• 回答数

    4

  • 浏览数

    159

水瓶座小小猪
首页 > 期刊论文 > 太阳能薄膜电池著作论文期刊

4个回答 默认排序
  • 默认排序
  • 按时间排序

jennyzhao701

已采纳

请问你是要了解哪种太阳能电池,太阳能电池分类很多,如:单晶硅、多晶硅、薄膜电池等;你想要找关于这方面的资料的话,可以去太阳能电池论坛(光伏论坛)找,希望能帮到你。

92 评论

羅潔愛爾

目前,太阳能光伏发电市场,主流发电方式多以晶体硅为基础原料。2006年—2008年,全球多晶硅市场的疯狂行情导致光伏发电成本大幅上涨。当时,薄膜电池发电方式以其成本低备受青睐,许多电池生产商也纷纷转投薄膜电池生产,薄膜电池发展将替代晶体硅发展的“替代论”充斥行业内部。随着多晶硅价格回归理性,传统光伏电池价格趋于稳定。未来,多晶硅价格仍将处于下降通道,让已引进薄膜电池生产线的企业有些始料不及。随着多晶硅价格失守,薄膜电池成本低的优势正在消失。据记者了解,计划上薄膜电池的企业其薄膜扩张计划均处于停滞状态,如今仅有部分企业在继续薄膜电池的研发与生产。一时间,薄膜是外资设备商“陷阱”的说法在行业内盛行。到底应该如何看待薄膜电池发展?本报专访多位太阳能专家分析评说薄膜电池的发展。“薄膜电池是做为一种新技术引进的”——访北京交通大学理学院太阳能研究所所长徐征教授“薄膜‘替代论’是不客观的”近日,北京交通大学理学院太阳能研究所所长徐征教授接受了记者的专访,他认为,薄膜电池将替代晶体硅电池之说是不客观的。他表示:“市场上认为薄膜电池将凭借其生产成本低、材料易得等优势,替代传统多晶硅、单晶硅电池这种说法是不客观。”徐征说:“持此种观点的人,大多以其材料易得性来说明薄膜电池的成本优势,但从整体成本考虑,仅产品成本低还不足以说明这个行业的生产成本低。比如同样做一个大型电站,除了考虑生产设备、生产技术,还要把更大的土地成本算进去。目前,晶体硅电池的转换率是薄膜电池的两倍,建一个同规模电站的话,仅土地成本薄膜电池将是晶体硅的两倍。一个行业的成本是多种因素构成的,而非一、两个技术特点决定。同一个电站项目,特别是大型电站项目,多晶硅、单晶硅电池的高转换率决定了其比薄膜电池更具优势。”薄膜电池弱光性优势显现徐征教授介绍说,目前,薄膜电池分很多种类。其中有非晶硅与微晶叠层的薄膜电池,转化率可以达到9%;砷化镓,转化率一般在25%左右;碲化镉是市场比较活跃的投资项目,美国第一太阳能去年在世界的碲化镉产量和装机都是最高的。徐征说,不同薄膜电池各有优势,比如砷化镓,其主要应用在太空,转换率非常高,最高可以到达35%以上,并且具有抗辐射的特性。一般来说,热能对砷化镓的影响不大,而晶硅电池遇极热将大幅降低发电效率。徐征教授表示,薄膜电池的弱光性特性将使其适合做幕墙工程。所谓弱光性指的是电池设备对光子的吸收。对光子的吸收越多,转换率就越大。晶体硅转换率高低由太阳光强度以及其对太阳的角度决定,换言之,阳光强度越强;角度越准确,转换率越高。薄膜就像其他技术一样,也有自身的优势。比如其特有的弱光性就是其它电池材料不具备的。光线强与光线弱的时候,晶体硅转换率差别很大。但薄膜却在光线较暗的情况下,依然能够产生电流。玻璃幕墙一般是垂直的,这样的光照角度必然影响其对光子的吸收,从而影响晶体硅的转换率。而薄膜的弱光性,即有光就可以发电的优势,确定其作为建筑幕墙的最好选择。“薄膜设备本来就是非常贵的”据记者了解,以25兆瓦的非晶硅薄膜电池生产线为例,公开资料显示,其价格在3亿元—4亿元人民币之间,而25兆瓦晶体硅太阳能电池生产线的设备成本则仅有4000万元—5000万元。目前,国内引进一台薄膜电池生产机器花费超过1亿元。由此,国外设备投资商对中国实施的“陷阱论”成为热议。对此,徐征所长表示:“不能这么简单地、主观认为这是美国对中国太阳能企业的一个‘陷阱’。”徐征强调:“薄膜电池的引进首先是一种先进技术的引进。而生产薄膜的设备历来都是非常贵的,并不是单纯生产薄膜电池生产设备贵。”徐征解释,现在常生产的平板显示就可以得以说明。目前,在平板显示生产线上,平板显示也需要用到薄膜产品,其薄膜设备可以达到几十个亿。“生产一台薄膜设备造价本身就很高。如果说用在生产薄膜电池非常贵是不客观的。”徐教授说,“不是美国人卖给我们就贵,而是薄膜设备自身制造成本就比较高。 ”“薄膜电池价格优势渐失”“目前,薄膜电池成本低廉的优势渐失。”徐征分析,这主要缘于晶体硅原材料稳步进入价格下降通道,专家预测,未来多晶硅价格还将继续下跌,薄膜成本优势也随着多晶硅价格下降而减弱。这对部分薄膜电池生产商产生了极大的市场压力,从部分薄膜生产商集体选择缄默也表示其对薄膜电池发展充满忧虑。尽管薄膜电池发展受到冲击和考验,但薄膜电池的确也有其发展的空间。比如薄膜电池在幕墙及屋顶项目应用空间还是很大。徐征说:“政府目前允许薄膜电池与晶体硅电池参与太阳能电站的招标,也表明了政府的态度。意味着政府默认薄膜电池与晶体硅并存发展。未来,薄膜电池仍将得到较大的发展。”尚德电力新闻负责人张建敏在接受采访时也基本同意徐征的观点。“薄膜、晶体硅各有市场。” 张建敏说,“从市场分析,薄膜电池还是有其发展空间的。一些薄膜电池公司技术数据能够提高很快,成本优势尚存。从其用途上来看,薄膜更适用于玻璃幕墙的项目,在光伏建筑一体化项目上更具优势。”薄膜电池至少是一种新选择——访中投顾问能源行业首席研究员姜谦近几年来,随着各国的重视程度愈来愈高,全球太阳能光伏产业的发展可谓日新月异。但即便是这样,太阳能光伏发电5倍于传统火力发电的成本仍然让很多企业望而生畏,这也是到目前为止,太阳能光伏发电不仅难与火力发电,甚至难与同为可再生能源的风力发电相抗衡的主要原因。以目前市场上占主流的硅基太阳能电池为例,2006年电池占太阳能光伏系统总成本的比例超过65%,目前也在50-60%,这也就是说电池占了整个光伏系统成本的一半以上。而要降低整个光伏系统的成本,关键点也就在核心部件光伏电池上。中投顾问能源行业首席研究员姜谦在接受采访时表示,虽然随着全球主流厂家技术突破的进程不断加快,硅基太阳能电池成本下降的趋势很明显,但这显然跟不上整个产业的发展步伐。而薄膜电池这时候作为一种新的选择出现,短期内替代硅基电池的主流地位并不现实,但从长远来看,它对于全球光伏产业的巨大推动作用却毋庸置疑。姜谦说:“成本低是薄膜电池相比于硅基电池的最大优势所在。”以目前市场上最成熟的碲化镉(CdTe)薄膜太阳能电池为例,截至2009年,龙头企业First Solar生产成本已经从2008的93美分/瓦降至84美分/瓦,另外,该公司计划到2014年要将成本进一步降至0.52-0.63美元,与此同时要将转换效率拉升至12.5%。目前在该领域,First Solar还处于独家垄断阶段,随着越来越多竞争者的加入,碲化镉(CdTe)薄膜太阳能电池的发展潜力会更加凸显。通用电气近期与PrimeStar太阳能公司的合作,就是致力于碲化镉薄膜太阳能光伏产品的开发。而除了碲化镉(CdTe)薄膜太阳能电池之外,近期硒化铜铟镓电池(CIGS)也成为市场关注的焦点。CIGS电池具有性能稳定、抗辐射能力强,光电转换效率目前是各种薄膜太阳电池之首,接近于目前市场主流产品晶体硅太阳电池转换效率,成本却是其1/3。2006年、2007年全球CIGS太阳能电池组件的产能分别仅为17MW、60MW左右,产量更是微乎其微。而2008年全球CIGS电池的产量在40MW左右,2009年则是更进一步,产能超过660MW,实际产量也达到180MW左右,增幅超过300%,显示了良好的发展势头。在政策层面,以我国为例,虽然目前国内市场并未真正开启,但在国家能源局主导的第二轮光伏并网电站招标工作中,招标方案将不再限定技术种类,薄膜电池技术也可以参与竞标,这也从一个侧面反映出国家对薄膜电池的支持。综上所述,目前所存在的种种质疑,不应该是对薄膜发展可行性的质疑,但发展时机、发展速度、发展方向等等应该是整个产业需要谨慎对待的。姜谦说:“从产业的长远布局来看,发展薄膜技术不仅是毋庸置疑的,甚至应该是非常紧迫的。”薄膜电池生产企业:薄膜电池发展应有其必要性在采访中,部分薄膜产品生产商表示,与晶体硅电池相比,薄膜电池的成本下降潜力要大得多,主要得益于薄膜太阳能电池的技术进步日新月异。薄膜太阳能电池预计未来的产能可能会达到整个太阳能行业的20%,发展空间较大。薄膜太阳能电池现在发展面临技术突破,有很多物理方法,比如说离子束方法沉积纳米晶硅薄膜工艺。从成本角度分析,未来的薄膜太阳能电池比晶体硅电池有明显优势,较之火电等常规能源具有明显的替代优势。某薄膜电池生产商表示,随着光伏产业在全球能源中占比例逐步提高,薄膜太阳能电池在大型光伏电站、BIPV等应用需求推动下将迅猛发展。但不同的薄膜太阳能电池还有各自的缺点,或转换效率偏低,或存在环境安全问题,有的存在原材料资源稀缺问题,这些问题也需要产业形成规模后逐步解决。“有理由相信,薄膜太阳能电池即将迎来高速成长。”上述企业人士解释,以硅基薄膜太阳能电池为例,其电池技术发展成熟度高,使用叠层工艺将使转换效率及衰减问题不再突出。其次,研发实力雄厚的半导体设备供应商纷纷切入硅基薄膜太阳能电池设备供应领域,薄膜太阳能电池设备供应商快速崛起,对行业迅猛发展起到了重要的推动作用。从技术路线发展看,目前,硅基薄膜太阳能电池已经发展到第四代——非晶硅/微晶硅双结叠层电池。这种非晶硅与微晶硅叠层的基本结构将成为未来硅薄膜太阳能电池的主流发展趋势。“薄膜电池发展有其必要性。”

223 评论

梧桐无羽

期刊名:《电源技术》2007V0l31NO7文献名:铜铟镓硒柔性薄膜太阳电池你核对下吧,期刊号,卷,期号都一致。

194 评论

Diana~蜜桃

水热法生长二氧化钛纳晶及在染料敏化太阳能电池板的应用1 引言1991 年瑞士学者Gratzel 等在Nature 上发表文章,提出了一种新型的以染料敏化二氧化钛纳晶薄膜为光阳极的太阳能电池,其具有制作简单、成本低廉、效率高和寿命长等优点,光电转换效率目前可以达到11%以上,因此成为新一代太阳能电池的主要研究发展方向[1-4]。染料敏化太阳能电池的光电转换效率的提高要归功于其独特的纳晶多孔薄膜电极,其可以使电子在薄膜中有较快的传输速度,且具有足够大的比表面积,能够吸附大量的染料,并且与染料的能级相匹配。所以因对染料敏化太阳能电池的复杂的作用,许多科学工作者致力于制备功能和性能良好的TiO2 纳晶多孔薄膜电极[5, 6]。在纳晶TiO2 的三种晶型中,锐钛矿相的光电活性最好,最实用于染料敏化太阳能电池中,所以在制备纳晶TiO2 时,金红石相和板钛矿相纳晶应该尽量避免。对TiO2 纳晶的生长,许多研究者开始在水热法中采用有机碱做胶溶剂来制备TiO2 纳晶[7-9]。Yang 用三种有机碱做胶溶剂制备了粒经和形貌不相同的TiO2 纳晶,其结果证明了有机碱的加入对纳晶粒子大小、形貌及表面积等有一定影响[10]。但是,如何制备晶型和形貌都能满足于染料敏化太阳能电池的要求却很少讨论。在本章中,采用水热法基础上,分别使用三种有机碱四甲基氢氧化铵(TMAOH)、四乙基氢氧化铵(TEAOH)、四丁基氢氧化铵(TBAOH)做胶溶剂来制TiO2 备纳晶并应用于染料敏化太阳能电池中并研究了制备条件的不同对纳晶形貌、粒径大小及电池光电性能的影响。2 实验主要药品和仪器钛酸四正丁酯、异丙醇、聚乙二醇20,000、碘、碘化锂、4-叔丁基吡啶(TBP)、OP乳化剂(Triton X-100)(AR,均购于中国医药集团上海化学试剂公司);敏化染料(cis-[(dcbH2)2Ru(SCN)2],SOLARONIX SA.);四甲基氢氧化铵(TMAOH)(25 %)、四乙基氢氧化铵(TEAOH)(20 %)、四丁基氢氧化铵(TBAOH)(10 %) (均购于中国医药集团上海化学试剂公司);可控温磁力搅拌器(C-MAG HS4,德国IKA);马弗炉(上海实验电炉厂);100 W 氙灯(XQ-100 W,上海电光器件有限公司);导电玻璃基片(FTO,15 Ω/cm2,北京建筑材料研究院);X 射线粉末衍射仪(XRD) D8-advance(Bruker 公司);扫描电子显微镜(SEM)S-3500N(日本日立公司);透射电镜(TEM)JEM-2010(日本);红外光谱分析仪Nicolet Impact 410 spectrometer;紫外–可见分光光度计UV-Vis 3100 (Shimadzu corporation, Japan)。3 实验部分3.1 纳晶TiO2 的制备根据文献的制备方法[6-11],把钛酸四正丁酯与等体积的异丙醇混合均匀并逐滴加入到蒸馏水中并不断的搅拌30分钟([H2O]/[Ti(OBu)4] = 150),过滤并用水和乙醇溶液洗剂2-3次。在强烈搅拌下,把所得到的沉淀加入到pH=13.6的含有有机碱的溶液中,在100 °C搅拌24小时,得到半透明的胶体。将得到胶体装入高压釜(填充度小于80%)。在200 oC水热处理12小时。水热处理后,得乳白色混合物并伴有鱼腥味,这表明有机碱分解为了胺类化合物。将高压釜处理后的TiO2胶体连同沉淀一起倒入烧杯,经50 oC浓缩至原来的1/5,加入相当于TiO2量20%-30%的聚乙二醇20,000及几滴Triton X-100,搅拌至均匀,得稳定的TiO2纳晶浆体。3.2 纳晶薄膜电极的制备将洗净的导电玻璃四边用透明胶带覆盖,通过控制胶带的厚度和胶体的浓度来控制膜的厚度[12],中间留出约1×1 cm2空隙,将在酸性条件下制备的小粒径的纳晶TiO2胶体用玻片均匀的平铺在空隙中。空气中自然晾干后,在马弗炉中升温至450 ?C热处理30分钟,使TiO2固化并烧去聚乙二醇等有机物,冷却至80 ?C,经过仪器测量,薄膜的平均厚度在6微米左右。将获得的纳晶多孔薄膜浸泡于N3染料溶液中24小时,使染料充分地吸附在TiO2上,取出后用乙醇浸泡3-5分钟,洗去吸附在表面的染料,在暗处自然晾干,即得到染料敏化的纳晶多孔TiO2薄膜电极。首先按上文所述制备纳晶多孔薄膜,制备的薄膜平均厚度在4.5微米左右,将其重新用透明胶带覆盖,把用TMAOH做胶溶剂的条件下制备的大粒径的纳晶TiO2浆体用玻片均匀的平铺在空隙中。空气中自然晾干后,重新在马弗炉中升温至450 ?C热处理30分钟,反射层的纳晶薄膜的平均厚度控制在1.5微米左右,热处理后即得双层纳晶薄膜。浸泡染料后即得双层纳晶薄膜电极。3.3 DSSC 的组装以染料敏化纳晶多孔TiO2薄膜电极为工作电极,以镀铂电极为对阴极[13],将染料敏化电极与对阴极用夹子固定,在其间隙中滴入以乙腈为溶剂、以0.5 mol/L LiI+0.05 mol/L I2+0.2mol/L TBP为溶质的液态电解质,封装后即得到染料敏化太阳能电池。3.4 光电性能测量采用100 W氙灯作为太阳光模拟器,其入射光强Pin为100 mW/cm2。在室温下进行测量,记录其短路电流ISC和开路电压VOC,并应用公式计算其填充因子ff和光电转换效率η。3.5 表征与分析采用 D8-advance 型X 射线粉末衍射仪测定TiO2 的晶体结构,测试条件为:Cu Kα(λ=1.5405 ?),电压:40 KV,电流:40 mA。扫描速度:6?/min,扫描范围:10?-80?。采用KBr 压片法测量样品的红外光谱,测试条件:400-4000 cm-1,软件:OMNIC 6.0,扫描次数30 次。采用JEM-2010(日本)型透射电子显微镜(TEM)观察TiO2 纳晶的表面形貌及粒径大小。用紫外-可见分光光度计(UV-3100)测试不同粒径TiO2 纳晶多孔薄膜电极吸附染料的吸光度。TG 的升温速度:10 ℃/min,范围:室温至1000 ℃,测试仪器:SDT 2960 同步DSC-TGA 装置 (USA TA 设备)。4 结果与讨论4.1 有机碱对TiO2 纳晶的形貌和粒径的影响Sugimoto 和他的合作者们研究了影响TiO2 纳晶生长的一些因素,其中pH 的值、有机碱的烷基链的长短、水热的温度以及水热的时间等因素都对TiO2 纳晶颗粒的大小和形貌有很大的影响[14-17]。通过研究发现,四烷基有机碱作为模板来控制TiO2 纳晶的形貌和大小。所以可以使用不同的有机碱来制备适合于染料敏化太阳能电池光电传输的晶型完整并具有较大的比表面积的TiO2 纳晶。是在不同的有机碱做胶溶剂时制备的TiO2 纳晶的TEM 图,a 图是采用TMAOH 做胶溶剂,b 图是采用TEAOH 做胶溶剂,c 图是采用TBAOH 做胶溶剂。从图中可以看出,在相同pH 值下,不同的有机碱做胶溶剂时,制备的纳晶明显不同,这说明胶溶剂对TiO2纳晶的粒径大小和形貌有很大的影响,而且随着有机碱胶溶剂烷基链的加长,TiO2 纳晶的粒径减小,并且粒子为多面体。当用TMAOH 做胶溶剂时,制备的TiO2 纳晶的粒子多为四方体,颗粒宽12-20 nm,粒子长20-40 nm,如图1a 所示。当用TEAOH 做胶溶剂时制备的TiO2 纳晶的粒子颗粒不均匀,而且形貌也不规则有多面体形的也有四面体形的,粒子宽度8-10 nm,长度10-25 nm,如图1b 所示。而当有机碱的烷基链长从两个碳原子增加到四个碳原子时,即用TBAOH 用作胶溶剂时制备的纳晶颗粒粒子大小较均匀而且形貌也较规则,多为正方体,粒子大小一般在5nm 左右,如图1c 所示。在TiO2 纳晶的水热生长过程中,有机碱首先是吸附在TiO2 的晶核上,而烷基链的长短不同吸附的能力不同,吸附能力越大则就会阻碍纳晶的生长。研究发现[6],烷基链越长则有机碱吸附在晶核上的吸附力越大,则会阻碍晶体的生长,所以随着有机碱烷基链的长度的增加,纳晶颗粒在不断的减小;并且研究发现,胶溶剂的浓度不能太大,太大时制备的TiO2 纳晶就会出现严重的团聚现象[10]。4.2 有机碱对TiO2 纳晶晶型的影响是用三种有机碱做胶溶剂时制备的TiO2 纳晶的XRD 图,a 是制备的TiO2 纳晶经过自然风干后的XRD,b 是制备的三种TiO2 纳晶经过50 °C 热处理30 分钟中后的XRD 图。从图2a 中可以看出,2θ = 25.3°是TiO2 纳晶锐钛矿的特征峰,但是还有一些其它的杂峰,这些杂峰证明是有机胺类化合物的峰。当把制备的纳晶经过450 °C 热处理30 分钟中后,a 图中的杂峰就消失,TiO2 在2q =25.3°,37.55°,47.85°,53.75°,55.05°和62.35°的衍射峰的d 值均与标准PDF 卡片锐钛矿型TiO2 衍射峰相符,说明所制备的TiO2 的晶型为锐钛矿,没有金红石相和板钛矿相出现,制备的为纯的锐钛矿相TiO2 纳晶。在传统水热方法中,采用硝酸做胶溶剂,制备的纳晶TiO2 中,含有少量的金红石相和板钛矿相,而这两种的光电性能较差,影响染料敏化太阳能电池的光电转换效率。而用有机碱做胶溶剂制备的TiO2 纳晶可满足染料敏化太阳能电池中对锐钛矿相的要求。随着有机碱烷基链的增加,样品的特征衍射峰宽逐渐变大,并且衍射峰值逐渐减小,这表明制备纳晶颗粒不断减小,这与TEM 的结果一致。4.3 TiO2 纳晶的热稳定性分析是用三种有机碱制备的TiO2 纳晶的红外光谱图,(a) 是制备的纳晶粉末在80 °C 烘干24 小时,(b)是制备的纳晶粉末在450 °C 热处理1 小时,光谱范围是400-4000 cm-1。从红外光谱图可知,三种纳晶红外图谱相近。图3(a)中出现了有机化合物的一些键如C-H, N-H,和O-H 等键,但随着在450 °C 热处理1 小时后,这些化合键就消失了,而TiO2 薄膜的红外谱图中主要有Ti-O-Ti 键伸缩振动峰在500cm-1 附近,没有出现宽的吸收带,如图3(b)所示,这一结果与文献中的结果相一致[7]。这说明在有机碱条件下制备的TiO2 纳晶在经过450 °C后为稳定的锐钛矿相,吸附在其表面的有机物分解完全。从XRD 的结果也可以得出(图 3b),所有有机化合物在经过450 °C 热处理后都消失完全了,这说明二氧化钛化合物在高于450 °C热处理后,可以晶化为稳定的锐钛矿相TiO2 纳晶。是用有机碱做胶溶剂时制备的TiO2 纳晶粉末热稳定性的TG 分析。这些纳晶粉末是在105 °C 下烘干24 小时,而没有进行任何热处理的。从图中可以看出,有两个失重过程。第一个过程是100~250 °C 之间的明显失重,可以认为是失去了吸附在纳晶粉末表面的水分子和一些醇。第二个过程是250~400 °C 之间的失重,是因为粉体中吸附的有机物成份的失去。有机物与制备的氧化物之间有很强的键和作用,这些有机物包裹着氧化物,当温度达到400 °C 时,这些键和作用才会消失,有机物完全分解,这说明有机物与纳晶颗粒之间的力结合不是太大不影响纳晶的晶化。另外发现,在不同有机碱胶溶剂下制备的纳晶粉末的失重情况明显不同,在采用TBAOH 做胶溶剂时的失重明显要高于使用TMAOH 做胶溶剂时的,这说明前者表面吸附了更多的有机物。吸附有机物的量不同,表明制备的纳晶粉末的形貌和粒径大小也明显不同[14],这与TEM 的结果一致,在采用TBAOH 做胶溶剂时制备的TiO2纳晶颗粒较小表面积较大,这就使吸附在纳晶表面的有机物就增多,所以在进行热分解时失重较多;而采用TMAOH 做胶溶剂时制备的TiO2 纳晶颗粒明显大许多,表面积又小所以吸附的有机物就会减小,所以在热分解时失重较少。从失重量的多少也可以简单分析出制备的纳晶颗粒和形貌的异同。用有机碱做胶溶剂来制备TiO2 纳晶,会对其晶型及其晶型的稳定性有一定的影响。图5 为有机碱TEAOH 做胶溶剂的条件下制备的TiO2 纳晶及其分别在300 °C,500 °C,700 °C,800 °C,900 °C 烧结1 小时样品的XRD 谱图。在TiO2 纳晶的晶型中,峰位于2θ=25.3°是锐钛矿相的特征衍射峰,峰位于2θ=27.4°是金红石相的特征衍射峰。从图中可知,TiO2 纳晶在800 °C 烧结前,晶型没有发生变化。在800 °C 烧结之后,才出现了金红石相晶型,这一结果与Young 等人的研究结果一致[18]。据报道在酸性条件下制备的TiO2 纳晶,在烧结温度达600 °C 时,锐钛矿晶型就开始向金红石晶型转变[19]。而用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶从锐钛矿相向金红石相转变的温度有所提高,这说明用有机碱TEAOH 做胶溶剂制备的TiO2 纳晶热稳定性提高了,这一稳定性说明,可以对锐钛矿型TiO2 纳晶在较高的温度下进行烧结,而不改变其晶型,即没有金红石型纳晶出现。4.4 BET 和吸附染料能力的研究用不同的有机碱做胶溶剂所制备的TiO2 纳晶粉的表面积进行分析,实验得出,在使用有机碱TMAOH 做胶溶剂时制备的TiO2 纳晶粉的比表面积为66 m2·g-1,但是当使用TEAOH和TBAOH 做胶溶剂时,制备的TiO2 纳晶粉的比表面积为78 m2·g-1 和82 m2·g-1。这一结果与粒径越大比表面积越小相一致,颗粒大小如图1 所示,这说明颗粒越小比表面积越大。研究发现,吸附的染料(RuL2(SCN)2)的多少并不一定随着比表面积的增大而增大。为了研究用于染料敏化太阳能电池测试的TiO2 纳晶多孔薄膜吸附染料的多少,把敏化的电极在5 mL 0.05 mol/L NaOH 溶液中让染料进行脱附,之后对染料的碱性溶液进行吸光度的分析,UV-vis 吸收光谱的结果如图5 所示。图中a、b 和c 三条曲线分别是采用TMAOH、TEAOH和TBAOH 做胶溶剂时制备的TiO2 纳晶。根据朗伯-比尔定律可知吸光度随浓度增加而增大,结果显示,采用TMAOH 做胶溶剂时制备的TiO2 纳晶吸收的染料最少,这与比表面积越小吸附的染料越少相吻合,但比其它两种纳晶的吸附量要少很多。虽然采用TBAOH 做胶溶剂时制备的TiO2 纳晶的比表面积比用TEAOH 做胶溶剂所制备的TiO2 纳晶的比表面积大,但是后者却比前者所吸附的染料多,这里可能的解释就是因其用TBAOH 做胶溶剂时制备的TiO2 纳晶的颗粒太小还不足10nm,所以用其制备的纳晶多孔薄膜太致密而使得吸附的染料减小。4.5 染料敏化太阳能电池光电性能研究采用有机碱制备的三种不同形貌和粒径大小的TiO2 纳晶,并用其制备了敏化电极应用于染料敏化太阳能电池光电性能的研究,如图6 所示。表1 给出了三种不同电极的所组装的电池的短路电流、开路电压、填充因子和光电转换效率的值。在100 mW/cm2 光照条件下,三种电池的短路电流分别为10.7、13.1、10.4 mA/cm2,开路电压分别为0.779、0.700、0.698V,填充因子分别为0.52?0.62?0.60,光电转换效率分别达到了4.4%?5.67%?4.4%。从实验结果可知,采用有机碱TEAOH 制备的TiO2 纳晶所组装的电池的光电转换效率比其它两种电池的光电转换效率要高。可知,采用有机碱TEAOH 所制备的TiO2 所制备的电池的开路电压要比采用有机碱TMAOH 所制备的TiO2 所制备的电池的要低,但是其电池的短路电流和填充因子都要比其它两种有机碱所制备TiO2 所组装的电池要高。这可能是因为(1)用有机碱TEAOH 所制备的TiO2 纳晶粒经比较适中,制备的多孔薄膜粒子与粒子之间结合比较紧密,这样就提高了电子在薄膜中的传播速度;(2)较其它两种多孔薄膜吸附的染料要多,研究表明吸附的染料的量与所产生的光电流成正比,吸附的染料越多,则产生的光电流越大,用有机碱TEAOH 做胶溶剂所制备的TiO2 多孔薄膜所吸附的染料最多,所以用其所组装的染料敏化太阳能电池的短路电流最高,电池的光电转换效率也达到最好。5 结论本章采用了钛酸四正丁酯为原料,以三种有机碱做胶溶剂来制备TiO2 纳晶,以三种制备的敏化的纳晶多孔薄膜为电极组装了染料敏化太阳能电池,并对其进行了电池光电性能的测试。研究了这三种有机胶溶剂对TiO2 纳晶晶体生长的影响,采用三种不同烷基链的有机碱做胶溶剂制备的纳晶形貌和大小有很大的不同,研究发现,随着烷基链的加长,纳晶的形貌开始变得规整,粒径也减小,但是有机碱的浓度不能太大,浓度过高时,会使制备的纳晶出现团聚,所以在使用有机碱做胶溶剂时,采用的是在pH=13.6 的条件下制备的。通过热稳定性分析发现,吸附在TiO2 纳晶表面的有机碱在450 °C 热处理后,有机物分解完全,这说明在制备纳晶多孔薄膜时,有机物分解完全,多孔薄膜中为纯的TiO2 纳晶。因为三种TiO2纳晶形貌和大小不同所以制备的多孔薄膜吸附染料的量也不相同。实验发现采用有机碱TEAOH 做胶溶剂时制备的TiO2 的敏化电极吸附的染料最多,电池光电性能测试也显示用此TiO2 纳晶制备的电池开路电流达到13.1 mA cm-2,光电转换效率达到5.67%,比其它两种电池的光电转换效率要高,这说明用有机碱TEAOH 做胶溶剂所制备的TiO2 纳晶的形貌和大小比其它两种有机碱胶溶剂制备的TiO2 更适合应用于染料敏化太阳能电池。更多毕业论文请到

176 评论

相关问答

  • 太阳能薄膜电池著作论文期刊

    请问你是要了解哪种太阳能电池,太阳能电池分类很多,如:单晶硅、多晶硅、薄膜电池等;你想要找关于这方面的资料的话,可以去太阳能电池论坛(光伏论坛)找,希望能帮到你

    水瓶座小小猪 4人参与回答 2023-12-05
  • 钙钛矿太阳能电池研究论文

    杂化钙钛矿太阳能电池论文绪论可以从研究背景、研究方法、研究内容和创新点等方面写。杂化钙钛矿太阳能电池论文的绪论可以从研究背景、研究意义开篇,然后说明文章的研究方

    请别叫我龙爷 2人参与回答 2023-12-06
  • 大学毕业论文太阳能电池应用

    问题放这儿,你算问对人了,我是从事光伏行业的大学那会儿研究过一段时间的太阳能电池看到楼上的回答,我汗颜了,我承认,我对太阳能电池发电历史的确不了解,呵呵一楼说的

    吃要吃好的 2人参与回答 2023-12-10
  • 太阳能电池特征研究论文

    水热法生长二氧化钛纳晶及在染料敏化太阳能电池板的应用1 引言1991 年瑞士学者Gratzel 等在Nature 上发表文章,提出了一种新型的以染料敏化二氧化钛

    好运大鸟 3人参与回答 2023-12-12
  • 太阳能电池基本特性研究论文

    兄弟,一般不会有的了。要不就靠自己,要不就去买一个。在这里找论文的有很多,我见到不少了。但是免费的我没有看到过有多少,就算是免费的,你敢要吗?你不怕到时候检查出

    瑶瑶瑶姚 4人参与回答 2023-12-11