爱旅游的小M
关于光的本性问题很早就引起了人们的关注。微粒说1638年,法国数学家皮埃尔·伽森荻(Pierre Gassendi)提出物体是由大量坚硬粒子组成的。并在1660年出版的他所著的书中涉及到了他对于光的观点,也认为光也是由大量坚硬粒子组成的。牛顿随后对于伽森荻的这种观点进行研究,他根据光的直线传播规律、光的偏振现象,最终于1675年提出假设,认为光是从光源发出的一种物质微粒,在均匀媒质中以一定的速度传播。微粒说很容易解释光的直进性和反射现象,因为粒子与光滑平面发生碰撞的反射定律与光的反射定律相同。然而微粒说在解释一束光射到两种介质分界面处会同时反射和折射,以及几束光交叉相遇后彼此毫不妨碍的继续向前传播等现象时,却发生了很大困难。波动说罗伯特·胡克在1685年发表的《显微术》一书中,认为光是一种振动,发光体的每一振动在介质中向各个方向传播。胡克初步建立了波面和波线的概念,并把波面的思想用于对光的折射和薄膜颜色的研究。惠更斯(Christian Huygens)著《论光》更明确地提出了光是一种波动的主张,他认为光是一种介质的运动,该运动从介质的一部分以有限速度依次地向其他部分传播,他把光的传播方式与声音在空气中的传播作比较。波动说很容易能够解释微粒说不能解释的两个问题。水波可以同时发生反射和折射,并且水波的反射和折射规律和光完全相同。湖面上的激烈水波能够自由的互相穿过,通过一个窗口能够同时听到窗外几个人讲话的声音,这些都是人们熟知的波的现象。然而,早期的波动说缺乏定量的数学严密性,也缺乏对波动特性的足够说明,仍然摆脱不了几何光学的观念。同时,惠更斯所提出的波动说是把光比作像“水波”一样的机械波,即机械波的传播需要依靠介质,而光却能在真空中(即无介质)传播。牛顿并不是在根本上否认光的波动性,事实上正是牛顿首先提出了光在本质上是一种周期过程的观点,他还多次提到光可能是一种振动并与声波作对比。然而从他的著作《光学》的其他部分来看,他还是倾向于光的微粒说。突出的例子是从光的微粒说出发,根据机械粒子遵守的力学规律来解释光的反射定律和折射定律,并得出了光密介质中的光速要大于光疏介质中的光速这一与事实不符的结论。英国物理学家托马斯·杨(1773年 – 1829年)用干涉实验证明了光的波动性由于牛顿在学术界有很高的声望,致使微粒说在其后的100多年里一直占着主导地位,而波动说却发展得很慢。同时,如果要证明光具有波动性,必须设法显示出光具有干涉现象,而干涉现象的产生必须得到两列相干光,然而要得到两列相干光在当时是很困难的。直到1801年英国物理学家托马斯·杨(Thomas Young)终于用干涉实验证明了光的波动性。详见杨氏双缝干涉实验电磁说到19世纪中期,光的波动性已经得到公认,然而当时人们只了解在介质中传播的机械波,认为光波也是一种机械波。而任何机械波的传播都依靠介质,光却能在真空中传播。从太阳和其他恒星所发出的光,是通过什么介质传播过来的呢?为了说明光传播的这个问题,人们便假设在宇宙空间中到处充满着一种特殊的物质,这种物质被称作以太,光便是通过“以太”来进行传播。为了解释光波的各种性质,对于“以太”这个概念又进一步提出了种种假设。譬如,“以太”的密度极小,却具有较大的弹性等。由于对“以太”性质种种假设间存在明显的矛盾,人们很难相信存在这种物质。而为证明“以太”存在的各种实验也都以失败而告终。1846年,法拉第发现在磁场的作用下,偏振光的振动面会发生改变。这一重要的发现,表明光和电磁现象间存在着某种联系,同时将人们的目光转移到了电磁现象来考虑。19世纪60年代,麦克斯韦在研究电磁场理论时预见了电磁波的存在。同时指出电磁波是一种横波,电磁波的传播速度等于光速。麦克斯韦通过电磁波与光波的相似性质,提出假设,认为光波是一种电磁波。20多年后,赫兹用实验证实了电磁波的存在,测得电磁波的传播速度的确与光速相同,同时电磁波也能够产生反射、折射、干涉、衍射、偏振等现象,从实验中证明了光是一种电磁波。光子说光的电磁说使光的波动理论发展到相当完美的地步。但是,还是在赫兹用实验证实光的电磁说的时候,就已经发现了光电效应这一现象,而这一发现也使光的电磁说遇到了无法克服的困难。1905年爱因斯坦提出光量子论,运用光子的概念解释了光电效应。
雨神的女儿
光的干涉应用的新进展 光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。一、全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。 从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。二、光学千涉生物传感器的建立及其在多种生物分子识别中的应用1.光学千涉生物传感器系统的设置(1)光学干涉生物传感器的硬件构成 (2)聚荃乙烯薄膜厚度与光学常数的测定及软件的编译2.光学干涉生物传感器敏感膜的构建3.光学干涉生物传感器在多种类型分子识别中的应用(1)酶标记的表面抗原一表面抗体相互作用(2)寡核昔酸分子杂交实验(3) L一天冬酞胺酶B细胞表位的筛选(4)不同细胞与固定化凝集素的相互作用三、当前光刻技术的主要研究领域及进展 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。 2.极紫外光刻(EUVL)极紫外光刻用波长为10-14纳米的极紫外光作 光源。虽然该技术最初被称为软X射线光刻,但实际上更类似于光学光刻。所不同的是由于在材料中的强烈吸收,其光学系统必须采用反射形式。如果EUVL得到应用,它甚至可能解决2012年的0.05微米及以后的问题,对此发展应予以足够重视。总的来说,随着科学技术的迅速发展,在科学和技术领域中人们不断地利着光的干涉原理解决了许多复杂的实际问题。让我们更加深刻的认识光的干涉现象,以便日后更好的利用光的干涉知识解决生产及生活中的问题
hsx1314520
下面能当波动光学说明文wave optics以波动理论研究光的传播及光与物质相互作用的光学分支。17世纪,R.胡克和C.惠更斯创立了光的波动说。惠更斯曾利用波前概念正确解释了光的反射定律、折射定律和晶体中的双折射现象。这一时期,人们还发现了一些与光的波动性有关的光学现象,例如F.M.格里马尔迪首先发现光遇障碍物时将偏离直线传播,他把此现象起名为“衍射”。胡克和R.玻意耳分别观察到现称之为牛顿环的干涉现象。这些发现成为波动光学发展史的起点。17世纪以后的一百多年间,光的微粒说(见光的二象性)一直占统治地位,波动说则不为多数人所接受,直到进入19世纪后,光的波动理论才得到迅速发展。1800年,T.杨提出了反对微粒说的几条论据,首次提出干涉这一术语,并分析了水波和声波叠加后产生的干涉现象。杨于1801年最先用双缝演示了光的干涉现象(见杨氏实验),第一次提出波长概念,并成功地测量了光波波长。他还用干涉原理解释了白光照射下薄膜呈现的颜色。1809年E.L.马吕斯发现了反射时的偏振现象(见布儒斯特定律),随后A.-J.菲涅耳和D.F.J.阿拉戈利用杨氏实验装置完成了线偏振光的叠加实验,杨和菲涅耳借助于光为横波的假设成功地解释了这个实验。1815年,菲涅耳建立了惠更斯-菲涅耳原理,他用此原理计算了各种类型的孔和直边的衍射图样,令人信服地解释了衍射现象。1818年关于阿拉戈斑(见菲涅耳衍射)的争论更加强了菲涅耳衍射理论的地位。至此,用光的波动理论解释光的干涉、衍射和偏振等现象时均获得了巨大成功,从而牢固地确立了波动理论的地位。19世纪60年代,J.C.麦克斯韦建立了统一电磁场理论,预言了电磁波的存在并给出了电磁波的波速公式。随后H.R.赫兹用实验方法产生了电磁波。光与电磁现象的一致性使人们确信光是电磁波的一种,光的古典波动理论与电磁理论融成了一体,产生了光的电磁理论。把电磁理论应用于晶体,对光在晶体中的传播规律给出了严格而圆满的解释。19世纪末,H.A.洛伦兹创立了电子论,他把物质的宏观性质归结为构成物质的电子的集体行为,电磁波的作用使带电粒子产生受迫振动并产生次级电磁波,根据这一模型解释了光的吸收、色散和散射等分子光学现象。这种经典的电磁理论并非十全十美,因在关于光与物质相互作用的问题上涉及微观粒子的行为,必须用量子理论才能得到彻底的解决。波动光学的研究成果使人们对光的本性的认识得到了深化。在应用领域,以干涉原理为基础的干涉计量术为人们提供了精密测量和检验的手段(见干涉仪),其精度提高到前所未有的程度;衍射理论指出了提高光学仪器分辨本领的途径(见夫琅和费衍射);衍射光栅已成为分离光谱线以进行光谱分析的重要色散元件;各种偏振器件和仪器用来对岩矿晶体进行检验和测量,等等。所有这些构成了应用光学的主要内容。20世纪50年代开始,特别在激光器问世后,波动光学又派生出傅里叶光学、纤维光学和非线性光学等新分支,大大地扩展了波动光学的研究和应用范围。
问题一:论文类型有哪些 毕业论文的类型:毕业论文是学术论文的一种形式,为了进一步探讨和掌握毕业论文的写作规律和特点,需要对毕业论文进行分类。由于毕业论文本身的
学术论文是某一学术课题在实验性、理论性或预测性上具有的新的科学研究成果或创新见解和知识的科学记录,或是某种已知原理应用于实际上取得新进展的科学总结,用以提供学术
课题的研究思路一般可以分为四个阶段,第一个阶段是准备阶段,第二个阶段是实施阶段,第三个阶段是成果汇集阶段,第四个阶段是成果鉴定阶段。下面是关于“课题的研究思路一
问题一:论文的局限性怎么写。字数越多越好。要英文的。谢谢大家。 50分 太巧了,我有一篇。论文提纲可分为粗纲和细纲两种,前者只是提示各部分要点,不涉及材料和论文
关于光的本性问题很早就引起了人们的关注。微粒说1638年,法国数学家皮埃尔·伽森荻(Pierre Gassendi)提出物体是由大量坚硬粒子组成的。并在1660