• 回答数

    2

  • 浏览数

    301

QQ荔枝蜜
首页 > 期刊论文 > 人脸检测论文讲解

2个回答 默认排序
  • 默认排序
  • 按时间排序

馒头的馒头

已采纳

URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中,计算量主要为point-wise部分,增加depth-wise部分卷积核大小并不会明显增加成本。因此本文在depth-wise部分采用了5x5的卷积核,已获得更大的感受野,故此可以降低在层数上的需求。 此外,启发于mobilenetV2,本文设计了一个先升后降的double BlazeBlock。BlazeBlock适用于浅层,double BlazeBlock适用于深层。 16x16的anchor是一样的,但本文将8x8,4x4和2x2的2个anchor替换到8x8的6个anchor。此外强制限制人脸的长宽为1:1。 由于最后一层feature map较大(相对于ssd),导致预测结果会较多,在连续帧预测过程中,nms会变导致人脸框变得更加抖动。本文在原始边界框的回归参数估计变为其与重叠概率的加权平均。这基本没有带来预测时间上的消耗,但在提升了10%的性能。 效果好速度快的方法想不想要?

338 评论

独爱陌可可

姓名:张钰  学号:21011210154  学院:通信工程学院 【嵌牛导读】Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection论文阅读笔记 【嵌牛鼻子】Deepfake人脸检测方法,基于单中心损失监督的频率感知鉴别特征学习框架FDFL,将度量学习和自适应频率特征学习应用于人脸伪造检测,实现SOTA性能 【嵌牛提问】本文对于伪造人脸检测的优势在哪里体现 【嵌牛正文】 转自:

341 评论

相关问答

  • 人脸检测论文讲解

    URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中

    QQ荔枝蜜 2人参与回答 2023-12-09
  • 人脸检测论文s3fd

    URL: 论文pdf Google出品。亚毫秒级的移动端人脸检测算法。移动端可达200~1000+FPS速度。主要以下改进: 在深度可分离卷积中

    麦麦咔咔 1人参与回答 2023-12-11
  • 人脸检测进行签到的论文

    威尔考勤系统不仅限于基本的上下班考勤,对于企业的规范化管理更是至关重要。通过该系统的约束,可彻底改变人性的懒惰、上班拖沓等现象,让员工养成优秀的习惯,将更好的状

    哈韩哈哈规格化 4人参与回答 2023-12-09
  • 人脸检测论文

    计算机人脸识别是一个复杂和困难的问题,其原因是:(1)人脸是由复杂的三维曲面构成的可变形体,难以用数学描述;(2)所有人的人脸结构高度相似,而人脸的图像又受年龄

    wangqinglin0 2人参与回答 2023-12-06
  • 论文人脸检测

    姓名:张钰  学号:21011210154  学院:通信工程学院 【嵌牛导读】Frequency-aware Discriminative Feature

    蛋爹是石头 2人参与回答 2023-12-08