星无畏惧
目前,随着经济的快速发展,电力自动化在我国电力部门的应用也越来越广泛。下面是我为大家整理的电力自动化研究 毕业 论文,供大家参考。
摘要:电话振铃遥控技术的振铃遥控由提取来电显示号码、号码过滤器和振铃电压等模块组成,将具有相应权限的固定电话或移动电话设置在远端电话控制模块中,以保证电话号码具有相应的“身份证”。
关键词:电力自动化;通信技术
1在电力自动化中应用的优势
①通过在电力自动化系统中应用现代电力通信技术,能对电气自动化系统和电气设备的运行状况进行实时监控,当检测出故障后,能及时、准确地采取 措施 处理,迅速将故障排除,以保证电力自动化系统和电气设备的准确性、稳定性和安全性,尤其是现代电话通信技术具有的远程遥控、维护和诊断等手段,可有效推进电力自动化进程。②与常规的遥控方式相比,不需要设置专门的传输通道和线路,能利用用户电话交换网络、无线移动电话网络和有线固定电话网络等具有的便利性,以及电话通信网络不受遥控距离限制的条件,进行全天候、跨省市甚至是跨国的传送和控制。③利用移动手机、办公电话和住宅电话等,可对电力自动化系统和电气设备进行远程诊断,对于实现使用简单、安全可靠、造价低和降低维护费用具有非常重要的作用。
2在电力自动化中的应用分析
2.1移动手机短信通信技术的应用分析
随着现代通信技术的快速发展,航天技术和电话通信技术的结合,移动手机通信技术得到了快速发展和广泛应用。手机短信遥控电路技术是移动手机通信技术在电力自动化中的典型应用。以往,移动手机通过短信控制太空中的卫星和读取卫星上的传输数据,而装上蓝牙系统后,可采用无线方式接收和发射信号,且可有效控制卫星对电力自动化进行监控。其原理为:手机短信遥控电路技术集合了过滤器、短信内容提取和来电显示等模块,在移动电话控制模块内输入具有相应权限的手机号码,并编制遥控指令的短信内容后,仅具有相应资格的手机号码和正确的短信内容,才能接收短信,从而实现对电力自动化的遥控,否则,无法驱动遥控对象,将拒绝执行短信遥控命令。
2.2DTMF拨号遥控技术的应用分析
DTMF信号是一种稳定性、可靠性相对较高的实用通信技术,最早应用在程控电话交换系统中。DTMF信号包括以下2种:①高音组。包括1633Hz、1477Hz、1336Hz和1209Hz。②低音组。包括941Hz、852Hz、770Hz和697Hz。共8种频率信号,DTMF拨号遥控技术选用8选2的方式,分别在高音组和低音组中选择1个信号组成复合信号,进而形成16组特定编码的遥控信号系统。DTMF拨号遥控技术在电力自动化中的应用原理为:在远端电话控制模块中设置具有遥控权限的电话,并保证电话号码具有相应的身份遥控功能;当拨号验证通过时,通信系统能提供相应的提示,并进行相应的DTMF编码拨号,驱动相应的遥控对象动作;对于没有相应权限的电话,则不予以接听和拨号。DTMF拨号遥控指令编码方案主要包括9种:①第一路开关。遥控开启拨号编码为1*,遥控关闭拨号编码为1#。②第二路开关。遥控开启拨号编码为2*,遥控关闭拨号编码为2#。③第三路开关。遥控开启拨号编码为3*,遥控关闭拨号编码为3#。④第四路开关。遥控开启拨号编码为4*,遥控关闭拨号编码为4#。⑤第五路开关。遥控开启拨号编码为5*,遥控关闭拨号编码为5#。⑥第六路开关。遥控开启拨号编码为6*,遥控关闭拨号编码为6#。⑦第七路开关。遥控开启拨号编码为7*,遥控关闭拨号编码为7#。⑧第八路开关。遥控开启拨号编码为8*,遥控关闭拨号编码为8#。⑨第1~8路开关。遥控开启拨号编码为9*,遥控关闭拨号编码为9#。
2.3电话振铃遥控技术的应用分析
电话振铃遥控技术的振铃遥控由提取来电显示号码、号码过滤器和振铃电压等模块组成,将具有相应权限的固定电话或移动电话设置在远端电话控制模块中,以保证电话号码具有相应的“身份证”。电话振铃遥控技术的远端控制模块仅接收具有相应权限电话的振铃信号,并驱动相应的遥控电路,进而根据相应的状态信息回传给远端电话,振铃遥控信号的回传。此外,还需要采用不同的传感器连接,比如采用单片机电路,电路接口用下沿触发,触发电平自高而下,从5V至0V。对于没有权限的电话,则不予以接收振铃信号,进而也无法驱动遥控电路。
3结束语
总而言之,电力自动化系统必须紧随通信技术、计算机技术和其他IT技术的发展趋势。将现代电话通信技术应用在电力自动化系统中,能利用现代电话通信技术全面监控整个电力自动化系统,及时、准确地发现电力自动化系统中存在的故障,并迅速采取有针对性的措施解决,从而降低电力自动化系统故障处理的维护费用,降低维护人员的劳动强度,能获得较大的经济效益和社会效益。
摘要:电力自动化系统是目前在电子技术领域中应用先进技术最多的一个领域,电子信息技术与计算机技术的结合应用都会被很快的应用到电力系统当中去,这就意味着电子信息技术的发展,直接影响着电子系统自动化的发展。
关键词:信息技术;电力自动化系统
1电力自动化系统的概念
发电、运输电、变电、配电和用电组成了一个完成的电力系统。电力系统的一次设备通常是发电机、变压器、输电线路以及开关。为了使这些一次设备可以在工作期间稳定、安全的进行,也为了保证电力系统可以保证一定的经济效益,就需要对这些一次设备进行在线监控,调度控制已经保护措施。在电力系统中,保护装置、测控装置以及一些有关通讯的设备还有各级电网控制中心的计算机系统、变电站以及发电厂的计算机控制系统都统称为电力系统中的二次设备。这些二次设备基本囊括了整个电力系统自动化的主要内容。
2电子信息技术在电力自动化系统中的应用
在电力自动化系统中所运用到电子信息技术主要是电网调度自动化、变电站自动化、配网自动化这个三个大的方面。在这个三个大方面中最为重要的就是电网调度自动化的建设,计算机的网络控制中心以及服务器工作站是电网调度自动化的中心组成部分。
2.1发电厂自动化
目前我国的发电厂综合自动化系统中最常用的就是分散控制系统,同时分散控制系统也是较为普遍运用的一个系统,在开关柜中就可以直接安装分散控制系统的保护和测控装置,这两个装置与通过现场的总线连接起来之后再与后台通过通信管理机相连。分散控制系统一定要用多台计算机将这些回路分散控制起来,将各个控制站的部分参数通过通信方式与其他的控制CRT装置相连。当发电厂运用分散控制系统之后,发电厂得到了飞速的发展与变化,尤其是在计算机的硬件方面、软件方面以及通信技术方面都得到了分散控制系统的技术支持,从而使原本发电厂内部各自独立的控制功能经过分散与集中处理,都汇聚成了一个相互管理的整体。
2.2电网调度自动化
整个电力系统实现自动化的一个核心结构就是电网调度自动化。电网调度自动化电网调度自动化主要由电网调度中心的主计算机、网络服务器、打印机、调度范围内的发电厂、工作站以及变电站的设备组成。电网调度自动化系统可以很好的进行电能的分配,同时也是电网调度安全的一个有效的保障。它最主要的作用就是采集在监控过程中,电力生产过程中的实时数据,同时分析出电网运行所需的安全数据,估算电力系统的运行状态,将省级的发电系统控制起来以便使其满足人们的需求,保障电网能够正常的供电。在电力供送过程中还要保证电网工作的工作成本,尽可能的节省开支,在电网运行正常的情况下推迟投资周期,这样就可以确保电网在运用过程的经济收益。
2.3变电站自动化
为了提高变电站的监控功能与实现变电站的高效运行,同时节省人力操作时人工监控以及电话的步骤,从而出现了变电站的自动化。变电站中普遍使用计算机技术主要起源于当初使用的计算机智能设备。这个智能设备不但能对难以测量的信息进行分析与测量,还可以将其实现数字化,同时还可以通过计算机与计算机之间的存储功能时间数据的记录。变电站自动化主要的功能就是对继电实行保护措施以及对第二次设备进行重组以及优化。变电站自动化从一些特殊意义上来讲取代了变电站的二次设备,是电网调度自动化一个不可或缺的环节,同时也是电力生产的重要环节。
3电子信息技术在电力自动化系统中的发展前景
3.1电子信息设备与电力自动化设备的兼容问题
目前社会关注的问题就是电子信息设备与电子自动化设备的兼容问题。在电力系统中,微机型产品的使用越来越广泛,已经逐渐成为电力系统自动化产品的主流方向。但是由于电力系统非常复杂,电磁环境也非常不好,所以在电力系统中应用的微机型产品很容易就会受到这些影响,从而产生误动、拒动的情况。若是发生丢失或者 死机 的情况则会给电力系统造成非常大的经济损失。
3.2电子高新技术在电力系统自动化的应用
红外成像技术与视频技术、图像信息技术在电力系统中得到了广泛的应用。目前图像信息技术在电力系统自动化中的应用越来越重要,同时对于分析和理解的技术能力的要求也越来越高,所以一些场合就必须借用电子视觉技术来替代人工的计算来进行图像理解。在电力自动化系统可以确保安全性的前提下,可以将电子视觉技术应用到图像信息的处理与分析中,可以将电力系统的图像信息进行智能化处理。另外专家系统、模糊技术等应用在电力自动化系统中也得到了应用。
4结语
电力自动化系统是目前在电子技术领域中应用先进技术最多的一个领域,电子信息技术与计算机技术的结合应用都会被很快的应用到电力系统当中去,这就意味着电子信息技术的发展,直接影响着电子系统自动化的发展。
电力自动化研究毕业论文相关 文章 :
1. 电气工程及其自动化本科毕业论文
2. 电力系统自动化论文范文
4. 电气自动化毕业论文范文
5. 电气工程及其自动化专科毕业论文
6. 有关电气工程及其自动化毕业论文
飘零雨迹
对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得。
R-CNN的意思就是Region based,主要思路就是根据一张图像,提取多个region,再将每个Region输入CNN来进行特征的提取。因此RCNN就可以分为 Region proposals , Feature extraction 两个主要部分,提取的特征就可以输入任意一个分类器来进行分类。 模型的流程图如下:
在训练的时候,首先使用的是已经训练好的CNN网络作为特征提取器,但是由于预训练是在分类数据集上,因此在应用到检测之前要做finetune。也就是说,为了将用ImageNet数据集训练的网络应用到新的任务(检测),新的数据集(region)上,作者将原来的CNN最后的1000类的fc层,更改为了 层, 代表待检测的物体的类别数。然后,对于所有的region,如果它和ground truth的重叠率大于0.5,就认为是正类。 对于分类器的训练,作者发现选择多大的IoU来区分正类和负类非常关键。并且,对于每一类,都会训练一个分类器。
框的回归非常重要,在对每一个region proposal使用分类器进行打分评价之后,作者使用一个回归器来预测一个新的框作为结果。这个回归器使用的特征是从CNN中提取的特征。回归器的训练中,输入是 region proposal 的 和ground truth的 ,目标是学习一种变换,使得region proposal通过该变换能够接近ground truth。同时,希望这种变换拥有尺度不变性,也就是说尺度变化的话,变换不会改变。 如下图所示,每一个regressor会学习一组参数,特征输入是pool 5的特征输出,拟合的目标是 。
Fast-RCNN 主要解决的问题是在RCNN中对于每一个region proposal都进行特征提取,会产生非常多的冗余计算,因此可以先对一张图像进行特征提取,再根据region proposal在相应的特征上进行划分得到对应region的特征(映射关系)。 这样便可以实现共享计算提高速度,但是与SPPnets不同,SPPnets在一副图像得到对应的特征后,从这张图像的特征上proposal对应的部分,采用空间金字塔池化,如下图:
RoI pooling的方法很简单,类似于空间金字塔pooling,它将proposal部分对应卷积层输出的特征(称之为RoI,因为用于做pooling的特征是 region of interest,也就是我们感兴趣的区域)划分成 块,然后对每一块求最大值,最终得到了一个 的特征图。可以看出,它只是空间金字塔pooling的一部分。 但是SPP-nets的空间金字塔也是可以求导的,那么它到底不好在哪里呢?因为当每一个RoI都可能来源于不同的图像的时候(R-CNN和SPPnets的训练策略是从一个batch的不同图像中,分别挑选一个proposal region),SPPNets的训练非常地低效,这种低效来源于在SPPnets的训练中,每个RoI的感受野都非常地大,很可能对应了原图的整个图像,因此,得到的特征也几乎对应了整张图像,所以输入的图像也就很大。 为了提高效率,Fast-RCNN首先选取 个图像,再从每个图像上选择 个RoI,这样的效率就比从每个图像提取一个RoI提高了 倍。
为了将分类和框回归结合起来,作者采用了多任务的loss,来进行联合的训练。具体来说就是将分类的loss和框回归的loss结合起来。网络的设计上非常直接,就是将RoI得到的特征接几个FC层后,分别接不同的输出层。对应于分类部分,特征会接一个softmax输出,用于分类,对于框回归部分,会接一个输出4维特征的输出层,然后分别计算loss,用于反向传播。loss的公式如下:
回归的target可以参考前面的R-CNN部分。
notes
为什么比fast还fast呢?主要原因是在这篇论文中提出了一个新的层:RPN(region proposal networks)用于替代之前的selective search。这个层还可以在GPU上运算来提高速度。 RPN的目的:
为了能够进行region proposal,作者使用了一个小的网络,在基础的卷积层输出的特征上进行滑动,这个网络输入大小为 ,输入后会映射(用 的卷积)为一个固定长度的特征向量,然后接两个并联的fc层(用 的卷积层代替),这两个fc层,一个为box-regressoin,一个为box-classification。如下图:
在每一个滑动窗口(可以参考 ),为了考虑到尽可能多的框的情况,作者设计了anchors来作为region proposal。anchors就是对于每一个滑动窗口的中心位置,在该位置对应的原图位置的基础上,按照不同的尺度,长宽比例框出 个不同的区域。然后根据这些anchors对应的原始图像位置以及区域,和ground truth,就可以给每一个滑动窗口的每一个anchor进行标记,也就是赋予label,满足一定条件标记为正类(比如和ground truth重叠大于一个值),一定条件为负类。对于正类,就可以根据ground truth和该anchor对应的原图的区域之间的变换关系(参考前面的R-CNN的框回归),得到回归器中的目标,用于训练。也就是论文中的loss function部分:
自然地,也就要求RPN的两个并联的FC层一个输出2k个值用于表示这k个anchor对应的区域的正类,负类的概率,另一个输出4k个值,用于表示框回归的变换的预测值。
对于整个网络的训练,作者采用了一种叫做 4-step Alternating Training 的方法。具体可以参考论文。
与之前的检测任务稍有不同,mask r-cnn的任务是做instance segmentation。因此,它需要对每一个像素点进行分类。 与Faster R-CNN不同,Faster R-CNN对每一个候选框产生两个输出,一个是类别,一个是bounding box的offset。Mask R-CNN新增加了一个输出,作为物体的mask。这个mask类似于ps中的蒙版。
与Faster R-CNN类似的是,Mask R-CNN同样采用RPN来进行Region Proposal。但是在之后,对于每一个RoI,mask r-cnn还输出了一个二值化的mask。
不像类别,框回归,输出都可以是一个向量,mask必须保持一定的空间信息。因此,作者采用FCN来从每个RoI中预测一个 的mask。
由于属于像素级别的预测问题,就需要RoI能够在进行特征提取的时候保持住空间信息,至少在像素级别上能够对应起来。因此,传统的取最大值的方法就显得不合适。 RoI Pooling,经历了两个量化的过程: 第一个:从roi proposal到feature map的映射过程。 第二个:从feature map划分成7*7的bin,每个bin使用max pooling。
为此,作者使用了RoIAlign。如下图
为了避免上面提到的量化过程
可以参考
作者使用ResNet作为基础的特征提取的网络。 对于预测类别,回归框,mask的网络使用如下图结构:
整体看完这几篇大佬的论文,虽说没有弄清楚每一个实现细节,但是大体上了解了算法的思路。可以看出,出发点都源于深度神经网络在特征提取上的卓越能力,因此一众大神试图将这种能力应用在检测问题中。从R-CNN中简单地用于特征提取,到为了提高速度减少计算的Fast R-CNN,再到为了将region proposal集成进入整个模型中,并且利用GPU加速的RPN,也就是Faster R-CNN。再到为了应用于instance segmentation任务中,设计的RoIAlign和mask。包括bounding box regression,pooling层的设计,训练方法的选择,loss的设计等等细节,无一不体现了大师们的思考和创造力。 可能在我们这些“拿来”者的眼中,这些方法都显得“理所应当”和巧妙,好用,但是,它们背后隐藏的选择和这些选择的思考却更值得我们学习。 以及,对待每一个问题,如何设计出合理的解决方案,以及方案的效率,通用性,更是应该我们努力的方向。
在建筑工程中,精确的工程测量对于工程建设来讲是不可忽视的部分,而受到内外因素的作用,工程测量会出现精度不足,这会制约工程测量的发展,并直接对工程建设造成影响。下
Word文档中有论文查重功能点开就好了首先点开会员专享~论文查重~普通论文查重
汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。下面是我为大家精心推荐的汽车检测技术论文,希望能够对您有所帮助。 国内汽车检测
你好,希望我们可以帮你。相关资料在知网,万维网能查到资料。论文不会写,最关键的是要把心态放正,一步步来,多看点范文,看看别人怎么写的,食品安全与检测方面论文是我
钢结构无损检测 摘要:通过对应用于建筑钢结构行业中的几种常规无损检测方法的简述,归纳了被检对象所适用的不同无 损检测方法。为广大工程技术人员和管理人员了解、学习