• 回答数

    5

  • 浏览数

    100

苹果香蕉最爱
首页 > 期刊论文 > 三相逆变器毕业论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

灰灰poppy

已采纳

应该可以啊,不管结合什么来写,能写出东西就行,优化应该属于运行管理吧

342 评论

食戟之喵

摘 要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。 关键词: 交流调速系统, 异步电动机, PWM技术.....目录摘 要 1前言 31.1 设计的目的和意义 31.2变频器调速运行的节能原理 3第二章 变频器 42.1变频器选型: 42.2变频器控制原理图设计: 42.3变频器控制柜设计 62.4变频器接线规范 72.5变频器的运行和相关参数的设置 82.6 常见故障分析 8第三章 交流调速系统概述 103.1 交流调速系统的特点 10第四章变频电动机的特点 144.1电磁设计 144.2结构设计 14第五章 变频电机主要特点和变频电机的构造原理 155.1 变频专用电动机具有如下特点: 155.2变频电机的构造原理 15第六章 交流异步电动机 166.1交流异步电动机变频调速基本原理 166.2 变频变压(VVVF)调速时电动机的机械特性 186.3变压变频运行时机械特性分折 19第七章 PWM技术原理 247.1 正弦波脉宽调制(SPWM) 25 7.2单极性SPWM法 ..................................................................................................................26结论 31致 谢 32参 考 文 献 33前言1.1 设计的目的和意义 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义.1.2变频器调速运行的节能原理 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/rain。而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。采用该控制方式的变频调速技术后,电机定子电流下降64% ,电源频率降低30% ,出胶压力降低57% 。由电机理论可知,异步电机的转速可表示为:n=60•f 8(1—8)/p第二章 变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。 2.1变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 2.2变频器控制原理图设计: 1) 首先确认变频器的安装环境; I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。 IV. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。 V. 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。 2) 变频器和电机的距离确定电缆和布线方法; I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 2.3变频器控制柜设计 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。 2) 电磁干扰问题: I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。 II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。 3) 防护问题需要注意以下几点: I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。 II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。 III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。 2.4变频器接线规范 信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.75mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 2.5变频器的运行和相关参数的设置 变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。 控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 2.6 常见故障分析 1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。 2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。 3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。第三章 交流调速系统概述3.1 交流调速系统的特点对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。纵观电力拖动的发展过程,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争。在过去很长一段时期,由于直流电动机的优良调速性能,在可逆、可调速与高精度、宽调速范围的电力拖动技术领域中,几乎都是采用直流调速系统。然而由于直流电动机其有机械式换向器这一致命的弱点,致使直流电动机制造成本高、价格昂贵、维护麻烦、使用环境受到限制,其自身结构也约束了单台电机的转速,功率上限,从而给直流传动的应用带来了一系列的限制。相对于直流电动机来说,交流电动机特别是鼠笼式异步电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。因此,近几十年以来,不少国家都在致力于交流调速系统的研究,用没有换向器的交流电动机实现调速来取代直流电动机,突破它的限制。随着电力电子器件,大规模集成电路和计算机控制技术的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。诸如交流电动机的串级调速、各种类型的变频调速,特别是矢量控制技术的应用,使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能。现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统,从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动,从单机传动到多机协调运转,已几乎都可采用交流调速传动。交流调速传动的客观发展趋势已表明,它完全可以和直流传动相媲美、相抗衡,并有取代的趋势。3.2 交流调速常用的调速方案及其性能比较由电机学知,交流异步电动机的转速公式如下:n= 60ƒ1 (1-s) pn (1-1)式中 Pn——电动机定子绕阻的磁极对数; f1——电动机定子电压供电频率; s ——电动机的转差率。从式(1-1)中可以看出,调节交流异步电动机的转速有三大类方案。(1)改变电动机的磁极对数由异步电动机的同步转速no= 60ƒ1 pn可知,在供电电源频率f1不变的条件下,通过改接定子绕组的连接方式来改变异步电动机定子绕组的磁极对数Pn,即可改变异步电动机的同步转速n0,从而达到调速的目的。这种控制方式比较简单,只要求电动机定子绕组有多个抽头,然后通过触点的通断来改变电动机的磁极对数。采用这种控制方式,电动机转速的变化是有级的,不是连续的,一般最多只有三档,适用于自动化程度不高,且只须有级调速的场合。(2)变频调速 从式(1—1)中可以看出,当异步电动机的磁极对数Pn一定,转差率s—定时,改变定子绕组的供电频率f1可以达到调速目的,电动机转速n基本上与电源的频率f1成正比,因此,平滑地调节供电电源的频率,就能平滑,无级地调节异步电动机的转速。变频调速调速范围大,低速特性较硬,基频f=50Hz以下,属于恒转矩调速方式,在基频以上,属于恒功率调速方式,与直流电动机的降压和弱磁调速十分相似。且采用变频起动更能显著改善交流电动机的起动性能,大幅度降低电机的起动电流,增加起动转矩。所以变频调速是交流电动机的理想调速方案。(3)变转差率调速改变转差率调速的方法很多,常用的方案有:异步电动机定子调压调速,电磁转差离合器调速和绕线式异步电动机转子回路串电阻调速,串级调速等。定子调压调速系统就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,这种调压调速系统仅适用于一些属短时与重复短时作深调速运行的负载。为了能得到好的调速精度与能稳定运行,一般采用带转速负反馈的控制方式。所使用的电动机可以是绕线式异电动机或是有高转差率的鼠笼式异步电动机。电磁转差离台器调速系统,是由鼠笼式异步电动机、电磁转差离合器以及控制装置组合而成。鼠笼式电动机作为原动机以恒速带动电磁离合器的电枢转动,通过对电磁离合器励磁电流的控制实现对其磁极的速度调节。这种系统一般也采用转速闭环控制。绕线式异步电动机转子回路串电阻调速就是通过改变转子回路所串电阻来进行调速,这种调速方法简单,但调速是有级的,串入较大附加电阻后,电动机的机械特性很软,低速运行损耗大,稳定性差。绕线式异步电动机串级调速系统就是在电动机的转子回路中引入与转子电势同频率的反向电势Ef,只要改变这个附加的,同电动机转子电压同频率的反向电势Ef,就可以对绕线式异步电动机进行平滑调速。Ef越大,电动机转速越低。 上述这些调速的共同特点是调速过程中没有改变电动机的同步转速n0,所以低速时,转差率s较大。 在交流异步电动机中,从定子传入转子的电磁功率PM可以分成两部分:一部分P2=(1—s)PM是拖动负载的有效功率,另一部分是转差功率PS=sPM,与转差率s成正比,它的去向是调速系统效率高低的标志。就转差功率的去向而言,交流异步电动机调速系统可以分为三种:1)转差功率消耗型 这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,转差率s增大,转差功率PS=sPM增大,以发热形式消耗在转子电路里,使得系统效率也随之降低。定子调压调速、电磁转差离合器调速及绕线式异步电动机转子串电阻调速这三种方法属于这一类,这类调速系统存在着调速范围愈宽,转差功率PS愈大,系统效率愈低的问题,故不值得提倡。2)转差功率回馈型 这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线式异步电动机转子串级调速即属于这一类,它将转差功率通过整流和逆变作用,经变压器回馈到交流电网,但没有以发热形式消耗能量,即使在低速时,串级调速系统的效率也是很高的。3)转差功率不变型 这种调速系统中,转差功率仍旧消耗在转子里,但不论转速高低,转差功率基本不变。如变极对数调速,变频调速即属于这一类,由于在调速过程中改变同步转速n0,转差率s是一定的,故系统效率不会因调速而降低。在改变n0的两种调速方案中,又因变极对数调速为有极调速,且极数很有限,调速范围窄,所以,目前在交流调速方案中,变频调速是最理想,最有前途的交流调速方案。第四章变频电动机的特点4.1电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:

260 评论

草泥马叔叔

电力管理专业的,开始我也不会,还是学长给的莫‘文网,没几天就搞定了变电站综合自动化改造项目过程管理研究台山输变电工程项目进度管理系统信息化全面技术管理在自备电厂项目管理中的应用基于价值工程理论的电力工程项目经营体系与模型500kV台香线东1段工程施工项目管理的几个关键问题DEC国际工程项目管理与研究火电厂工程项目管理信息系统设计与实现变电工程施工成本管理研究甘肃送变电工程公司人力资源管理诊断研究XB电力工程公司培训现状问题与对策研究基于全寿命期理论的变电站设计管理电力物资采购合同风险管理高原冻土输电线路工程施工项目管理电力仪器公司在项目执行过程中的协调管理配电工程施工项目成本管理研究变电站工程建设中进度、质量、安全管理研究关于电力建设工程项目质量管理标准化及其研究南迪普项目执行风险管理研究南京供电公司大中型输变电工程项目管理研究ZZ电厂脱硫项目建设管理研究浙江电力招标项目代建制管理模式探讨电厂工程 建设单位的合同管理工作电力行业施工多项目管理研究电力设计项目人力资源管理研究

273 评论

evenmaosir

哥们帮你搞定,有什么好处

215 评论

巫毒小子

这些资料估计你都会用到.具体的论文设计你自己弄吧.什么是逆变电源?为什么要逆变? 利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。例如:应用晶闸管的电力机车,当下坡时使直流电动机作为发电机制动运行,机车的位能转变成电能,反送到交流电网中去。又如运转着的直流电动机,要使它迅速制动,也可让电动机作发电机运行,把电动机的动能转变为电能,反送到电网中去。 把直流电逆变成交流电的电路称为逆变电路。在特定场合下,同一套晶闸管变流电路既可作整流,又能作逆变。 变流器工作在逆变状态时,如果把变流器的交流侧接到交流电源上,把直流电逆变为同频率的交流电反送到电网去,叫有源逆变。如果变流器的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,则叫无源逆变。交流变频调速就是利用这一原理工作的。有源逆变除用于直流可逆调速系统外,还用于交流饶线转子异步电动机的串级调速和高压直流输电等方面。 什么是逆变电源及用途? 逆变电源,一般是指将低压的直流电转变成高压(或低压)的交流电的装置,它可以用蓄电池做电源,输出交流电。具体说,比如用12V的蓄电池是不能为普通电灯或电脑、电视等供电的,而把该蓄电池通过逆变器变成普通的220V交流电再接到这些用电器中,它们就能正常工作。 一般逆变电源中自带蓄电池,电脑城卖的UPS电源就是这样的东西,不过它本身所带的蓄电池较小,只能供电脑工作几分钟到十几分钟,主要是为了在突然停电时,靠它继续为电脑供电,好让你有时间把未保存的文件保存下来,且有时间正常关机。 正弦波逆变电源的用途 逆变器是一种将直流电转换为交流电的装置,它用于无交流电的环境,为交流设备提供电源。它的输出功率从几十瓦到几百千瓦不等;输入直流电压从几伏到几百伏不等。 它主要应用于下列场所: 1.在车、船和飞机上,与交通工具上的直流电源一起,为交流电器提供电源; 2.在无电源的地方,与其它发电设备(太阳能、风能、水能以及各种燃料发电机)一起,为用户提供交流电源; 3.作为通讯、电力系统的不间断电源UPS(Uninterrupted Power Supply); 4.作为消防应急用电源EPS (Emergent Power Supply); 5.利用便携电源,提供临时交流电源等。 逆变电源 逆变电源也称逆变器,是一种DC/AC的转换器,它将电池组的直流电源转化成输出电压和频率稳定的交流电源。 工业一级的逆变器一般均为正弦波输出,同市电的波形一致,如电力逆变器,通信逆变器;另外还有一种输出为方波或阶梯波或修正正弦波的,这一类逆变器一般都是应用于民用场合,如车载逆变器,太阳能家用逆变器,一般为小功率(1KVA以下),1KVA以上一般均做成正弦波的了。 在技术工艺上,人们又把正弦波逆变器区分为高频逆变器和工频逆变器,工频逆变器技术成熟,性能稳定,搞过载能力强,但体积庞大、笨重;高频逆变器是近五六年在市场上的新星,它技术指标优越、效率很高、尤其是体积小、重量轻、高功率密度,都是现代电力电子所倡导的,现在业已抢占了中小功率逆变器一半以上的市场。有些行业领先者的高频逆变器单元已经做到了30KVA,从技术发展和生产成本来看,高频逆变器取代工频逆变器将是大势所趋。 逆变器的输出有单相和三相之分,以适应不同的负载,这同市电的指标一样。 逆变器有很多应用领域,比如在航空工业中利用逆变器提供一个到400Hz频率转换等,这就要用到逆变器了。 何谓逆变器的效率? 逆变器在工作时其本身也要消耗一部分电力,因此,它的输入功率要大于它的输出功率。逆变器的效率即是逆变器输入功率与输出功率之比。如一台逆变器输入了100瓦的直流电,输出了90瓦的交流电,那么,它的效率就是90%。 按输出波形划分,逆变器分为几类? 主要分两类,一类是正弦波逆变器,另一类是方波逆变器。正弦波逆变器输出的是同我们日常使用的电网一样甚至更好的正弦波交流电,因为它不存在电网中的电磁污染。方波逆变器输出的则是质量较差的方波交流电,其正向最大值到负向最大值几乎在同时产生,这样,对负载和逆变器本身造成剧烈的不稳定影响。同时,其负载能力差,仅为额定负载的40-60%,不能带感性负载(详细解释见下条)。如所带的负载过大,方波电流中包含的三次谐波成分将使流入负载中的容性电流增大,严重时会损坏负载的电源滤波电容。针对上述缺点,近年来出现了准正弦波(或称改良正弦波、修正正弦波、模拟正弦波等等)逆变器,其输出波形从正向最大值到负向最大值之间有一个时间间隔,使用效果有所改善,但准正弦波的波形仍然是由折线组成,属于方波范畴,连续性不好。总括来说,正弦波逆变器提供高质量的交流电,能够带动任何种类的负载,但技术要求和成本均高。准正弦波逆变器可以满足我们大部分的用电需求,效率高,噪音小,售价适中,因而成为市场中的主流产品。方波逆变器的制作采用简易的多谐振荡器,其技术属于50年代的水平,将逐渐退出市场。 二极管在逆变器中的应用 高效率和节能是家电应用中首要的问题。三相无刷直流电机因其效率高和尺寸小的优势而被广泛应用在家电设备中以及很多其他应用中。此外,由于采用了电子换向器代替机械换向装置,三相无刷直流电机被认为可靠性更高。 标准的三相功率级(power stage)被用来驱动一个三相无刷直流电机,如图1所示。功率级产生一个电场,为了使电机很好地工作,这个电场必须保持与转子磁场之间的角度接近90°。六步序列控制产生6个定子磁场向量,这些向量必须在一个指定的转子位置下改变。霍尔效应传感器扫描转子的位置。为了向转子提供6个步进电流,功率级利用6个可以按不同的特定序列切换的功率MOSFET。下面解释一个常用的切换模式,可提供6个步进电流。 MOSFET Q1、Q3和Q5高频(HF)切换,Q2、Q4和Q6低频(LF)切换。当一个低频MOSFET处于开状态,而且一个高频MOSFET 处于切换状态时,就会产生一个功率级。 步骤1) 功率级同时给两个相位供电,而对第三个相位未供电。假设供电相位为L1、L2,L3未供电。在这种情况下,MOSFET Q1和Q2处于导通状态,电流流经Q1、L1、L2和Q4。 步骤2)MOSFET Q1关断。因为电感不能突然中断电流,它会产生额外电压,直到体二极管D2被直接偏置,并允许续流电流流过。续流电流的路径为D2、L1、L2和Q4。 步骤3)Q1打开,体二极管D2突然反偏置。Q1上总的电流为供电电流(如步骤1)与二极管D2上的恢复电流之和。 显示出其中的体-漏二极管。在步骤2,电流流入到体-漏二极管D2(见图1),该二极管被正向偏置,少数载流子注入到二极管的区和P区。 当MOSFET Q1导通时,二极管D2被反向偏置, N区的少数载流子进入P+体区,反之亦然。这种快速转移导致大量的电流流经二极管,从N-epi到P+区,即从漏极到源极。电感L1对于流经Q2和Q1的尖峰电流表现出高阻抗。Q1表现出额外的电流尖峰,增加了在导通期间的开关损耗。图4a描述了MOSFET的导通过程。 为改善在这些特殊应用中体二极管的性能,研发人员开发出具有快速体二极管恢复特性MOSFET。当二极管导通后被反向偏置,反向恢复峰值电流Irrm较小。 我们对比测试了标准的MOSFET和快恢复MOSFET。ST推出的STD5NK52ZD(SuperFREDmesh系列)放在Q2(LF)中,如图4b所示。在Q1 MOSFET(HF)的导通工作期间,开关损耗降低了65%。采用STD5NK52ZD时效率和热性能获得很大提升(在不采用散热器的自由流动空气环境下,壳温从60°C降低到50°C)。在这种拓扑中,MOSFET内部的体二极管用作续流二极管,采用具有快速体二极管恢复特性MOSFET更为合适。 SuperFREDmesh技术弥补了现有的FDmesh技术,具有降低导通电阻,齐纳栅保护以及非常高的dv/dt性能,并采用了快速体-漏恢复二极管。N沟道520V、1.22欧姆、4.4A STD5NK52ZD可提供多种封装,包括TO-220、DPAK、I2PAK和IPAK封装。该器件为工程师设计开关应用提供了更大的灵活性。其他优势包括非常高的dv/dt,经过100%雪崩测试,具有非常低的本征电容、良好的可重复制造性,以及改良的ESD性能。此外,与其他可选模块解决方案相比,使用分立解决方案还能在PCB上灵活定位器件,从而实现空间的优化,并获得有效的热管理,因而这是一种具有成本效益的解决方案。 何谓“感性负载”? 通俗地说,即应用电磁感应原理制作的大功率电器产品,如电动机、压缩机、继电器、日光灯等等。这类产品在启动时需要一个比维持正常运转所需电流大得多(大约在3-7倍)的启动电流。例如,一台在正常运转时耗电150瓦左右的电冰箱,其启动功率可高达1000瓦以上。此外,由于感性负载在接通电源或者断开电源的一瞬间,会产生反电动势电压,这种电压的峰值远远大于逆变器所能承受的电压值,很容易引起逆变器的瞬时超载,影响逆变器的使用寿命。因此,这类电器对供电波形的要求较高。如何挑选逆变器产品 车载逆变器是一种工作在大电流、高频率环境下的电源产品,其潜在故障率相当高。因此,消费者在购买时一定要慎重。首先,从逆变器输出波形上选,最好不要低于准正弦波;其次,逆变器要有完备的电路保护功能;第三,厂家要有良好的售后服务承诺;第四,电路和产品经过一段时间的考验。 逆变器,必须是一种逆变装置组成的东西才能那么叫,他和变压器有直接区别,也就是说,他可以实现直流输入,然后输出交流,工作原理和开关电源一样,但震荡频率在一定范围内,比如如果这个频率为50HZ,输出则为交流50HZ。逆变器是可以改变其频率的设备。 变压器一般是指特定频率段的设备,比如工频变压器,就是我们一般见到的那些变压器,他们输入和输出都必须在一定范围内,比如40-60HZ范围内才可以工作。 如何为电瓶配备合适的逆变器? 假如电瓶的规格是12伏50安时,我们用12伏乘以50安时,得出电瓶的输出功率为600瓦。如果逆变器的效率为90%,则我们再用90%乘以600瓦,得出540瓦。这就是说,您的这块电瓶可推动一台输出功率最大为540瓦的逆变器。当然,您也可以采取“一步到位”式的采购办法,即先不管目前自己车上用的电瓶的规格,而买一台输出功率为800瓦的逆变器。然后,先在眼下这块电瓶的允许范围内使用,等将来换了更大的车后再满功率使用。最后,对逆变器的功率要求不高,比如说有100瓦就够了,那您完全可以买个小功率逆变器。此外,在确定逆变器的功率时,还有一个重要原则,即在使用逆变器时,不要长期满载运行,否则会大大缩短逆变器的寿命,同时逆变器的故障率也将显著上升。我们强烈建议用户,最好在不超过额定功率85%的状态下使用逆变器。 如何知道电瓶的容量? 电瓶上印有很多字母和数字,只要找到XXAH的字样就可以知道这是一块多大容量的电瓶。先说AH的含义,A代表安培(amp.),即电流的单位,H代表小时(hour)。两个字母在一起的意思就是"安培小时",即在一小时的时间内可持续输出多少安培的电流。前面的XX通常为两个数字,即安培的数量。举例来讲,45AH代表这块电瓶可以在一个小时的时间内输出 (12伏)45安培的电流。至于这块电瓶可以输出的功率,我们用12伏乘以45安培,得出540瓦,这就是该电瓶的输出功率(理论值)。 什么是持续输出功率?什么是峰值输出功率? 一些使用电动机的电器或工具,如电冰箱、洗衣机、电钻等,在启动的瞬间需要很大的电流来推动,一旦启动成功,则仅需较小的电流来维持其正常运转。因此,对逆变器来说,也就有了持续输出功率和峰值输出功率的概念。持续输出功率即是额定输出功率;一般峰值输出功率为额定输出功率的2倍。必须强调,有些电器,如空调、电冰箱等其启动电流相当于正常工作电流的3-7倍。因此,只有能够满足电器启动峰值功率的逆变器才能正常工作。 使用车载逆变器须要注意些什么? 首先,要严格按照用户手册的规定来使用逆变器;其次,逆变器的输出电压是220伏交流电,而这个220伏电是在一个狭小的空间并处于可移动状态,因此要格外小心。应将其放在较为安全的地方(特别要远离儿童!),以防触电。在不使用时,最好切断其输入电源。第三,不要将逆变器置于太阳直晒或暖风机出口附近。逆变器的工作环境温度不宜超过摄氏40度。第四,逆变器工作时会发热,因此不要在其附近或上面放置物品。第五,逆变器怕水,不要使其淋雨或撒上水。 应该怎样连接逆变器与电源和负载? 使用150瓦以下的电器可直接将150瓦逆变器插头插至点烟器插座后使用。超过150瓦的逆变器通过鳄鱼夹导线直接接到电瓶上,红线接电瓶正极,黑线接电瓶负极(不可接反,切记!)如果用电地点离电瓶较远,逆变器的连线原则是:逆变器同电瓶的连线应尽可能的短,而220伏交流电的输出线长些无妨。

150 评论

相关问答

  • 逆变器的原理与应用毕业论文

    太阳能光伏电源毕业论文设计标签: 太阳能电池逆变器毕业论文校园目录摘要... 1ABSTRACT. 21 绪论.... 32太阳能光伏电源系统的原理及组成...

    水金之幻 3人参与回答 2023-12-06
  • 光伏并网逆变器的分析与研究论文

    是有的,你自己来拿吧,行不

    winnie1103 4人参与回答 2023-12-11
  • 三轴六档式变速器本科生毕业论文

    随着国民经济的迅猛发展,汽车产量逐年增加,2006年已达720万辆。我国汽车保有量越来越多,车型也越来越复杂。尤其是高科技的飞速发展,一些新技术、新材料在汽车上

    mon也是部长 3人参与回答 2023-12-10
  • 光伏电站逆变器毕业论文

    逆变器就是直流电变成交流电(DC→AC)!光伏产业的的逆变器就是把太阳能电池产生的直流电转换成交流电,然后通过升压变压器把电压、频率、相位按要求调整,并达到现在

    Bulabula789 5人参与回答 2023-12-07
  • 逆变器论文题目

    ·免费[网络论文]|校园图书馆网络架构论文--do·免费[网络论文]|无线局域网的构建及其安全防·免费[网络论文]|无线局域网论文--doc文档·免费[网络论文

    我心起飞扬 5人参与回答 2023-12-09