悠悠思忞
今年6月15日,中国科学家潘建伟团队在量子通讯技术研究上,再次获得世界级突破,相关研究结果也登上了最新一期的《Nature》,取得了举世瞩目的骄人成就。不过在国内,似乎关注的人并不太多,反而西方国家对这一突破 表现出了相当高的关注度。
在这次实验中,潘建伟团队从位于地面以上500公里、人类首颗量子通讯卫星“墨子号”,向位于新疆的两个地面站发射光子,全球首次实现千公里级基于纠缠的无中继量子密钥分发。这次试验的距离是此前类似试验距离的10倍,达到1120公里。外媒评论称,这次试验的成功,意味着中国在人类量子科技发展上取得里程碑式的突破。
量子通讯应用研究为何在近年来受到世界各国的高度重视?这源于一种有趣的物理现象。两个粒子不管相距多远,只要他们建立了相互纠缠的状态,这种状态就会始终保持下去。当对其中一个粒子进行测量造成扰动,另一个粒子的状态也会同步发生改变,这就使得远距离安全通讯成为可能。
当通讯的信息以量子纠缠状态发送出来以后,如有人试图破解或盗取信息内容,必然会扰动这一量子纠缠态, 瞬间会造成通讯的中断,信息归零。科学界认为,这种通讯技术在效率和安全性方面,要比目前的光纤通讯高出上亿倍!这样的技术一旦得以应用,我们国防通讯、商业通讯、民用通讯的安全性和便利性将实现数量级的飞跃!
那么,中国在这场通讯技术研发竞赛中处于什么位置?用美国加州量子技术公司总裁厄尔的话说,“北京远远领先于美国。”这句话并非空穴来风。中国科学家不但在全球首发了量子通讯卫星,还在天-地之间建立了量子通讯链路。
我们的相关研发已进入到量子通讯实际应用的验证阶段,毫不夸张地说,中国是绝对意义上的NO.1。
奇怪的是,我们国内有一部分人天天以学术打假的名义高喊抹黑潘建伟,认为量子通信是一场。但仔细一看就会发现,持这种观点的绝大多数人连薛定谔方程都不会写,甚至把量子力学的基本事实都予以否定。千方百计地想凭借抹黑潘建伟而上位,如此看来孰是孰非一眼便知。
其实早在2017年,潘建伟就被世界顶级期刊《Nature》评为年度科学人物,世界各国的量子通信团队都将潘建伟视为学科发展带头人。不知那些抹黑潘建伟的人 看到6月15日这一被国际同行高度认可的重大突破,还会说些什么?
蜜桃红茶
量子力学的发展确实伴随着大量的矛盾与争议,特别是在量子通信开始发展后,有部分“消息灵通”人士已经洞察了量子通信的“伪科技”本质,并且还再三指责科普量子通信的文章为伪科学站台!这些诘问到底是科学的吗?
量子通信的原理是什么?
量子通信的原理还要问么,不就是量子纠缠么,传说中的量子通信就是将纠缠中的两个量子分开,即使相隔在宇宙的两端,当A粒子的状态发生改变时,B粒子也会随之发生改变,这个通讯速度超越光速,距离再遥远也是即时通信!
听起来完美的量子通信确实应该如此,但事实上我们并不能做到在观察处在量子叠加态的不触发坍缩,所以从理论上来看,这种完美的通信方式是不可能存在的,这是不是人类的技术不够,而是量子世界的客观坍缩理论所决定的!
客观坍缩理论
薛定谔方程的线性性质允许粒子自然地处于几个不同量子态的叠加态,当然它也允许宏观物体处在几个不同量子态的叠加态,但在大自然中从来都没有观察到过这种现象!因为宏观物体永远都会占据一个确定的位置,因此将微观物质的尺寸加大时,它的位置和动量将会被同时确定!
但在微观状态下,这个处于量子叠加的状态是允许存在的,但根据哥本哈根诠释的波函数坍缩假说,在观察动作之后,叠加态会坍缩为可观察量的几个本征态之中的一个本征态,而坍缩至任何一个本征态的概率遵循玻恩定则!
所以很抱歉,根据哥本哈根诠释,这种直接利用纠缠态的量子通信是不存在的。
EPR佯谬
量子通信的最早起源是来自爱因斯坦向波尔反驳量子论不完备的EPR佯谬,爱因斯坦在第六届索尔维会议上的光箱实验被波尔击败,此后他与波多尔斯基和罗森花了数年时间,整出了一个《量子力学对物理实在的描述可能是完备的吗?》的论文,发表在《物理评论》上。
这个思想实验很容易明白:一个不稳定的大粒子衰变为两个小粒子,假设这两种粒子有可能的量子自旋,粒子A为左旋,为了保持守恒,那么另一个小粒子B必定是右旋!然后将两个粒子分开很远,比如几万光年,但我们在观察之前,并不知道哪个是左旋,哪个是右旋!
但当我们观察粒子A时,那么它的波函数瞬间坍缩,随机选择了一种状态,比如说是右旋,那么B粒子必定会变成左旋,那么请问它们是如何保持一致的呢?既然没有超光速通信,因此认为在分开的一瞬间,粒子A和B的左右旋就被确定了!
阿斯派克特实验
但量子论并不是这样解释,而是认为无论相隔多远,在观测之前,它们仍然处在量子叠加态,所以根本不存在什么超光速通讯,叠加态的观测时坍缩,一个随机选择左旋,一个右旋以保持守恒!
这就是后来用他们名字首字母命名的ERP佯谬!
这个EPR佯谬提出后,由于设备局限,所以爱因斯坦尽管处在下风,但他并不认输,真正的试验要到1980年代的法国奥赛理论与应用光学研究所的阿斯派克特试验才被证明是哥本哈根诠释是比较正确的!因为此时爱因斯坦只输了5个标准方差!
后来关于EPR佯谬试验的设备越来越先进,到1998年奥地利因斯布鲁克(Innsbruck)大学的实验时,爱因斯坦输得就有点惨了:30个标准方差!
现在的量子通信到底是什么量子通信?
准确的说,现在的量子通信并不是量子纠缠通信,而是量子加密通信,要了解量子加密通信的话,必须要来了解下BB84协议!
这个协议是查尔斯·贝内特和吉勒·布拉萨在1984年发表的论文中提到的量子密码分发协议,后来以两个人的名字第一个字母+年份,作为了这个经典协议的名字,任意两组共轭状态都可以用此协议,它利用的是光子的偏振态来传输信息,详细描述有些不容易理解,请看下图:
BB84协议
在这个过程中,如果有人窃听,那么窃听者为了光子的偏振态,那么必须做测量,那么会导致秘钥的误码率增加,双方可以约定误码率超过多少时该组秘钥就被废弃!
这种量子通信的方式有一个缺点,必须用一个量子秘钥发送通道和传统数据传输通道,两者必须配合才能正常工作,因此当前研究的也是如何更高效以及更远距离和更少的误码率发送与接收秘钥,但数据仍将通过Internet网来完成!
当然通信除了速率外最终要的指标就是不可破译,传统的秘钥中总是存在各种缺陷,并不能做到100%保密,但量子秘钥不一样,可以发现秘钥被窥视,因此这种秘钥分发的安全性超出想象!
为什么有人再三指责量子通信?
除了网上那些有的没有的指责各种量子通信周边工程配套外,其他主要集中在如何制造出取得单光子的光源,2016年1月14日潘建伟、陆朝阳在《物理评论快报》(Physical Review Letters)上发表了题为《On-Demand Single Photons with High Extraction Efficiency and Near-Unity Indistinguishability from a Resonantly Driven Quantum Dot in a Micropillar》的论文,物理评论快报上的截图如下:
当然种花家也看不懂这种论文,不过随后美国物理学会的《物理》(Physics)网站以“全能的单光子源”为题刊发了介绍文章,《自然》(Nature)期刊也以“可实用化的单光子源”在其研究亮点栏目作了深入报道,英国物理学会的《物理世界》(Physics World)和美国光学学会的《光学与光子学新闻》(Optics & Photonics News)也做了长篇报道。
潘建伟(右)、陆朝阳
有一点是我们是可以了解的,到今年为止已经接近5年,这种突破性的进展同行评议时效性很强,很快就会有各大科学团体跟进,当然《物理评论快报》的审核也不是吃素的,这种经过将近5年时间考验的论文,也不是一个推销交通方面作品的老兄可以随便推翻的。
其实还有很多站不住脚的观点,但人家很有耐心,堆砌各种文字,看上去很有说服力,不过种花家实在不想一一辩驳,最后送句古诗词给这位老兄“两岸猿声啼不住、轻舟已过万重山”,当大家在这里呱噪时,人家早已发表多篇SCI论文了,假如真有料,不妨也发表几篇?
夕颜无照
2016年1月,获国家自然科学奖一等奖。作为多光子纠缠及干涉度量项目第一完成人,潘建伟因45岁的年龄优势,刷新了2006年支志明49岁获该奖的年龄记录。此前,华罗庚、钱学森等曾获该奖。 2015年,被评为“2015中国科学年度新闻人物”。 2013年10月30日,香港何梁何利基金科学与技术成就奖。 2012年06月,国际量子通信奖。该奖项于2012年8月1日在第11届量子通信、测量和计算国际学术大会上正式颁发。此会议每两年举办一次,是量子信息科学研究领域水平最高,规模最大的学术盛会。 潘建伟是获得国际量子通信奖这一荣誉的首位华人物理学家。2012年,当选为发展中国家科学院院士。 2011年,当选为中国科学院院士(数学物理学部)。 2010年,全球青年领袖(Young Global Leaders)。 2008年11月,当选为发展中国家科学院的TWAS Young Affiliates(通讯院士)。2008年10月,德国海德堡大学荣誉教授。 2007年,美国物理学会贝勒讲席(Beller Lectureship)。 2006年10月,第六届中国青年科学家奖。 2006年03月,中国科学院杰出科技成就奖。 2005年08月,求是杰出科学家奖。 2005年06月,欧洲物理学会菲涅尔奖(Fresnel Prize)。此奖为欧洲物理学会授予在量子电子学和量子光学领域做出杰出贡献的青年科学家。 2004年,第十五届“中国十大杰出青年”。 2004年,第八届“中国科学院杰出青年”。 2004年,德国洪堡基金索菲亚奖(Sofija Kovalevskaja Award)。 (属于科研基金,研究经费为105万欧元) 2004年,欧盟玛丽·居里杰出研究奖(Marie Curie Excellent Research Award)。(属于科研基金,研究经费为115万欧元) 2004年,德意志研究联合会尼托研究基金诺特尔奖 (Emmy Noether Research Award)。(属于科研基金,经费113万欧元) 2003年,奥地利科学院施密德奖(Erich Schmid Prize)。此奖为奥地利科学院授予四十岁以下的青年物理学家的最高奖,两年一度,每次一人。 2003年-2008年,德国海德堡大学,物理所,玛丽·居里讲座教授。2002年,德国洪堡基金索菲亚奖(Sofija Kovalevskaja Award)。 (属于科研基金)国际5次入选欧洲物理学会评选的“年度物理学重大进展”。(《物理世界》“年度十大突破”自2009年发布以来,在学术界具有重要权威性,入选的科学研究要符合:具有至关重要性;对科学知识有显著推进;理论与实验具有紧密联系;为所有物理学家普遍关注等条件。 )4次入选美国物理学会评选的“年度物理学重大事件”。2015年,欧洲物理学会《物理世界》年度国际物理学领域的十项重大突破(第一名),《多自由度量子隐形传态》。 英国《自然》杂志在报道潘建伟团队量子通信研究成果的新闻特稿《量子太空竞赛》中指出,“在量子通信领域,中国用了不到10年的时间,由一个不起眼的国家发展成为现在的世界劲旅,将领先于欧洲和北美。” 2013年,美国物理学会《物理》杂志年度国际物理学领域的十一项项重大进展,《利用测量器件无关量子密钥分发解决量子黑客隐患》。 2005年潘建伟还荣幸地被综述杂志《现代物理评论》(影响因子高于《自然》)邀请撰写综述文章,这是中国实验物理学家在《现代物理评论》上撰写的第一篇文章。能够被邀请在如此权威的学术杂志上撰写综述文章,意味着作者该领域所享有的声望与权威性。2003年5月22日,英国《自然》杂志日以封面文章的形式发表了题为《任意纠缠态纯化的实验研究》的论文(潘建伟是第一作者)。《自然》杂志审稿人称赞潘建伟等人的论文“构成了量子信息实验领域一个非常重要的进展”,“首次令人信服地在实验上证明了量子信息处理中任意未知的退相干效应是可以被克服的”。为体现对这项研究的重视,《自然》杂志同时以封面及新闻与评论的形式报道了这项研究成果,而全世界每年只有大约3至4篇重要的物理学论文被《自然》杂志以封面形式发表。 1997年,英国《自然》杂志题为《实验量子隐形传态”》的论文(潘建伟是第二作者),该成果不仅被公认为量子信息实验领域的开山之作 ,同时还被欧洲物理学会和美国物理学会评为世界物理学年度重大进展,被美国《科学》杂志评为年度全球十大科技进展。该工作后来还同伦琴发现X射线、爱因斯坦建立相对论等影响世界的重大研究成果被《自然》杂志选为“百年物理学21篇经典论文”之一。 中国其研究成果曾6次入选两院院士评选的“中国年度十大科技进展新闻”3次入选教育部评选的“年度中国高校十大科技进展”。3次入选科技部评选的“年度中国基础研究十大新闻”。2007年1月20日,由547名中国科学院院士、中国工程院院士投票评选出的2007年中国十大科技进展新闻在京揭晓,中国科学技术大学合肥微尺度物质科学国家实验室量子物理与量子信息研究部潘建伟教授领导的科研团队的成果“实现六光子薛定谔猫态”榜上有名。这是科大成果连续第五年入选年度“十大科技进展”,也是潘建伟团队的研究成果最近五年内第四次入选“十大科技进展”。2004年,潘建伟研究组在国际上首次实现五光子纠缠和终端开放的量子态隐形传输,《自然》杂志发表了这一成果。这一成果同时入选欧洲物理学会和美国物理学会评选出的年度国际物理学重大进展,这对中国科学家来说是第一次。
Cathyshenzhen
北京时间1月7日凌晨,中国科学技术大学潘建伟团队在《自然》杂志上发表了题为“跨越4600公里的天地一体化量子通信网络”的论文,验证了广域量子保密通信技术在实际应用中的条件已初步成熟。
中国科学技术大学教授潘建伟表示:“我们的工作表明,量子通信技术对于大规模的实际应用已经足够成熟。类似地,如果把来自不同国家的国家量子网络合并在一起,并且如果大学,机构和公司聚集在一起以标准化相关协议、硬件等,则可以建立全球量子通信网络。”
全球首个天地一体化量子通信网络
研究团队在量子保密通信京沪干线与“墨子号”量子卫星成功对接的基础上,构建了世界上首个集成700多条地面光纤量子密钥分发(QKD)链路和两个星地自由空间高速QKD链路的广域量子通信网络,实现了地面跨度4600公里的星地一体的大范围、多用户量子密钥分发,并进行了长达两年多的稳定性和安全性测试、标准化研究以及政务金融电力等不同领域的应用示范。
这项研究成果由潘建伟及其同事陈宇翱、彭承志等与中国科学院上海技术物理研究所王建宇研究组、济南量子技术研究院及中国有线电视网络有限公司合作。
“论文是对上述成果的一个系统性总结,证明了广域量子保密通信技术在实际应用中的条件已初步成熟。我国科研人员通过构建天地一体化广域量子保密通信网络的雏形,为未来实现覆盖全球的量子保密通信网络奠定了科学与技术基础。”中国科学技术大学在官方网站上称。
尽管研究论文是一项总结性的工作,但是意义重大。自“墨子号”量子卫星于2016年8月发射以来,研究团队在优化地面站接收光学系统、提高QKD发射系统时钟频率并应用更高效QKD协议的基础上,实现了卫星对地面站的高速量子密钥分发,生成速率比之前的工作高出约40倍;研究团队还成功地将卫星与地面的安全成码距离从1200公里拓展到2000公里,相应的地面站俯仰角跨度可达170 ,几乎可覆盖整个天空。
与传统的加密不同,量子通信被认为是不可破解的,因此银行,电网和其他部门的安全信息传输的未来。量子通信的核心是量子密钥分发(QKD),它使用粒子的量子状态(例如光子)形成一串加密字符串或者密钥,在发送方和接收方之间进行的任何窃听都会更改此字符串或密钥,并立即引起注意。
目前普遍的QKD技术使用光纤进行数百公里的传输,具有很高的稳定性,但对通信信道损耗很大;而利用卫星和地面站之间的自由空间进行千公里级别的传输,将地面光纤和自由空间结合,可以实现大规模、全覆盖的全球化量子通信网络。
根据中国科学技术大学介绍,按通信信道的不同,量子密钥分发主要有光纤和自由空间两种实现方式。光纤QKD技术的信道稳定性较好,可以实现基本恒定的安全码率,在城域城际范围内可以方便的连接到千家万户;在超远距离、移动目标、岛屿和驻外机构等光纤资源受限的场景,可以通过卫星中转的自由空间信道连接。
量子通信网络已接入多个行业领域
2017年9月底正式开通的量子保密通信京沪干线,总长超过2000公里,覆盖四省三市共32个节点,是目前世界上最远距离的基于可信中继方案的量子安全密钥分发干线。研究团队攻关了高速量子密钥分发、高速高效率单光子探测、可信中继传输和大规模量子网络管控监控等系列工程化实现的关键技术。建成后,开展了长达两年多的相关技术验证和应用示范以及大量的稳定性测试、安全性测试及相关标准化研究,同时京沪干线网络的密钥分发量可以支持1.2万以上用户同时使用。
目前该天地一体化量子通信网络已经接入包括金融、电力、政务等150多家行业用户。2019年初,国家电网有限公司基于该网络,建立了跨越2600公里的量子密钥分发信道,实现了电力通信数据加密传输,首次从工程上检验了星地量子通信开展实际业务的可行性。
“本工作发展的相关技术也为量子通信系统小型化、低成本、国产化奠定了基础。”中国科学技术大学方面表示,“最近团队成功研制了重量约百公斤的小型地面站,实现了与墨子号的星地量子密钥分发实验,和国际多个地面站的进行了星地量子密钥分发实验,未来有望进一步做到可单人搬运;同时,在保证密钥分发速率的前提下已经成功研制几十公斤的小型化空间量子密钥分发载荷,这些成果也为形成卫星量子通信国际技术标准奠定了基础。”
根据《自然》论文,未来该团队将与来自奥地利、意大利、俄罗斯和加拿大的国际合作伙伴进一步扩大在中国的网络。他们还将致力于开发小型、经济高效的QKD卫星和地面接收器,以及中高地球轨道卫星,以实现空前的万公里级QKD传输。
另据中国科学技术大学介绍,在天地一体化量子通信网络大量测试结果及标准化研究的基础上,全球三大标准化组织之一ISO/IEC正在基于京沪干线的实践编制国际标准《QKD安全要求、测试与评估方法》,另一国际组织ITU也正基于京沪干线的建设模式起草可信中继安全要求、QKD网络功能架构等国际标准。
写作思路:真情实感的表达,结合实际情况描写。 正文: 今年暑假旅游来得颇为迟迟,三天两头地一催,四天一个条件,真是令人烦不胜烦呀!终于,经过与妈妈的商议,我们去
对当前小学语文古诗教学的探讨 摘 要: 随着新课程的逐渐改革,对小学语文教学提出了新的要求。在小学语文教学中,应该为学生自身的发展夯实基础。诗词是小学语文教学的
今年6月15日,中国科学家潘建伟团队在量子通讯技术研究上,再次获得世界级突破,相关研究结果也登上了最新一期的《Nature》,取得了举世瞩目的骄人成就。不过在国
饶文斌 中共党员,大学本科文化,中学高级教师,南昌市启音学校校长,中国教育科技协会中小学专业委员会特殊教育协作研究会理事,江西省特教专业委员会副理事长,南昌市教
1. 王伟,方学明,朱苹香.反相高效液相色谱法测定羟氨苄青霉素的血液浓度探讨.福建医药杂志,1998;20(4):99-100获得上海市闵行区医学会论文评比三等