小小小雨桐
探究水处理陶瓷膜制备与应用技术研究进展论文
膜技术被认为是21 世纪最优前景的水处理技术之一,膜材料技术、膜分离技术在近十几年得到很大发展,在水处理领域得到了广泛应用。水处理陶瓷膜的过滤、分离性能与膜孔径大小及其分布、孔隙率、表面形貌等有密切关系。陶瓷膜的活性分离层是颗粒以任意堆积方式形成的,孔隙率通常为30 ~ 35%,且曲折因子调控较为困难,陶瓷膜的水处理效能受到局限。研究陶瓷膜制备、修饰、工艺优化新技术以提高其过滤、分离、抗污染效能是水处理陶瓷膜领域的研究重点。
1. 水处理陶瓷膜制备技术
1.1 致孔剂制备技术
致孔剂是提高水处理陶瓷孔隙率简单又经济的方法,致孔剂可分为无机物和有机物两类。无机致孔剂有碳酸铵、碳酸氢铵和氯化铵等高温易分解的盐类或无机碳如石墨、煤粉等;有机致孔剂主要包括天然纤维、高分子聚合物,如锯末、淀粉、聚苯乙烯(PS)、聚甲基丙烯酸甲酯(PMMA)等。Yang 等 以Al2O3 为膜基体,以膨润土为烧结助剂,以玉米淀粉作为造孔剂通过挤出、交联、干燥、烧结等过程制备陶瓷膜。研究发现随着淀粉含量的增加,Al2O3 支撑体的最大孔径和平均孔径均有所增大,陶瓷膜的孔隙率可有24% 提高至38%。
1.2 模板剂制备技术
模板剂可有效控制所合成材料的形貌、结构和大小,并制备出孔结构有序、孔径均一、孔隙率大的微孔、介孔和大孔材料。模板剂法具有丰富的选材和灵活的调节手段,采用模板剂法制备水处理陶瓷膜极具前景。Xia 等 以有机聚苯乙烯微球为模板剂,采用UV 聚合的方法制备出孔径为100nm 的三维有序聚氨酯大孔材料。Sadakane 等 以PMMA 为模板剂制备出具有三维有序大孔的金属氧化物材料,其孔隙率范围为66 ~ 81%。表面活性剂在溶液中可以形成胶束、微乳、液晶、囊泡等自组装体,也常被用作自组装技术中的有机物模板剂。利用表面活性剂十六烷基三甲基溴化铵为模板剂可制备出有序的介孔分子筛MCM41,具有多种对称性能的孔道,孔径在2 ~ 50nm 的.范围内。Choi 等以Tween80 为模板剂制备了具有梯度孔径结构的TiO2-Al2O3 陶瓷膜,陶瓷膜的渗透性能大大提高。
1.3 纤维层积制备技术
陶瓷纤维材料在成膜过程中可以迅速在支撑体表面沉积搭桥,明显减少了膜层的内渗,并且容易得到较高的孔隙率和比表面积,对膜材料渗透性能的提高具有显著作用。Ke 等 以TiO2 纤维为原料,通过旋涂法制备出平均孔径在50nm 的陶瓷纤维膜,对球形粒子截留率超过95%,膜通量在900Lm-2h-1 以上。
1.4 溶胶- 凝胶制备技术
溶胶- 凝胶技术主要是通过调整材料尺寸控制陶瓷膜分离层的分离精度。溶胶- 凝胶法可形成纳米级别的溶胶,得到的陶瓷膜层孔径小、孔径分布窄,适用于高渗透选择性的超滤膜和纳滤膜的制备。Tsuru 等 利用聚合溶胶路线制备出平均孔径0.7 ~ 2.5nm 的TiO2 纳滤膜,对PEG 的截留分子量为500 ~ 000Da,对Mg2+ 的截留率为88%。
2. 水处理陶瓷膜修饰技术
2.1 化学气相沉积修饰技术
采用化学气相沉积法(CVD)在陶瓷膜表面沉积硅氧化物或金属氧化物来改善陶瓷膜孔结构以及过滤性能,是一项非常有效的手段。Lin 等 采用CVD 技术对平均孔径为4nm 的Al2O3 陶瓷膜进行修饰,制备出孔径范围为0.4 ~ 0.6nm 的SiO2 陶瓷膜。CVD 的方法一般需要在高温、真空的环境中进行,并且要求前驱物具有一定的挥发性。
2.2 原子层沉积修饰技术
原子层沉积技术(ALD)可将物质以单原子膜形式层层沉积在陶瓷膜表面,从而构建陶瓷膜表面微纳结构。Li 等 在平均孔径50nm 的陶瓷膜表面上通过原子层沉积氧化铝层,通过控制原子层沉积次数来调控膜的平均孔径,改性后陶瓷膜对BSA的截留率由2.9% 升至97.1%。
2.3 表面接枝修饰技术
表面接枝技术常被用来调控膜材料的表面性质,接枝过程将改变膜的孔结构,达到减小孔径的目的。陶瓷膜表面一般会吸附水形成大量羟基,通过接枝有机硅烷的方法在介孔膜表面可以修饰一层有机分子层。通过调控接枝分子的链长与官能团等特性可以实现调控孔径大小的目的,且能获得特殊的表面性质。Singh 等 发现接枝硅烷偶联剂可以使多孔陶瓷膜孔径进一步变小。Cohen 等 将亲水性PVP 接枝在陶瓷超滤膜表面上,改性后的膜孔径减小,截留性能提高,抗污染性能得以改善,可用于油水分离。
3. 水处理陶瓷膜制备与修饰工艺优化
3.1 陶瓷膜材料、添加剂选取
水处理陶瓷膜的制备主要集中于原材料及烧结工艺,通过添加烧结助剂以降低烧结温度、采用低成本易烧结原料以降低原料成本,以及利用先进的烧结工艺以达到低成本控制是陶瓷膜的研究重点。陶瓷膜制备过程中常在基膜材料中加入一些液相型或者固相型烧结助剂。高岭土、钾长石等天然硅酸盐黏土矿物在较低温度下便能熔融形成液相,在颗粒间毛细管力的作用下润湿并包裹膜材料基体颗粒,并将颗粒黏结起来,辅以多孔陶瓷膜良好的机械强度。氧化钛、氧化锆等金属氧化物能与陶瓷膜基体形成多元氧化物固熔物而使烧结温度下降,有利于陶瓷膜制备。
3.2 陶瓷膜烧制过程优化
多孔陶瓷膜必须经过多次烧结,存在烧结工艺周期长、能耗高的问题。除采用烧结助剂或采用易烧结材料以降低烧结温度外,减少烧结时间或缩短制备周期也能达到降低烧结工艺成本的目的。在减少烧结时间方面,微波烧结技术是一种非接触技术,热通过电磁波的形式传递,可直达材料内部,最大限度地减少了烧结的不均匀性,可在缩短烧结时间的同时,降低烧结温度。微波技术大多用于制备几近致密的陶瓷复合物,同时由于其可改善材料组织、提高材料性能,亦可用于多孔陶瓷复合物的制备。在缩短烧结周期方面,一些研究者借鉴低温共烧陶瓷技术在多层结构陶瓷元器件封装领域的成功应用,提出采用共烧结技术来减少烧结次数,从而降低烧结成本。
4. 结论
水处理陶瓷膜制备技术以提高陶瓷膜整体性能为目的,通过调控陶瓷膜微结构可实现陶瓷膜制备技术的突破。目前,致孔剂制备技术、模板剂制备技术、纤维层积制备技术、溶胶- 凝胶技术、固态粒子烧结技术等陶瓷膜制备技术已日益得到关注。水处理陶瓷膜制备技术研究将引领和推动陶瓷膜技术及产业的发展,缓解水厂升级改造、提升水质品质的瓶颈压力。
魅影幽兰
生物陶瓷材料可分为生物惰性陶瓷(如Al2O3,ZrO2等)和生物活性陶瓷(如致密羟基磷灰石,生物活性玻璃等)。生物惰性陶瓷生物惰性陶瓷主要是指化学性能稳定、生物相溶性好的陶瓷材料。如氧化铝、氧化锆以及医用碳素材料等。这类陶瓷材料的结构都比较稳定,分子中的键合力较强,而且都具有较高的强度、耐磨性及化学稳定性。1. 氧化铝生物陶瓷单晶氧化铝c 轴方向具有相当高的抗弯强度,耐磨性能好,耐热性好,可以直接与骨固定。已被用作人工骨、牙根、关节、螺栓。并且该螺栓不生锈,也不会溶解出有害离子,与金属螺栓不同,勿需取出体外。60年代后期,广泛用作硬组织修复。70年代至80年代中期,世界许多国家如美国、日本、瑞士等国家,都对氧化物陶瓷,特别是氧化铝生物陶瓷进行了广泛的研究和应用。由于氧化铝陶瓷植入人体后表面生成极薄的纤维膜,界面无化学反应,多用于全臀复位修复术及股骨和髋骨部连接。通过火焰熔融法制造的单晶氧化铝,强度很高,耐磨性好,可精细加工,制成人工牙根、骨折固定器等。多晶氧化铝,即刚玉,强度大,用于制作人工髋关节,人工骨,人工牙根和关节。单晶氧化铝陶瓷的机械性能更优于多晶氧化铝,适用于负重大、耐磨要求高的部位,但其不足之处在于加工困难。中国陶瓷在实验室研究水准上完全可达到ISO 标准,但用于临床仍有一定差距,材料未达到ISO 标准。(国际标准化组织(ISO)对于医用氧化铝植入制品的要求) 物理特性 氧化铝陶瓷 ISO标准6474 氧化锆陶瓷 紧质骨 松质骨 质量分数/% 氧化铝>99.8 氧化铝>99.5 氧化锆>97 密度/(g·cm-3) >3.93 >3.90 6.05 1.6-2.1 平均粒径/mm-3 3-6 <7 0.2-0.4 表面粗糙度Ra/mm-3 0.02 0.008 硬度/HV 2300 >2000 1300 压缩强度/MPa 4500 2000 100-230 2-12 抗弯强度/MPa 595 >400 1000 50-150 杨氏模量/GPa 400 150 7-30 0.05-0.5 断裂人性K/(MPa·m1/2) 5-6 15 2-12 氧化铝单晶的生产工艺:氧化铝单晶的生产工艺有提拉法、导模法、气相化学沉积生长法、焰熔法等。a、提拉法即是把原料装入坩埚内,将坩埚置于单晶炉内,加热使原料完全熔化,把装在籽晶杆上的籽晶浸渍到熔体中与液面接触,精密地控制和调整温度,缓缓地向上提拉籽晶杆,并以一定的速度旋转,使结晶过程在固液界面上连续地进行,直到晶体生长达到预定长度为止。提拉籽晶杆的速度1.0-4mm/min 坩埚的转速为10r/min,籽晶杆的转速为25r/minb、导模法简称EFG法。在拟定生长的单晶物质熔体中,放顶面下所拟生长的晶体截面形状相同的空心模子即导模,模子用材料应能使熔体充分润湿,而又不发生反应。由于毛细管的现象,熔体上升,到模子的顶端面形成一层薄的熔体面。将晶种浸渍到基中,便可提拉出截面与模子顶端截面形状相同的晶体。c、气相化学沉积生长法将金属的氢氧化物、卤化物或金属有机物蒸发成气相,或用适当的气体做载体,输送到使其凝聚的较低温度带内,通过化学反应,在一定的衬底上沉积形成薄膜晶体。d、焰熔法将原料装在料斗内,下降通过倒装的氢氧焰喷嘴,将其熔化后沉积在保温炉内的耐火材料托柱上,形成一层熔化层,边下降托柱边进行结晶。用这种方法晶体生长速度快、工艺较简单,不需要昂贵的铱金坩埚和容器,因此较经济。e、单晶氧化铝临床应用。它用作人工关节柄与氧化铝多晶陶瓷相比具有比较高的机械强度,不易折断。它还可以作为损伤骨的固定材料,主要用于制作人工骨螺钉,比用金属材料制成的人工骨螺钉强度高。可以加工成各种齿用的尺寸小、强度大的牙根,由于氧化铝单晶与人体蛋白质有良好的亲合性能,结合力强,因此有利于牙龈粘膜与异齿材料的附着。2. 氧化锆陶瓷氧化锆陶瓷(Zirconia Bioceramics)是以ZrO2为主要成分的生物惰性陶瓷,其显著特征是具有高断裂韧性、高断裂强度和低弹性模量。氧化锆(ZrO2)具有极高的化学稳定性和热稳定性(Tm=2953K),在生理环境中呈现惰性,具有很好的生物相容性。纯氧化锆具有三种同素异型体,在一定条件下可以发生晶型转变(相变)。在承受外力作用时,其 t 相向 m 相转变的过程需吸收较高的能量,使裂纹尖端应力松弛,增加裂纹扩散阻力而增韧,因而具有非常高的断裂韧性。部分稳定的氧化锆和氧化铝一样,生物相容性良好,在人体内稳定性高,且比氧化铝断裂韧性、耐磨性更高,有利减少植入物尺寸和实现低摩擦、磨损, 用以制造牙根、骨、股关节、复合陶瓷人工骨、瓣膜等。上海的科学家还研制成功了等离子喷涂氧化锆人工骨与关节陶瓷涂层材料,并获得了国家发明奖。(用于外科植入的氧化铝、氧化锆陶瓷性能比较) 性 质 氧化铝 氧化锆 密度(g/cm) 3.98 6.05 颗粒大小(mm) 3.6 0.2-0.4 抗弯强度(MPa) 595 1000 抗压强度(MPa) 4200 2000 杨氏模量(GPa) 400 150 硬度(HV) 2400 1200 断裂韧性KIC(MN/m) 5 7 氧化锆陶瓷的制备工艺:自然界含有丰富的锆英石(ZrSiO4),采用化学法可以制备纯氧化锆粉体,加入助熔剂及适当改性剂辅料后,经成型、烧结得到氧化锆陶瓷。生物医学应用:基于氧化锆陶瓷优良的生物相容性、良好的断裂韧性、高断裂强度和低弹性模量,适合制作需承受高剪切应力的人工关节。氧化锆/氧化锆对磨时,其磨损率是氧化铝/氧化铝对磨的磨损率的5000倍;但形成氧化/UHMWPE摩擦副时却表现出良好的摩擦磨损性能。3.碳素生物材料自然界中碳的分布很广,有单质碳,但更多以化合物形式存在。单质碳有多种同素异型体,主要有金刚石结构、石墨结构和无定形结构。碳是生物惰性的材料,在人体中化学稳定性好、无毒性、与人体组织亲和性好、无排异反应。特别需指出的是,无定形碳除具有优良的机械性能外,可以调整组成和结构改变其性能,满足不同的应用要求。无定形碳虽然不与人体组织形成化学键合,但允许人体软组织长入碳的空隙,形成牢固结合,碳周围的人体软组织可迅速再生,有人认为无定形碳具有诱发组织生长的作用。由于无定形碳独特的表面组成和表面结构,与血液长期接触引起的凝血作用非常小,不会诱发血栓,因而广泛应用作心血管材料。在医学中常用的无定形碳包括:低温各向同性碳、玻璃状碳、超低温各向同性碳、类金刚石碳、碳纤维增强复合碳材料。A、低温各向同性热解碳(Low Temperature Isotropic Pyrolytic Carbon,LTIC)、玻璃状碳(Glass Carbon)、超低温各向同性碳(Ultralow Temperature Isotropic Carbon,ULTIC)均为无序晶格晶格,统称为涡轮层碳。涡轮层碳(Turbostratic Carbon)的微观结构为无序结构,看起来很复杂,但实际上与石墨结构具有一定的相似性。从生物医学材料的观点出发,涡轮层碳的最大特点是具有优良的细胞生物相容性和抗凝血性,以LTIC和ULTIC更为突出。(涡轮层碳素材料的性质) 性 能 多晶石墨 LTI碳 玻璃状碳 ULTI碳 密 度 (g/cm) 1.5-1.8 1.7-2.2 1.4-1.6 1.5-2.2 粒 径 (nm) 15-250 3-5 1-4 8-15 膨胀系数(10/K) 0.5-5.0 5-6 2-6 --- 威氏硬度(DPH) 50-120 230-370 150-200 150-250 杨氏模量(GPa) 4-12 27-31 24-31 14-21 抗弯强度(MPa) 65-300 350-530 69-206 345-690 断裂变形(%) 0.1-0.7 1.5-2.0 0.8-1.3 2.0-5.0 B、玻璃状碳。玻璃状碳是一种不可石墨化的单块碳,具有很高的各向同性特征,原生表面及断面有玻璃体外貌特征,但仅限于外观,并无硅酸盐玻璃的空间网状结构。玻璃状碳由无规则的大约5nm的晶粒组成,具有非常低的孔隙率,对液体和气体的渗透性很低。C、类金刚石碳。类金刚石碳(Diamond-like Carbon,DLC)中除无定型结构的碳之外,还包含有少量的金刚石微晶、石墨微晶等,其物理性能与金刚石非常相似。由于制备类金刚石的原料为碳氢化合物,因此在类金刚石中除碳外,还含有较多的碳-氢基团;随其中碳-氢基团的种类和数量不同,类金刚石的性质亦有较大变化。它具有高硬度(Hv (kg/mm2) 1200-1800)、高耐磨损、低摩擦系数、高耐腐蚀、组织相容和血液相容的优良特性。其制备工艺包括:等离子体化学气相沉积、离子束增强沉积、离子镀和 PIII-IBED等。(医用碳素材料的应用) 应 用 材 料 人工心脏瓣膜 LTI、DLC 心脏缝合环涂层 ULTI 血液通道器件 LTI / ULTI 起搏器电极 多孔玻璃-ULTI 血液氧合微孔分离膜涂层 ULTI 耳通道管 LTI 牙根、牙片植入体涂层 ULTI、DLC 人工关节涂层 LTI、DLC 经皮连接器涂层 LTI 生物活性陶瓷生物活性陶瓷包括表面生物活性陶瓷和生物吸收性陶瓷,又叫生物降解陶瓷。生物表面活性陶瓷通常含有羟基,还可做成多孔性,生物组织可长入并同其表面发生牢固的键合;生物吸收性陶瓷的特点是能部分吸收或者全部吸收,在生物体内能诱发新生骨的生长。生物活性陶瓷具有骨传导性,它作为一个支架,成骨在其表面进行;它还可作为多种物质的外壳或填充骨缺损。生物活性陶瓷有生物活性玻璃、羟基磷灰石陶瓷、磷酸三钙陶瓷等几种。1. 生物活性玻璃及玻璃陶瓷(Bioactive Glass & Glass-ceramics)生物玻璃陶瓷的主要成分是CaO-Na2O-S iO2-P2O5,比普通窗玻璃含有较多钙和磷,能与骨自然牢固地发生化学结合。它具有区别于其他生物材料的独特属性,能在植入部位迅速发生一系列表面反应,最终导致含碳酸盐基磷灰石层的形成。生物玻璃陶瓷的生物相容性好,材料植入体内,无排斥、炎性及组织坏死等反应,能与骨形成骨性结合;与骨结合强度大,界面结合能力好,并且成骨较快。目前此种材料已用于修复耳小骨,对恢复听力具有良好效果。但由于强度低,只能用于人体受力不大的部位。目前制备生物活性玻璃的方法主要是采用溶胶- 凝胶法制备,采用该方法制备的材料具有特殊的化学组成,纳米团簇结构和微孔,因而比表面积较大,生物活性比其他生物玻璃及微晶玻璃更好。由于溶胶- 凝胶法制备的材料纯度好、均匀性高、生物活性好和比表面积大等特点,具有更好的研究及应用价值,特别是生物活性玻璃多孔材料在用作骨组织工程支架方面具有很好的前景。生物活性玻璃及玻璃陶瓷最显著的特征是植入人体后,表面状况随时间而动态变化,表面形成生物活性的碳酸羟基磷灰石(HCA)层,为组织提供了键合界面。A、组成:生物活性玻璃的组成主要为:SiO2、Na2O、CaO、P2O5等。生物活性玻璃陶瓷是在生物活性玻璃的基础上,控制晶化得到的多晶体。与传统钠钙硅体系玻璃相比,具有三大组成特征:SiO2含量低;Na2O、CaO含量高;CaO / P2O5比例高。B、性质:快速的表面反应;无定形二维结构使强度及断裂韧性低;弹性模量(30-35MPa)低,与皮质骨接近;可切削生物玻璃具有良好的加工性能。C、制备工艺:生物活性玻璃的制备工艺与传统的玻璃制备工艺基本相同,包括称重、混合、熔合、熔化、均匀化、玻璃形成等。玻璃陶瓷则还需在一定的热处理制度下控制玻璃成核与晶粒生长。D、临床应用:a) 45S5生物活性玻璃用于中耳小骨置换、颌骨缺损修复、牙周缺损修复、骨嵴维护植入体,不引起细胞损伤、无降解产物、无感染性。b) Ceravital生物活性玻璃陶瓷用于中耳外科手术,是一种低钠、钾的生物活性玻璃陶瓷。c) 磷灰石-硅灰石活性玻璃--A-WGC,用作脊椎假体、胸、额骨修复以及骨缺损修复,已成功应用于数万名患者。d) 可切削生物活性玻璃-MBGC],主要用在颌面、脊椎、牙槽硬组织修复以及 口腔修复,其特点是优良的可加工行及骨结合性。2.磷酸钙生物活性陶瓷磷酸钙陶瓷(CPC)是生物活性陶瓷材料中的重要种类,目前研究和应用最多的是羟基磷灰石(HA)和磷酸三钙(TCP)。磷酸钙陶瓷含有CaO和P2O5两种成份,是构成人体硬组织的重要无机物质,植入人体后,其表面同人体组织可通过键的结合,达到完全亲和。其中,HA在组成和结构上与人骨和牙齿非常相似,具有较高的力学性能,在人体生理环境中可溶解性较低;TCP与骨的结合性好,无排异反应,在水溶液中的溶解程度远高于HA,能被体液缓慢降解、吸收,为新骨的生长提供丰富的钙、磷,促进新骨的生长。除了这二者,磷酸钙生物陶瓷还包括可降解、吸收的锌-钙-磷氧化物陶瓷(ZCAP)、硫酸锌-磷酸钙陶瓷(ZSCAP)、磷酸铝钙陶瓷(ALCAP)和铁-钙-磷氧化物陶瓷(FECAP)等。A、组成和物化性能概述磷酸钙化合物的分类通常是按照具有的Ca/P原子比(钙磷比)进行,磷酸钙陶瓷是具有不同钙磷比磷酸钙陶瓷的总称。(磷酸钙按照Ca/P进行分类) 钙磷比 分子式 名称 简写 2.0 Ca4O(PO4)2 磷酸四钙 TTCP 1.67 Ca10(PO4)6(OH)2 羟基磷灰石 HA <1.67 Ca10-XH2X(PO4)6(OH)2 无定形磷酸钙 ACP 1.5 Ca3(PO4)2 磷酸三钙 TCP 1.33 Ca8H2(PO4)6.5H2O 磷酸八钙 OCP 1.0 CaHPO4.2H2O 二水磷酸氢钙 DCPD 1.0 CaHPO4 磷酸氢钙 DCP 1.0 Ca2P2O7 焦磷酸钙 CPP 1.0 CaP2O7.2H2O 二水磷酸钙 CPPD 0.7 Ca7(P5O16)2 磷酸七钙 HCP 0.67 Ca4H2P6O20 磷酸二氢四钙 TDHP 0.5 Ca(H2PO4)2.H2O 一水磷酸一钙 MCPM 0.5 Ca(PO3)2 偏磷酸钙 CMP 各种磷酸钙化合物高温下的结构与其钙磷比、温度、加热速度、气氛等因素有关;合成工艺的不同,也将影响其热特性(主要是其热稳定性)。各种磷酸钙化合物均具有一定的溶解性,磷酸氢钙、磷酸三钙和羟基磷灰石的溶度积如下:磷酸氢钙 pK=6.57磷酸三钙 pK=28.7羟基磷灰石 pK=57.8在水中磷酸氢钙的溶解能力最强,磷酸三钙次之,羟基磷灰石最稳定。因此,由磷酸氢钙及磷酸三钙制作的骨修复材料可以逐渐溶解,同时沉淀结晶为羟基磷灰石。B、羟基磷灰石陶瓷羟基磷灰石( hydroxyapatite,简称HA或HAP)组成与天然磷灰石矿物相近,是脊椎动物骨和齿的主要无机成分,结构亦非常接近,呈片状微晶状态。它作为骨代替物被用于骨移植。HA 有良好的生物相容性,植入体内不仅安全,无毒,还能传导骨生长。HA能使骨细胞附着在其表面, 随着新骨的生长,这个连接地带逐渐萎缩,并且HA通过晶体外层成为骨的一部分, 新骨可以从HA 植入体与原骨结合处沿着植入体表面或内部贯通性孔隙攀附生长。HA生物活性陶瓷是典型生物活性陶瓷,植入体内后能与组织在界面上形成化学键性结合。HA生物活性陶瓷和骨键接的机制不像生物玻璃那样需要通过在其表面形成富硅层,进而形成中间键接带以实现键合。致密羟基磷灰石陶瓷植入骨内后,由成骨细胞在其表面直接分化形成骨基质,产生一个宽为3~ 5 μm 的无定形电子密度带,胶原纤维束长入此区域和细胞之间,骨盐结晶在这个无定形带中发生。随着矿化成熟,无定形带缩小至0.05~ 0.2μm,羟基磷灰石植入体和骨的键合就是通过这个很窄的键接带实现的。经HA表面涂层处理的人工关节植入体内后,周围骨组织能很快直接沉积在羟基磷灰石表面,并与羟基磷灰石的钙、磷离子形成化学键,结合紧密,中间无纤维膜。HA 生物陶瓷植入肌肉或韧带等软组织或被一薄层结缔组织紧密包绕,无炎性细胞和微毛细管存在。作穿皮种植时,能在颈部和上皮组织密合,无炎症和感染发生。因此,HA生物活性陶瓷也适用于穿皮器件及软组织修复。HA陶瓷的制备一般可从分解动物的骨组织和人工合成获得,后者又分湿法和固相反应。最常用的方法是反应共沉淀法,它是将钙质原料和磷酸盐或磷酸,分别配制成合适浓度的液体,按钙磷原子比1.67,在pH > 7的环境下,控制适当温度进行反应合成,沉淀物经脱水干燥,高温煅烧得浅绿色合成晶体的团聚体,纯度达99.5% 以上,其化学组成主要为:CaO,P2O5。单一的HA成形和烧结性能较差,易变形和开裂。加入ZrO2+ Y2O3,ZnO和含镁盐的CPM 复合试剂等,可使具有良好生物相容性和足够机械强度,且无毒。连续热等静压烧结是制备理论密度的高致密HA 的有效方法。这种材料主要用作生物硬组织的修复和替换材料, 如口腔种植,牙槽脊增高,牙周袋填补,额面骨缺损修复,耳小骨替换等。由于机械强度不够高,只限用于以上不承受大载荷部位。由于自然骨优异的强度和韧性,人们想到通过仿生的途径来提高生物陶瓷修复骨修复材料的性能。Landis等人提出的骨微结构的模型已经广为人们所引用,尽管其中尚有一些细节没有实验验证。在磷酸钙化合物中,研究得最多的是磷灰石,其化学通式为:M10(XO4)6Z2。M --为二价金属离子,XO4--为五价阴离子,Z --为一价阴离子。下面将详细论述羟基磷灰石陶瓷。羟基磷灰石陶瓷的制造工艺:a、固相反应法这种方法与普通陶瓷的制造方法基本相同,根据配方将原料磨细混合,在高温下进行合成:1000-1300℃6CaHPO4·2H2O+4CaCO3 Ca10(PO4)6(OH)2+4CO2+4H2Ob、水热反应法将CaHPO4与CaCO3按6:4摩尔比进行配料,然后进行24h湿法球磨。将球磨好的浆料倒入容器中,加入足够的蒸馏水,在80-100℃恒温情况下进行搅拌,反应完毕后,放置沉淀得到白色的羟基磷灰石沉淀物,其反应式如下:6CaHPO4+4CaCO3═Ca10(PO4)6(OH)2+4CO2+2H2Oc、沉淀反应法此法用Ca(NO3)2与(NH4)2HPO4进行反应,得到白色的羟基磷灰石沉淀。其反应如下:10Ca(NO3)2+6(NH4)2HPO4+8NH3·H2O+H2O=Ca10(PO4)6(OH)2+20NH4NO3+7H2O此外,还有其它方法可制成羟基磷灰石。羟基磷灰石陶瓷的性能应用合成的羟基磷灰石的结构与生物骨组织相似,因此合成羟基磷灰石具有与生物体硬组织相同的性能。如Ca:P≈1.67,密度≈3.14,机械强度大于10MPa,对生物无毒,无刺激,生物相溶性好,不被吸收,能诱发新有的生长。国内外已将羟基磷灰石用牙槽、骨缺损、脑外科手术的修补、填充等,用于制造耳听骨链和整形整容的材料。此外,它还可以制成人工骨核治疗骨结核。3.磷酸三钙目前广泛应用的生物降解陶瓷β-磷酸三钙( 简称β-TCP),属三方晶系,钙磷原子比为1.5,是磷酸钙的一种高温相。β-TCP的最大优势就是生物相容性好,植入机体后与骨直接融合,无任何局部炎性反应及全身毒副作用。钙磷比在决定体内溶解性和吸收趋势上起着重要作用,所以和HA相比TCP更易于在体内溶解,其溶解度约比HA 高10~ 20倍。常用的β-TCP植入体内可逐渐降解,降解速率可因其表面构造,结晶构型,含孔率及植入动物的不同而异,其强度常随降解而减弱。已证实改变孔径和材料纯度能减缓降解速度,提高生物强度。与其他陶瓷相比,β-TCP陶瓷更类似于人骨和天然牙的性质和结构在生物体内,羟基磷灰石的溶解是无害的,并且依靠从体液中补充钙和磷酸根离子等形成新骨,可在骨骼接合界面产生分解、吸收和析出等反应,实现牢固结合。β-TCP陶瓷的缺点是机械强度偏低,经不起力的冲击。将β-TCP与其他材料混合,制成双相或多相陶瓷,是提高其力学强度的方法之一。通常认为双相钙磷陶瓷( biphasic calc ium phosphate,BCP)的骨传导效应优于单一的HA 或TCP,可以结合HA的强度高和TCP生物降解性能好的优点,而且化学成分与骨相似。Bruder等将骨髓基质细胞( bone marrow stroma cells, BMS)接种于多孔BCP上,修复21mm 长的犬股骨节段性缺损获得成功。傅荣等发现, BCP上培养BMS能更好地表达成骨细胞特性,表明BCP更适用于骨组织工程的基质材料。
罗建明腰椎间盘突出症的主要症状为腰背腿痛,轻者可给患者生活及工作带来痛苦和困难,重者丧失生活和工作的能力。美国每年因腰腿痛而支付的医疗费和丧失劳动力的补偿费用达
陶瓷艺术在生活中存在的价值 在人类进化和发展的初期,中国的先民在从事渔、猎、农牧的同时,伴随着火在改造大自然的长期劳动中使用。便出现了中国古文化最具代表的劳
能。H66磷酸酯可以通过与铝表面反应形成一层保护膜,阻止氧气和水分接触铝表面,从而减缓铝材料的氧化速度和颜色变化。H66磷酸酯是一种常用的缓蚀剂。
探究水处理陶瓷膜制备与应用技术研究进展论文 膜技术被认为是21 世纪最优前景的水处理技术之一,膜材料技术、膜分离技术在近十几年得到很大发展,在水处理领域得到了广
陶瓷的由来2011-6-10 11:35:10来源: 瓷库中国 跟帖 0 条瓷库中国讯众所周知,中国是世界上历史悠久的文明古国之一,对人类社会的进步与发展做出了