要体现为与气体在煤表面的润湿能力不同,造成对煤层气解吸附促进作用存在差异,降低了由于孔隙堵塞造成的解吸附气量减少,个别压裂液配方的注入甚至增加了煤层气的解吸量。压裂液与煤的润湿性可以通过接触角来测定,接触角越小润湿性越好,对煤层气解吸附的促进作用越大[4]。

4 煤质特征对润湿性的影响

4.1 水分

煤层中水的赋存状态分包括外在水和内在水以及部分结晶水,本研究中涉及的水分含量是指内在水含量,此时内在水是以物理吸附形势存在于煤样中;而煤样中的结晶水是以化学方式与煤中矿物质结合的,含量很小,可以忽略其影响。由图1可知,随着煤样的空气干燥基水分增高,煤样与水的接触角越小,表明煤样越容易被水润湿,该煤样的润湿性越好。

图1 煤样水分含量与接触角关系

4.2 灰分

煤的灰分是指煤中所有可燃物完全燃烧,煤中矿物质在一定温度下产生一系列分解、化合等复杂反应后剩下的残渣。煤中灰分全部来自煤中矿物质,而灰分的组成和重量与煤中矿物质含量不完全相同,其并非煤中固有成分,通常将其称为灰分产率。煤中的矿物质成分主要有高岭石、黄铁矿、石英和方解石等。

如图2所示,煤样中灰分含量越大,煤样与水之间接触角越小,煤样润湿性能越好。

4.3 挥发分

图2 煤样灰分含量与接触角关系

水分和矿物质含量虽然对煤的润湿性起到一定作用,但由于二者均属于无机物,并不是煤的主要成分,而挥发分是煤中有机成分,其与煤的成因、显微组分和煤化程度有关,可以通过挥发分产率大致判断煤的变质程度。由于挥发分主要是由吸附于煤样孔隙中的气体和水分以及随温度升高煤样外围官能团释放气,其中水分和极性官能团亲水,气体和非极性官能团不亲水,所以很难通过挥发份产率判断煤样的润湿性。如图3所示,挥发份产率同煤样与水的接触角之间相关性很差,证明了挥发份与煤样润湿性之间并无明显关联。

图3 煤样挥发分含量与接触角关系

4.4 固定碳

固定碳与挥发分一样都属于煤中有机成分,煤样中的干燥无灰基固定碳含量随煤化程度增加而变高,所以也有国家(或地区)将其作为煤的分类标准。

实际上固定碳并不只是煤中碳元素的含量,还包括氧、氮、硫等元素。固定碳并不是煤中固有成分,而是热分解的产物。由于煤是由若干结构相似的结构单元通过性质活泼的桥键连接而成的大分子结构,其核心结构是芳香核,在边缘存在一定得较为活泼的基团,随着固定碳含量增加,煤化程度加深,煤分子的稳定性加强,导致了润湿性变差。由图4可以看出,随着煤中固定碳含量的增加,煤样与水之间的接触角逐渐增大,润湿性变差。

图4 煤样固定碳含量与接触角关系

5 压裂液对煤层气解吸附影响分析

5.1 含粘土防膨剂压裂液对煤层气解吸附影响分析

通过以上分析可以看出,水分、灰分和固定碳都与煤质和水的润湿性存在关联,水分和灰分含量的增加都会降低水与煤质间的接触角,提高煤的润湿性;固定碳含量增加则会增大水与煤之间的接触角,降低煤的润湿性。如表1工业分析数据可知,目标煤层的固定碳含量要远大于水分和灰分含量,超过了75%,所以该目标煤层的润湿性能较差。

表1 目标煤层工业分析结果

本次试验中首先用到了蒸馏水作为对比液,同时选择地下水作为基液,添加了不同浓度KCl进行对比,由于压裂液配方的成分远复杂于蒸馏水,所以每种添加了不同浓度KCl的地下水压裂液与煤层的润湿性能存在很大差异。

如表2所示,对于3#煤层添加了1%KCl的地下水压裂液与煤层的接触角最小,而2%KCl的地下水压裂液与煤层的接触角最大;同时对于5#目标煤层,添加了2%和6%KCl的地下水压裂液与煤层接触角较小,而添加了1%和4%KCl的地下水压裂液与煤层接触角较大。以上论则完全验证了添加不同浓度KCl粘土防膨剂的地下水压裂液污染后煤层解吸附曲线特征。

表2 不同浓度防膨剂与韩城地区3#煤样接触角对比表

如图5目标煤层受蒸馏水或含粘土防膨剂压裂液影响后的吸附解吸曲线所示,目标煤层受到含有KCl的地层水或蒸馏水污染后,解吸附曲线出现程度不同的滞后现象,且解吸滞后现象严重程度与压裂液同煤层的接触角度数大小成正比,即与润湿性成反比,这是由于不同配方污染后造成的不利影响与解吸促进综合作用后的结果,与目标煤层润湿性较好压裂液具备较好的促进解吸作用,相对解吸滞后性减小。

图5-1 蒸馏水对3#煤解吸影响

对于3#目标煤层,几种不同浓度防膨剂配方对煤层气解吸附影响程度由大到小依次为:地表水+2%KCl>地表水+6%KCl>蒸馏水>地表水+4%KCl>地表水+1%KCl,除地表水+2%KCl要根据煤层原始压力考虑其实用性意外,其余几种浓度防膨剂配方煤层气解吸附影响程度差别非常小[5]。如表3所示,综合考虑到目标煤层较低的粘土含量,从成本角度可以考虑优先选择浓度为1%的KCl防膨剂进行压裂液配制。

图5-2 蒸馏水对5#煤解吸影响

图5-3 1%防膨剂对3#煤解吸影响

图5-4 1%防膨剂对5#煤解吸影响

对于5#目标煤层,当压裂液为蒸馏水时对煤层气解吸附影响较小;当加入1%和4%KCl防膨剂对煤层解吸附的影响最大,使煤层气解吸出现了明显的滞后性,不建议使用该种防膨剂进行压裂液配制。其他几种防膨剂对煤层气解吸附影响有限,可以使用;如表4所示,综合考虑到目标煤层较低的粘土含量,最适合于5#煤层解吸的防膨剂是2%KCl。

图5-5 2%防膨剂对3#煤解吸影响

图5-6 2%防膨剂对5#煤解吸影响

图5-7 4%防膨剂对3#煤解吸影响

图5-8 4%防膨剂对5#煤解吸影响

图5-9 6%防膨剂对3#煤解吸影响

图5-10 6%防膨剂对5#煤解吸影响

表3 3#煤样粘土矿物含量测试表

表4 5#煤样粘土矿物含量测试表

5.2 活性水压裂液对煤层气解吸附影响分析

目前煤层压裂施工中大量使用活化水作为压裂液,因为活性水的粘度只有交联冻胶粘度1%,反排效果好,加砂量相对较少,同时对煤层的污染较少,所以具备较好的应用前景。

在对含粘土防膨剂压力液与煤层气解吸附影响评价基础上,本次试验中加入了0.5%DL8助排剂形成活性水进行试验分析。

如图6所示,受到地表水+0.5%Dl8助排剂+1%KCl防膨剂污染的5#煤试验样品解吸滞后性远远小于地表水+1%KCl防膨剂污染的5#煤层解吸过程。由表5可知,加入助排剂以后的压裂液与5#煤样接触角小于未加入助排剂之前,说明该助排剂改善了压裂液与目标煤层的润湿性,在某种程度上降低了单纯使用防膨剂给煤层气解吸造成的伤害。

图6 0.5DL8助排剂+1%防膨剂对5#煤解吸影响对比

表5 添加助排剂前后压裂液与5#煤样接触角对比表

结论

压力液对煤层气的影响主要发生在解吸附过程中;对于同一煤层煤样,压裂液对煤层气解吸附影响主要是由于固液间润湿性差异造成的压裂液置换煤层气能力不同,使得解吸气量产生差异。煤质中影响煤与水润湿性的主要成分为固定碳,固定碳含量越大煤的润湿性越差;与之相反的是水分和灰分,二者含量越大煤的润湿性越好,但由于二者含量远小于固定碳含量,所以目标煤层煤的润湿性较差。

添加防膨剂以后使得压裂液性质变复杂,根据不同压裂液与目标煤层润湿性验证了煤层气等温吸附解吸曲线滞后性特征;根据不同煤层具体情况选择经济高效的粘土防膨剂浓度进行压裂液配制。

对于加入了助排剂的活性水压裂液增加了液体表面活性,改善了其与目标煤层的润湿性,有效地降低了煤层气解吸附过程滞后性,提高了煤层气解吸附能力。

参考文献

[1]王红岩,刘洪林,赵庆波等.2005.煤层气富集成藏规律[M].北京:石油工业出版社,60~66

[2]张遂安,叶建平,唐书恒等.2005.煤对甲烷气体吸附解吸机理的可逆性实验研究[J].天然气工业,25(1):44~46

[3]钱凯,赵庆波,王毅成等.1997.煤层甲烷气勘探开发理论与实验室测试技术[M].北京:石油工业出版社,143

[4]顾惕人,朱瑶等.1994表面化学[M].北京:科学出版社

[5]王双明等.2008.韩成矿区煤层气地质条件及富存规律[M].北京,地质出版社,24~26

337 评论

linlin0530

赵庆波 孙粉锦 李五忠 李贵中 孙 斌 王 勃 孙钦平 陈 刚 孔祥文

( 中国石油勘探开发研究院廊坊分院 廊坊 065007)

摘 要: 煤层气成藏模式可划分为自生自储吸附型、自生自储游离型、内生外储型; 煤层气成藏期可划分为早期成藏、后期构造改造成藏和开采中二次成藏,特别指出了开采中二次成藏的条件。利用沉积相分析厚煤层的层内微旋回,细划分出优质煤层富含气段; 进一步利用沉积相探索成煤母质类型及其对煤层气高产富集控制作用; 阐述了构造应力场及水动力对煤层气成藏的作用机理。总结了煤层气开采特征: 指出了煤层气井开采中的阻碍、畅通、欠饱和三个开采阶段,并认为欠饱和阶段可划分为多个阶梯状递减阶段; 由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征。根据地质条件分析了二维地震 AVO、定向羽状水平井、超短半径水力喷射、U 型井、V 型井钻井技术的适用性及国内应用效果。

关键词: 煤层气 成藏模式 成煤母质 高产富集 开采特征; 适用技术

作者简介: 赵庆波,1950 年生,教授级高级工程师,中国石油天然气集团公司高级技术专家,中国地质大学( 武汉) 兼职教授; 中国石油学会煤层气学组副组长; 主要从事煤层气勘探开发工作,编写专著 17 部,发表学术论文 50 余篇。地址: 河北省廊坊市万庄 44 号信箱煤层气所。电话: ( 。E mail: zhqib@ petrochi-na. com. cn

Coalbed Methane Accumulation Conditions,Production Characteristics and Applicable Technology Analysis

ZHAO Qingbo SUN Fenjin LI Wuzhong LI Guizhong SUN Bin WANG Bo SUN Qinping CHEN Gang KONG Xiangwen

( Reserch Institute of Petroleum Exploration and Development,PetroChina,Langfang Branch, Langfang 065007 China)

Abstract: Accumulation model of coalbed methane can be divided into three types: authigenic reservoir with adsorbed gas,authigenic reservoir with free gas and authigenic source rock with external reservoir. Three accumu- lation stages are indicated as early stage accumulation,late stage accumulation with tectonic reworking and second- ary accumulation during development. Conditions for secondary accumulation during development are specially in- dicated. Micro-cycle in thick coal are analyzed using sedimentary facies. Coalbed interval with high gas content is classified,and further more,coal-forming sources type and its controling on coalbed methane productive and en- richment is explored. Mechanism of tectonic stess field and hydrodynamic force on coalbed methane accumulation is elaborated. Production characteristics of coalbed methane wells is concluded as follows: blocked,unblocked and unsaturated production stages are indicated,and unsaturated stage is considered to be divided into several deple- tion stages; structure localization and inner layer heterogeneity result in three production characteristics-self-sup- porting,exporting and importing types. According to geological setting,the applicability and its effect of 2 dimen- tional seismic AVO ( Amplitude versus Offset) ,pinnate horizontal multilateral well,ultrashort radius hyraulic jet- ting,U and V type well drilling technique is analyzed.

Keywords: Coalbed methane; accumulation model; coal-forming sources; productive and enrichment; pro- duction characteristics; applicable technology

1 煤层气成藏条件分析

1.1 煤层气成藏模式和成藏期

1.1.1 煤层气成藏模式划分为三类

自生自储吸附型:煤层气大部分以吸附态存在于煤层中,构造相对稳定的斜坡带富集。如沁水盆地南部潘庄水平井单井平均日产气3万m3;郑试60井3#煤埋深1337m,日产气2000m3。

自生自储游离型:煤层吸附气与游离气多少是相对的,多为同源共生互动,煤层气一部分以游离态存在于煤层中,有的局部构造高点占主体,早期煤层埋藏深、生气量高,后期抬升煤层变浅压实弱,次生割理发育渗透性好,两翼又是烃类供给指向,在有利封盖层条件下局部高点形成高渗透的高产富集区。准噶尔盆地彩南地区彩504井,构造发育的断块高点煤层次生割理裂隙发育物性好,游离气与吸附气同源共储,煤层深2575m,日产气6500m3。

内生外储型:煤层作为烃源岩,生成的气体向上部或围岩运移,在有利的圈闭条件下在砂岩、灰岩中形成游离气藏,使吸附气、游离气具有同源共生性、伴生性、转换性和叠置性,可在平面上叠加成大面积分布。鄂尔多斯盆地东缘韩城地区WL2015井山西组煤层顶板砂岩厚14.1m,压裂后井口压力为2.32MPa,日产气2400m3。

图 1 煤层气成藏模式图

1.1.2 煤层气成藏期划分为三类

早期成藏:随着沉积作用的进行,煤层埋深逐渐增加,大量气体持续生成。充分的生气环境,良好的运聚势能,足够的吸附作用,有利的可封闭、高饱和、高渗透成藏条件,为早期成藏奠定了基础。这类气藏δ13C1相对重(表1),表现为原生气藏特征。

构造改造后期成藏:系统的动平衡一旦被构造断裂活动打破,即煤层气藏将被水打开,煤层割理被方解石脉充填,则能量将再调整、烃类再分配,古煤层气藏遭受破坏,新的高产富集区块开始形成(图2)。

受构造抬升后在局部出现断裂背斜构造,抬升使煤层压力降低,气体发生解吸,构造运动产生的裂隙又沟通了低部位的气体,使之向局部构造高点运移聚集。当盆地沉降接受沉积时,压力逐渐增大,再次生气,背斜翼部气体再吸附聚集,这类气藏多为次生型,δ13C1相对轻(表1)。

表 1 不同类型气藏 CH4含量及 δ13C1分布表

图 2 煤层气运聚成藏过程

开采中二次成藏:煤层气原始状态为吸附态,开采中压力降至临界点后打破原平衡状态转变为游离态,气水将重新分配,解吸气窜层或窜位,从而形成煤层气开采中的二次成藏,这是常规油气不具备的条件。煤矿区这类气藏由于邻近采空区CH4含量较低。

(1)煤层气二次成藏中的窜位

窜位是指煤层气开采中气向高处或高渗区运移,水向低部位运移,形成煤粉、气、水三相流,再开发几年进入残余态,微小孔隙、深部气大量产出。煤层气开采过程中,在同一地区,有些井高产,有些井低产,这与他们所处的构造部位有关,解吸气向构造顶部或高渗通道差异流向或“游离成藏”,煤层气发生窜位,使得高点气大水少,甚至后期自喷,向斜水大气少。如蒲池背斜煤层气的开发实例(图3,表2)。

该地区早期整体排水降压单相流,中期气、水、煤粉三相流,后期低部位降压,高部位自喷高产气井单相流,4年后基本保持现状。区块中477口直井和57口水平井已开采4年多,目前产气不产水直井、水平井分别为29%、11%,产水不产气分别为12%、19%。

(2)煤层气二次成藏中的窜层

窜层是指煤层气开采中或煤层采空区上部塌陷中解吸气沿断层裂隙或后期开发中形成的通道等向上再聚集到其他层位。主要有五种情况:①原断层早期是封闭的,压力下降到临界点后是开启的;②水平井穿透顶底板和断层;③压裂压开顶底板;④开采应力释放产生裂缝使解吸气穿透顶底板进入砂岩、灰岩形成游离气;⑤煤层采空后顶板坍塌应力释放,底部出现裂隙带。

典型实例分析:

①阜新煤矿区开采应力释放导致二次成藏

采动、采空区:阜新钻井7口,采空区坍塌后在煤层顶部砂岩裂隙带单井日产气1.5万~2.15万m3,CH4含量大于50%。生产1年,单井累计产气折纯最高260万m3;阳泉年产气7.16亿m3,90%是邻层抽采;铁法70%煤层气是采动区采出(图4)。

图3 蒲池背斜煤层气开发特征图

表 2 蒲池背斜开发井开采情况

注: 日产气及日产水两栏中分子为四年前产量,分母为目前产量。

图 4 采动、采空区煤层气开采示意图

②直井压裂窜层

蒲南38井压裂显示超低破裂压力,为9.6MPa,低于邻井10MPa以上,初期日产水62m3,4年后目前为54.8m3,累计产气仅有3.8万m3。

③水平井窜层

FZP031井煤层进尺4084m,钻遇率81%,主、分支共钻遇断层4条,明显钻入下部水层,开发效果差(图5):最高间歇日产气1366m3,累计产气29万m3,累计产水4.3万m3,目前日产气392m3,日产水28m3;原水层的构造高点被解吸气占据。而比该井浅75m的FZP03-3井日产气3783m3,日产水5m3。

在煤层气的勘探开发中应形成一次开发井网找煤层吸附气,二次开发井网找生产中由于开采中压力下降,烃类由吸附态变游离态使气水重新分配,打破原始平衡状态,解吸气窜层或窜位形成二次成藏的游离气藏的勘探开发思路。

1.2 有利的成煤环境和煤层气高产富集旋回段

以往油气勘探上用沉积相分析砂体变化特征,通过对大量煤层粘土矿物分析、植物鉴定、测井特征,特别是全煤层取心观察,以及煤质和含气性分析认为:沉积环境对煤层气的生成、储集、保存和渗透性能的影响是通过控制储层物质组成来实现的,层内的非均质性和煤质的微旋回性受控于沉积环境,并控制层内含气性和渗透性的非均质变化。

平面上:河间湾相煤层厚、煤质好、含气量高、单井产量高,河边高地和湖洼潟湖相相反(表3)。

图5 FZP03 1、FZP03 3 水平井轨迹示意图

表3 鄂东气田 C—P 不同煤岩相带煤质与产量数据表

纵向上: 受沉积环境影响,厚煤层往往纵向上形成夹矸、暗煤、亮煤几个沉积旋回,亮煤镜质组含量高、渗透率高、含气量高。不同的煤岩组分受成煤母质类型的控制,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高; 碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。

武试 1 井 9#煤可划分为 4 个层内微旋回 ( 图 6) 。灰分含量: 暗煤 14% ~15%,亮煤3. 7% ~ 5. 1% ; 镜质组含量: 暗煤 23% ~ 49% ,亮煤 66% ~ 79% 。

1.3 构造应力场对煤层气成藏的控制作用

古应力场高值区断裂发育,水动力活跃,煤层矿化严重,含气量低; 低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高。局部构造高点也往往是应力场相对低值区,并且煤层渗透率高、单井产量高,煤层气保存条件好,煤层没被水洗刷,含气量高。

1.4 热演化作用对煤层气孔隙结构的控制作用

高煤阶以小于 0. 01μm 的微孔和 0. 01 ~1μm 中孔为主,一般在 80% 以上,中、微孔是煤层气主要吸附空间,靠次生割理、裂隙疏通运移;

图6 武试1井9#煤沉积旋回图

低煤阶以>1μm大孔和中孔为主,演化程度低,裂隙不发育,大孔是吸附气、游离气主要储集空间和扩散、渗流和产出通道;

中煤阶以中、大孔为主,中、大孔是煤层气扩散、渗流通道。

核磁共振:煤层气藏储层的T2弛豫时间谱,为特征的双峰结构,与常规低渗透储层T2弛豫时间谱相对照,煤层气储层的两个峰之间有明显的间隔,这说明对于煤层气储层,束缚水与可动流体并不能有效沟通。然而不同煤阶煤储层T2谱的结构不同,这源于不同的孔隙结构(图7、图8),低煤阶以大孔为主、高煤阶以微孔小孔为主,高煤阶曲线峰值煤层左峰高右峰低,峰值中间零值,低煤阶相反,左峰为不可流动孔隙,右峰为可流动的次生割理裂隙储集体;高煤阶右峰可流动峰值越高(割理发育),气井产量越高(图9)。

1.5 水动力场对煤层气藏的控制作用

图7 高、低煤阶孔隙结构特征

局部构造高点滞留水区低产水高产气,向斜承压区高产水。地下水一般在斜坡沟谷活跃,符合水往低处流、气向高处运移的机理。樊庄区块滞流—弱径流区域多为>2500m3/d高产井;东部地下水补给区含气量<10m3/t、含气饱和度55%,见气慢,单井产量200~500m3/d(图10)。

图8 不同煤阶孔隙分布特征图

图9 不同煤阶煤储层T2弛豫时间谱

2 煤层气开采特征

对于中国中低渗透性煤层,煤层气井一般为300m×300m井距,单井产量稳产期4~6年,水平井更短,开采中划分为上升期、稳产期、递减期三个阶段,递减期又可划分为多个阶梯状递减阶段。

2.1 构造部位和层内非均质性的差异形成三类开采特征

自给型:往往位于构造平缓、均质性强的地区。气产量为本井降压半径之内解吸的气从本井产出。排采井一般处于构造平缓部位,层内均质性强。日产气上升—稳产—递减三个阶段,这类井多低产(图11)。

图10 樊庄区块地下水与含气量、煤层气高产区关系图

图11 煤层气单井开采特征图

外输型:位于构造翼部、非均质性强的地区。气产量一部分通过本井降压解吸半径内从本井产出,而大部分通过高渗通道或沿上倾部位扩散到其他井内产出。排采井一般处于构造翼部、非均质性强。日产气低产或不产—上升—缓慢递减,这类井多低产,并且产量递减快。

蒲池背斜的P111、PN11、PN25、HP110、HP2113井位于背斜的翼部,属于构造的相对低部位,基本上没有气产出,而产水量较大,分析由于降压而解吸出来的气体向构造高部位运移而没有产出,具有输出型的开采特征。

输入型:多位于构造高点。初期本井降压解吸气随降压漏斗从本井产出,后期构造下倾部位解吸气又运移到本井产出。排采井处于构造高点,这类井一般高产、稳产期长。日产气上升—稳产—上升—递减。

蒲池背斜中位于构造高点的PN14、P13、PN27、P15井产气量高而产水量低,这与低部位气体的扩散输入有关,具有典型的输入型开采特征。

2.2 降压速率不同形成三类开采效果

2.2.1 畅通型解吸

抽排液面控制合理,降压速率接近解吸速率,有效应力引起的负效应小于基质收缩引起的正效应,渗透率随开采的束缚水、气产出上升—稳定,气泡带出部分束缚水,产量理想(图12Ⅰ)。以固X1井为例,该井排采制度合理,经半年的排水降压后液面基本保持稳定,日产气稳定在4320m3/d以上,目前还保持稳产高产。

图12 不同措施煤层气井产气影响特征曲线

2.2.2 超临界型解吸

解吸速率小于降压速率,降压液面下降速度太快,煤层裂缝、割理产生应力闭合,日产气急剧上升—急剧下降,渗透率下降—稳定,产气效果差(图12Ⅱ)。以固Y2井为例,该井经30余天的排水降压,液面降至煤层以下,由于抽排速度过快,前期产气效果差,2010年7月二次压裂及排采制度调整后,气体日产气量最高达4000m3/d,后期稳定在1600m3/d以上;PzP03井在产气高峰期日降液面63~87m,造成该井初期是全国单井产量最高(10.5万)而目前是该区单井产量最低的井。

2.2.3 阻碍型解吸

降液速率过慢,解吸速率大于降压速率,有效应力引起的负效应大于基质收缩的正效应,气泡变形解吸困难,降压早期受煤粉堵塞,液面阻力作用解吸不畅通,日产气不稳定,开发效果差(图12Ⅲ)。FzP03-3井开采770天关井26次以上,开发效果很差。

2.3 煤层水类型及其开采特征

煤层水可划分为层内水、层间水和外源水;高产气区为层内、层间水,有外源水区为低产气区。

(1)层内水:煤层割理、裂隙中的水。日产水小,开采中后期高部位几乎不产,低部位递减。层内水又可进一步划分为可动水(洞缝)、吸附水(煤粒面)、湿存水(<10-5cm毛管内)、结晶水(碳酸钙)四类。

(2)层间水:薄夹层水渗入煤层。开采中产水量明显递减,可控制。

有层间水的气井连续降压可控制水产量,提高开发效果。沁水樊庄FzP111井煤层总进尺4710m。2009年4月投产,最高日产水175m3,目前日产气21436m3,日产水20.7m3,套压0.15MPa,液面4m,累计产水3.7万m3,累计采气814万m3。可以看出,对有层间水进入煤层气井的情况,短期加大排水量,后期日产气持续上升,开发效果较好。

(3)外源水:断层或裂缝沟通高渗奥灰水及其他水层。产水大,难控制。

3 煤层气勘探开发适用技术分析

3.1 地震AVO技术预测高产富集区

煤层与围岩波阻抗差大,煤层本身是强反射。其内含气、含水的差异在局部异常突出:高含气后振幅随偏移距增大而减少产生AVO异常(亮点),这与常规天然气高阻抗振幅随偏移距增大而增大出现的亮点概念不同,具有以下特征:高产井强AVO异常(高含气量低含水),煤层段为大截距、大梯度异常,即亮点中的强点;低产井弱AVO异常(低含气量高含水)为低含气、低饱和、低渗透特征。

煤层气高产区强AVO异常区的吉试1井5#煤含气量21m3/t,日产气2847m3(图13);低产区弱AVO异常的吉试4井5#煤含气量12m3,日产气64m3,产水90m3。据此理论,可用地震AVO技术预测高产富集区。

图13 吉试1井5#煤AVO特征图

3.2 定向羽状水平井钻井适用地质条件

全国已钻定向羽状水平井160余口,单井最高日产气10.5万m3。定向羽状水平井技术适合于开采较低渗透储层的煤层气,集钻井、完井与增产措施于一体,能够最大限度地沟通煤层中的天然裂缝系统,使同一个地区单井产量可提高5~10倍,适用地质条件有以下10点:

(1)构造稳定无较大断层:FzP031钻遇4条断层,日产气最高1366m3,目前687m3,日产水32~75m3;韩城04、07、09井日产水20~48m3,日产气小于60m3。

(2)远离水层封盖条件好:三交顶板泥岩厚<2m,水大气少,SJ61井9#煤厚9.4m,顶板6.8m灰岩,煤层进尺4137m,钻遇率100%,最高日产水465m3,19个月产水4.6万m3,不产气。

(3)软煤构造煤不发育:韩城、和顺12口井单井平均日产气720m3。

(4)煤层埋深小于1000m:煤层深800~1000m的武m11、Fz151井日产气<500m3。

(5)煤厚>5m:柳林CL3井煤层厚4m,最高日产气0.95万m3,稳产160天递减,日产气2807m3,累计121万m3。

(6)含气量>15m3/t:潘庄东部8m3/t(盖层厚2~5m),北部15~22m3/t(盖层厚>10m),尽管东部比北部浅100~200m,而北部6口井单井平均日产气3.0万m3,东部7口为1869m3,最高3697m3,相距6km单井产量差20倍。

(7)主分支平行煤层或上倾:单井平均日产气、阶段累计和地层下降1MPa采气效果分析,水平井轨迹:平行煤层产状最好,其次上倾,下倾差;“凸”“凹”型最差。

(8)煤层有效进尺>3000m:水平段煤层进尺<2000m的单井最高日产气<800m3,阶段累计采气<2.0万m3。

(9)分支展布合理:主支长1000m左右,分支间距200~300m,夹角10°~20°。

(10)煤层有效钻遇率>85%:10口井煤层钻遇率<85%,并投产1年以上,单井平均日产气800m3,最高<2000m3,阶段平均累计采气27万m3。

3.3 超短半径水力喷射钻井适用条件

我国利用该技术已钻煤层气井23口以上,效果均不理想。主要原因为低渗透,喷孔直径小、弯曲大,前喷后堵;水力喷射开窗直径28mm,孔径小,排采中易被煤粉和水堵塞。可进行旋转式大口径喷咀和裸眼喷射试验。

3.4 “山”型井、U型井、V型井钻井适用条件

由于中国煤层气藏具有低渗透的特点,且多属断块气藏,U型水平井沟通煤层面积小,应用效果较差。我国钻U型水平井16口以上,增产效果不明显。

SJ12-1井分段压裂日产气稳产1750m3,累计产气19.1万m3,开采3个半月后已递减。水平段下油管、玻璃钢管都取得成功,低渗透气藏效果差。较高渗透区[(1.0~3.6)×10-3μm2]效果好:彬长、寺河单井日产气0.56万~1.4万m3。

今后可进行1口水平井穿多个直井的“山”字型井组试验,目前国外利用该技术开发盐岩已成功。

4 结论

(1)根据中国煤层气勘探开发实践认识将煤层气成藏模式划分为自生自储吸附型、自生自储游离型、内生外储型三类;同时,认为煤层气成藏期划分早期成藏、后期构造改造成藏和开采中二次成藏三类,开采中二次成藏将是煤层气开发二次井网的主要产量接替领域。

(2)利用沉积相分析厚煤层、优质煤层和高产富集区;分析厚煤层的层内微旋回,成煤母质控制煤岩组分和单井产量,高等植物丰富,经凝胶化作用形成的亮煤,灰分低、镜质组高、割理发育、含气量高,是高产富集段;碎屑物质、水溶解离子携入或草本成煤环境的暗煤相反。

(3)古应力场低值区则煤层割理发育,处于承压水封闭环境,煤层气保存条件好,含气量高;滞留水区低产水高产气,向斜承压区高产水。

(4)由构造部位和层内非均质性的差异形成自给型、外输型和输入型三类开采特征,由降压速率不同形成畅通型、阻碍型和超临界型三类开采效果。

(5)高产井强AVO异常,即亮点中的强点;低产井弱AVO异常,为低含气、低饱和、低渗透特征。定向羽状水平井在适用的地质条件和钻井方式下才能取得较好的开发效果;超短半径水力喷射应首选渗透率较高、煤层构造相对稳定、含气量和饱和度较高煤层应用;U型、V型水平井钻井技术在低渗透气藏中效果差,高渗透区效果好。

参考文献

陈刚,赵庆波,李五忠等.2009.大宁—吉县地区地应力场对高渗区的控制[J].中国煤层气,6(3):15~20

陈振宏,贾承造,宋岩等.2007.构造抬升对高、低煤阶煤层气藏储集层物性的影响[J].石油勘探与开发,34(4):461~464

陈振宏,王一兵,杨焦生等.2009.影响煤层气井产量的关键因素分析———以沁水盆地南部樊庄区块为例[J].石油学报,30(3):409~412

邓泽,康永尚,刘洪林等.2009.开发过程中煤储层渗透率动态变化特征[J].煤炭学报,34(7):947~951

康永尚,邓泽,刘洪林.2008.我国煤层气井排采工作制度探讨[J].天然气地球科学,19(3):423~426

李金海,苏现波,林晓英等.2009.煤层气井排采速率与产能的关系[J].煤炭学报,34(3):376~380

乔磊,申瑞臣,黄洪春等.2007.煤层气多分支水平井钻井工艺研究[J].石油学报,28(3):112~115

鲜保安,高德利,李安启等.2005.煤层气定向羽状水平井开采机理与应用分析[J].天然气工业,25(1):114~117

赵庆波,陈刚,李贵中.2009.中国煤层气富集高产规律、开采特点及勘探开发适用技术[J].天然气工业,29(9):13~19

赵庆波,李贵中,孙粉锦等.2009.煤层气地质选区评价理论与勘探技术[M].北京:石油工业出版社

Diessel C F K. 1992. Coal-bearing depositional systems-coal facies and depositional environments. Springer-verlag. 19 ~ 22

181 评论

相关问答

  • 煤制气毕业论文

    【摘要】本文针对当前煤炭企业固定资产管理存在的主要问题,强调指出了加强固定资产管理,实现保值增值的重要性,并有针对性地提出解决问题的对策。 一、加强当前煤炭企业

    WongQueenie 3人参与回答 2023-12-10
  • 中国煤层气期刊官网

    煤层气有多种成藏模式,根据中国煤层气勘探实践,对煤层气藏类型划分如下。 压力封闭气藏 上覆较厚且分布稳定的泥页岩、膏盐岩作为盖层,煤层上倾方向或侧向上多为岩性尖

    华蓥山5 2人参与回答 2023-12-12
  • 配煤制气的毕业论文

    煤的工业分析也称煤的实用分析、近似分析或技术分析,包括煤的外在水分、内在水分、全水分、分析煤样水分、灰分、挥发分、固定碳、全硫和各种硫及发热量等项目。作为校正挥

    我只爱摄影 3人参与回答 2023-12-09
  • 焦炉煤气净化毕业论文

    以下三篇焦化厂实习报告范文,由整理提供,欢迎阅读。 一)实习地点:邯钢焦化厂 (二)实习时间:2009年2月23日至2009年3月6日 (三)实习班级:07精细

    鱼米芝香 2人参与回答 2023-12-09
  • 煤层气毕业论文前言

    庚勐1 孙粉锦1 李贵中1 刘萍1 梁丽1 李林地2 (1.中国石油勘探开发研究院廊坊分院;2.中国石化石油勘探开发研究院.) 摘要:煤层气作为一种重要的非常规

    曰月無塵 2人参与回答 2023-12-08