• 回答数

    3

  • 浏览数

    103

金色年华119
首页 > 期刊论文 > 有关电磁波的论文范文

3个回答 默认排序
  • 默认排序
  • 按时间排序

远离的兔子

已采纳

深井电磁波随钻通信原理介绍 一、电磁波无线随钻仪发展概况 随着定向井、水平井、分支井及大位移水平井等特殊工艺钻井技术的迅猛发展及老油区复杂区块和薄油层开发力度的加大,传统的泥浆脉冲传输方式的不足之处越来越突出。泥浆脉冲传输方式技术虽然应用广泛,但数据传输速率较慢,信息量较小,传输信号易受钻井液的质量和泵的不均匀性影响.要求钻井液的含砂量≤l%,含气量≤7%.当使用可压缩性钻井介质时,会导致压力波信号变形,所以在欠平衡钻井条件下适用性很差。 电磁波传输方式是将反映井底轨迹方向,地层特性参数的低频电磁波信号传送到地面.钻井过程中,钻杆,裸露的井壁和它们之间的空间以及周围的地层共同组成了电磁波传输通道,电磁波从发射源向周围的无限空间辐射,由固定在钻机旁的地表天线接收.它不需要泥浆作为信号载体,对钻井液的质量和钻探泵的不均匀性要求更低,所以数据传输能力较强.其优点是不需要机械接收装置,系统稳定性好,对于欠平衡钻井工艺有更好的适应性。它的缺点是:背景噪声对信号的影响较大,而且随着岩层对信号的吸收和大地电阻的变化导致信号的衰减,导致发送电路复杂程度提高。目前,这些问题已经都得到了较好的解决。背景噪声大的问题通过比较先进的可编程滤波的方法,使背景噪声得到了彻底的抑制。信号衰减大的问题,是采用自动阻抗适应系统解决的。电磁波法可追溯到20世纪40年代初期,最早应用于煤矿安全和军事方面.俄罗斯是较早开展电磁波随钻测量系统研制的国家之一,他们把MWD系统称为电磁波通道井底遥测系统. 国外已经成功利用电磁波MWD技术传输井下测量信号随钻仪器得到广泛利用。国内也进行了大胆尝试,利用MWD技术把探管传感器测出的井斜、方位、重力和、重力工具面角、工具面角、温度、电池电压以及地层参数实时的用电磁波发送到地面。并在遥控遥测及双向传输方面有了突破性进展,由于采用了双向电磁波无线传输技术,大大的方便了对井下仪器的操控,可对井下设备进行遥控,也可方便地对电磁波信道进行自检,对电源实施遥控管理,有效地提高了电源利用率。二、电磁波无线随钻仪的工作原理电磁波无线随钻仪有两种工作模式,即单向工作模式和双向工作模式。(1)单向工作模式,把地下(钻头部分)传感器采集到的数据,间歇地或者连续地发送到地面,由地面的仪 器接收解码还原出传感器测量出的各种动态数据。送给计算机串口并进行分析显示和打印。地下部分由电源系统、无线发送系统和天线系统、传感器数据采集系统、阻抗自动适应系统组成。电源系统由水轮发电机和充电电池组成,利用水的压力带动发电机进行发电,电机工作转速800~3000 r/ min时,输出±36V至±48V的直流电压。对发电机的要求:功率不得小于80W,充电电池放电电流不得小于3A。数据发送模块有三种调制方式:一是PWM脉冲宽度调制方式;二是窄脉冲调制方式;这种方式很有发展前景,使电磁能量瞬时超能量发送,最大的优点是节省电能,可以省去发电机。三是传统的正弦波传输调制方式,采用这种方式,接收电路比较简单,抗干扰能力较好。无论是那种调制方式,只要传输距离远,误码率最低才是最终目的。天线形式为偶极子电流方式。通信距离是与发送天线所处的深度、工作频率、天线周围的电阻率有密切关系的。天线的设计主要在于它的坚固程度,要求扭矩达到金属钻杆的90%以上。绝缘程度要高,要求在空气中电路值大于2MΩ。交流阻抗理论设计大于50Ω。(2)双向电磁波传输,是半双工通信方式,地面和地下都有电磁波收发电路,地面的发射部分有着比地下发射部分不受体积限制的优点,功率可以做的很大。三、电磁波收发模块简介模块简介:该模块主要用于油田电磁波无线测斜仪,进行地下与地面的无线双向数据通信,以达到深井遥控、遥测之目的。电路采用单片机波形合成法进行调制与解调,在极低频状态下,传输速率快,误码率低,可靠性高,传输距离远,电源采用优化管理技术节电优势得到了充分发挥。同时采用了阻抗自动适应系统,使其在不同深度和不同环境下,发送功率都能保持最佳状态。在温度适应方面,内部采用里了高导热散热器,外部采用温度隔离方式,以适应井下不同温度的工作环境的需要。主要指标:模块外形尺寸:直径:32mm,长度:520mm。工作电压:DC±36V。最大发射功率:120W。待机电流:10mA。数据接口为232串口模式。传输速率:每秒5个16进制字符。传输深度:(试验深度)5Km。

355 评论

漫野之弥

对地球磁场起源的探索,早在公元1600年前后就已经开始了,其主要假说有永磁体说、电流说、压电效应说、温差电效应说、发电机理论等,其中永磁体说被实验否定,电流说由于电阻问题而被人们放弃,压电效应说由于现实中的压电效应本身没有涉及温度的影响,其实验值都是在常温下获得的,据此推出的磁场强度微不足道而被人们抛弃,发电机理论由于不能说明南北磁极翻转而受到质疑。那么,地球的磁场是如何产生的呢? 只有存在运动电荷或电流才能产生磁场,因此,地球磁场应该与地球内部的带电结构有关。但是,地球磁场的南北磁极还存在着一种小范围的低速运动,这种运动表明地球磁场不仅仅是地球内部的带电部分作旋转运动产生的,在地球内部还应该存在着一个相对稳定的内部电流。那么,地球内部为什么会长期稳定地带电、并存在一个相对稳定的内部电流呢? 据分析,地球内部地幔的半径约为2900公里,温度大约在1500~3000℃之间,压力为50万~150万个大气压,地核的半径约为3500公里,温度在5540℃左右,压力大约为350万个大气压。在通常情况下,构成宏观物体的每个原子所带的正电量和负电量是等值的,这样,经中和后的宏观物体就不带电了。但由于地核及地幔下部物质受到的压力作用较大,温度也较高,笔者认为,一个在常温低压状态下被公认的常识,宏观物体不能自发地稳定带电的观点将不再成立,即在天体内部的高压状态下,物质都是带电量不等的离子体,高温等离子体、低温等离子体的“相等”是不可能的。 磁流体发电的实验表明,在上千度以上的温度状态下,物质中少量原子中的电子可以克服原子核引力的束缚而变成自由电子,同时原子则因失去电子变成带正电的离子,这种状态称之为低温等离子状态。地核的温度在5540℃左右,如此高的温度势必会使地核中少量原子的电子克服原子核引力的束缚,变成自由电子,同时令构成地核的少量原子失去电子变成带正电的离子,在压力不是很高的状态下,失去电子的原子及克服原子核引力束缚的自由电子通常以等离子状态存在,原子核的引力作用及热运动使自由电子不能长期与失去电子的原子脱离开来。但是,当物质是在超高压作用下以密度极大的状态存在时,克服原子核引力束缚的电子,将在地核压力产生的巨大挤压力作用下,趋于飘浮到地核与地幔的交界处,造成克服原子核引力束缚的自由电子与失去电子的原子长期脱离开来,笔者将这种现象称之为热压电效应。由于地核内部的原子总量非常巨大,可以产生大量的被分离电荷。 原子最外层电子云的分布几率,会受到邻近原子中电子的静电排斥作用,由于地核中物质所受压力作用较高,物质密度较大,受到邻近原子中电子的静电排斥作用也相应较强,原子的最外层电子云会部分地失去围绕原子核运动的空间,使原子最外层电子的分布向原子外扩张。与常压状态下金属中可自由运动的自由电子不同,在超高压压力作用下失去围绕原子核运动空间的电子,也不能在地核中其它邻近原子之间自由运动。由于整个地核的压力都较高,因此,地核中少量原子最外层电子云的分布几率将一直延伸到压力较低的地核与地幔交界处甚至地幔中上部。地核中部分以自由电子状态存在的电子在压力作用下,趋于朝压力较低的地核与地幔交界面附近甚至地幔中上部分布,使宏观的地核处于带正电状态,地核与地幔的交界面附近以及地幔中上部处于带负电状态,即发生热压电效应。 原子的基态通常处于较深的负能级状态,较弱的压力作用不能将其激发或电离,但较强的压力作用会以一种令原子最外层电子云运动空间减少的形式,改变原子最外层电子云的分布几率。由于更低的能态已经被其它电子占据,原子最外层电子云只能朝外扩张,使原子最外层电子云的分布几率可以延伸到地核与地幔的交界处甚至地幔中上部,并在地核与地幔的交界处外部形成一个电子壳层。 天体内部的热压电效应主要是将与原子分离的电子挤压出天体内部的高压区,如果电子没有与原子分离,则很难被大量地挤压出天体内部的高压区。 将地核视为一个巨大的带正电荷的原子核,将地核与地幔的交界处外部覆盖整个地核的带负电荷的电子壳层视为一个巨大的带负电荷的电子气海洋,地核所带的正电量和地核周围电子壳层所带的负电量是等值的,这样,经中和后的宏观地球外表就不带电了。电子气的比重极小,在超高压与高温共同作用产生的强大浮力作用下,地核中以离子状态存在的电子克服原子核的库仑作用,趋于飘浮到地核外部,并在浮力作用与地核中所有失去电子的原子的库仑作用相平衡的位置,也即在地核与地幔的交界面附近,形成一个覆盖地核的电子壳层。将地核与电子壳层视为一个巨大的“原子”,地球磁场的产生就与这个巨大 “原子”的存在有关。 必须强调,由于电子具有波动性,每个飘浮到地核外部的电子的分布位置并不是固定不变的,而是有一定的范围,其飘浮的范围甚至有可能一直延伸到地球表面上来,也就是说地球的表面有可能带有负电荷,在我们的周围也应该存在一个可以测量到的电势梯度,但不知为何没有被测量到。 由于电子气海洋的存在,产生了地核与地幔的交界面层。美国的科学家通过实验观察发现,地核的自转与地壳和地幔并不同步。地核与地幔之间接触面积非常巨大,按照“常识”,充满液态岩浆的地核与地幔之间接触面上产生的摩擦力应非常巨大,足以使质量巨大的地核与地幔之间的相对运动在几小时或几分钟的“瞬间”趋于同步,并将其相对运动所具有的动能转化为热能和冲击波,同时在地球内部产生巨大的震动,由于地壳的厚度只有微不足道的几十公里,地核与地幔所具有的动能足以冲破地壳,产生直冲大气层的岩浆巨浪,可地核的旋转运动竟然能在上亿年的时间里与地幔不同步,这是为什么呢? 众所周知,当原子相互作用形成离子或分子时,有获得特殊稳定构型的倾向,其中最重要的是惰性气体结构。在通常情况下,非惰性气体结构的元素只能以原子结合成分子来形成惰性气体结构,但在大量电子以自由状态存在的电子壳层中,原子会趋于直接与电子结合成具有惰性气体结构的带电粒子,以使系统处于相对较低能量状态。原子直接与以自由状态存在的电子结合成具有惰性气体结构的带电粒子,造成电子壳层中大量原子处于特殊稳定构型的负离子状态。电子壳层中大量电子的静电屏蔽作用,还能令电子壳层中原子之间失去相互作用,不能相互结合生成分子。 根据量子力学理论,存在于具有惰性气体结构原子轨道上的电子的排列不是任意的,电子将趋于由自旋平行且反向的自由电子双双组成电子对。具有惰性气体结构的金属阴离子物质在常温常压下是不存在的,但由于地核与地幔交界面上电子壳层的存在,令地核与地幔接触面上充满了具有惰性气体结构的铁、镍等负离子物质。带有电子的铁、镍等元素的性质非常特殊,由于元素之间没有相互作用,相对运动时产生的摩擦力作用极小,具有惰性气体结构的铁、镍等负离子物质就如同是具有超流动性的液氦。在地核与地幔的接触面上充满了具有超流动性润滑剂的状态下,地核的旋转运动即使与地幔不同步,地核与地幔在“接触面”上产生的摩擦力也是微不足道的。由于具有惰性气体结构的负离子物质具有超流动性,使电子壳层底部的物质不随地幔或地核作同步旋转运动。 有证据表明,地壳及地幔的旋转速度在多种因素影响下会发生变化,但影响地壳及地幔旋转速度的各种因素,有些对地核的旋转运动并不产生同样影响。此外,由于太阳和月亮的引力作用,以及地核内部的铁核、钴核中的稳定同质异能素在高温高压作用下发生同质异能素转化核反应时释放核能的不均匀性,造成覆盖地核表面的电子壳层不同区域存在较大温差,使电子壳层底部的负离子物质发生大规模定向运动,尽管巨大的负离子物质风暴的摩擦力对地核与地幔都微不足道,但由于电子气海洋中的铁、镍等金属负离子物质风暴,造成地核与地幔都不断地有大量物质与电子壳层底部中物质进行交换,并给地核与地幔的旋转运动带来不同影响,经过几十亿年的漫长岁月,就会造成地幔与地核之间的旋转运动不同步。因此,地幔与地核的旋转运动不同步,自然也就不奇怪了。 不难想象,太阳和月亮的引力作用,以及地核内部的铁核、钴核中的稳定同质异能素在高温高压作用下发生同质异能素转化核反应时释放核能的不均匀性,会造成电子壳层中具有超流动性物质的密度及分布发生巨大波动,由此产生的在地核与地幔之间的电子壳层底部中负离子物质大风暴会非常强烈,强烈的负离子物质大风暴又会产生强大的交变电磁场。 将电子壳层中的多余电子视为超自由电子,由于有大量超自由电子和自由电子的存在,按金属导电的经典电子说,电子壳层的电阻由于电子壳层中的原子与超自由电子之间不存在固有的库仑作用联结。当超自由电子和自由电子在外电场的作用下作定向运动时,超自由电子不会通过电磁相互作用将定向运动所具有的能量传递给电子壳层中的原子物质,构成电子壳层的原子物质的无规则热运动也不会影响到超自由电子在外电场的作用下的定向运动,因此,地球内部地核与地幔之间的电子壳层是一个没有电阻的高温超导地层。 根据量子力学理论,电子具有波动性,具有波动性的超自由电子在电子壳层中传播时,由于波长与电子壳层中物质自由电子相差极大,其波长要比电子壳层中物质自由电子大很多,传播时不会受到电子壳层中原子物质散射(或偏析),使超自由电子在电子壳层中的传播不会受到阻碍,因此,电子壳层中的“固有”电阻对波长与其自身的自由电子相差极大的超自由电子的影响是微不足道的。 根据量子力学理论,存在于具有惰性气体结构原子轨道上的电子的排列不是任意的,超自由电子将趋于由自旋平行且反向的电子双双组成电子对。将地核与电子壳层视为一个巨大的“原子”,电子壳层中大量的超自由电子会双双组成大量的电子对,这种电子对组态可使系统的能量降低,形成稳定的结合。于是,在电子壳层中大量的超自由电子将趋于形成电子对组态。由于电子对的惯性质量极小,其热运动不会与电子壳层中的原子产生热能交换,换句话说,超自由电子形成的电子对的热运动不受电子壳层中原子热运动的影响,故利用电子壳层中大量的超自由电子和/或超自由电子组成的超自由电子对来传输电磁场能量,则电子壳层的电阻率将与电子壳层中超自由电子组成的电子对的密度成反比。由于地核的体积极大,温度和压力又相对较高,热压电效应造成电子气海洋中超自由电子组成的超自由电子对的密度极大,电子壳层的导电率极高,堪称是高温超导地层,使得存在于其中的电流就如同存在于超导线圈中的电流那用,可以永不消失地在其中流动,也使得在地球上形成了一个磁场强度较稳定的南北磁极。如上所述,太阳和月亮的引力作用,以及地核内部释放核能的不均匀性,会造成电子壳层中具有超流动性物质的密度及分布发生巨大波动,由此产生的在地核与地幔之间的负离子物质大风暴会非常强烈,强烈的负离子物质大风暴又会产生强大的交变电磁场,使得存在于电子壳层的电流分布发生变化,造成地球磁场的南北磁极发生一种低速运动,这种低速运动在历史上曾经多次造成地球的南北磁极翻转。 天文观测表明,太阳和木星具有很强的磁场,其中木星的磁场强度大约是地球磁场的20---40倍。太阳和木星上的元素主要是氢和少量的氦、氧等这类较轻的元素,其内部并没有大量的铁磁质元素,而地球上则含有大量的铁、钴、镍等铁磁质元素,那么,太阳和木星的磁场为何比地球还强呢? 众所周知,地核的半径约为3500公里,温度在5540℃左右,压力大约为350万个大气压。而木星内部的温度约为30000℃左右,压力也比地球内部高的多,太阳内部的压力、温度还要更高。热压电效应可在太阳和木星内部产生更加广阔的电子壳层,太阳和木星内部电子壳层的带电量也比地球内部电子壳层的带电量大的多,再加上木星的自转速度较快,其自转一周的时间为9小时56分30秒,木星内部电子壳层的运动的线速度也远高于地球内部的电子壳层,其磁场强度自然也要比地球高的多。 事实上,如果天体的内部温度超过铁、钴、镍的居里点,则天体的磁场强度与其内部是否含有铁、钴、镍等铁磁质元素无关,因为在居里点温度以上,它们的铁磁质性质会发生突变,这时它们已经转化为顺磁质元素了。 正是由于太阳、木星内部的压力、温度远高于地球,因此,太阳、木星上的磁场要比地球磁场强的多。而火星、水星的磁场比地球磁场弱,则说明火星、水星内部的压力、温度远低于地球。 此外,由于中微子具有磁矩,天体的磁场还可能与其引力作用俘获的冷中微子数量的多少有关。众所周知,在宇宙中存在着大量的中微子,其中部分中微子的运动速度相对较低,有可能被天体的万有引力作用俘获,堆积在天体的内部。对于引力较强的天体,其内部被俘获的冷中微子数量会较多,如果冷中微子在弱相互作用下,在天体的内部组合成结构较稳定的暗物质,因其不受“明”物质热运动的影响,其可在天体的内部按照一定顺序方向排列,则也会产生一定强度的磁场。

117 评论

润风水尚

你的问题太广泛 是什么论文 小论文?毕业论文? 如果是小论文可以到有数据库的院校下载,如果是毕业论文,建议还是自己好好写写,多看小论文,尤其是SCI/EI 收录的文章,多看看,多模仿,相信你会写出优秀的论文的

131 评论

相关问答

  • 电磁波对烫伤的治疗研究论文

    电磁波为横波,可用于探测、定位、通信等等。电磁波谱是无线电波,微波,红外线,可见光,紫外线,伦琴射线(X射线),伽玛射线.首先,无线电波用于通信等,微波用于微波

    虾虾霸霸kat 3人参与回答 2023-12-12
  • 关于电磁学论文范文资料

    自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法

    母婴家居学院 4人参与回答 2023-12-06
  • 电磁学与电磁波论文题目

    三 电磁波在医疗上的应用在科学上,称超过人体承受或仪器设备容许的电磁辐射为电磁污染。电磁辐射分二大类,一类是天然电磁辐射,如雷电、火山喷发、地震和太阳黑子活动引

    S素年錦時 4人参与回答 2023-12-11
  • 电磁场与微波技术研究生论文

    电磁场与微波技术,主要分为计算电磁学、天线、微波射频电路设计、电磁兼容、新型电磁材料、毫米波技术、THz技术等几个大的方向。民用多在手机终端、无线通信、RFID

    amy229815572 3人参与回答 2023-12-06
  • 有关电磁波的论文范文

    深井电磁波随钻通信原理介绍 一、电磁波无线随钻仪发展概况 随着定向井、水平井、分支井及大位移水平井等特殊工艺钻井技术的迅猛发展及老油区复杂区块和薄油

    金色年华119 3人参与回答 2023-12-10