叮叮猫儿要飞
随着信息化社会的到来,社会实践对数学的需求发生了变化,数学越来越成为人们进行交流的必不可少的一种工具。人们更需要的是收集、分析和处理数据、信息的能力,面对变化的情况迅速做出判断的能力,将获得的资料、数据转换成数学问题并加以解决的能力等。面对这样的社会需求,必须改变数学教学脱离实际的倾向,重视数学与社会实际的联系,较好地满足社会的数学需求。新修订的小学数学教学大纲明确指出:“要重视从学生的生活实践经验和已有的知识中学习数学和理解数学。”这就要求数学教师结合学生的生活经验和已有的知识来设计富有情趣和意义的活动,使学生切实体验到身边有数学,用数学可以解决生活中的实际问题,从而对数学产生亲切感,增强学生学习数学的兴趣和信心,发挥自己的聪明才智,运用已有知识去创造性地解决新问题,提高解决实际问题的能力。 一、结合生活实际,培养学生的数学意识。 所谓数学意识,是指能用数学的观念和态度去观察、解释和表示事物的数量 、空间形式和数据信息,以形成量化意识和良好数感。新修订的《小学数学教学大纲》十分强调数学与现实生活的联系,在教学中增加了“使学生感受数学与现实生活的联系。”我感到作为一名数学教师,要结合生活实际,使学生养成主动地从数量上观察、分析客观事物的习惯,认识到数学符号、公式、图表是表示、交流和传递信息的工具,使他们有更多的机会从周围熟悉的事物中学习数学和理解数学,体会到数学就在身边,使学生善于将实际问题转化成数学问题,感受数学的趣味和作用,体验数学的魅力。例如:教学轴对称图形时,引导学生观察实际的事物(树叶、蜻蜓、门窗等),分析它们的共同特征,让学生从熟悉的具体的事物中理解轴对称图形,形成轴对称概念。这样,可以使学生从抽象的概念教学中解脱出来,而且对轴对称图形的特征记得牢。 二、加强动手操作,渗透数学思想和方法 义务教育小学数学教学内容和教材中,已经注意了渗透思想和数学方法。而《新大纲》要求要加强渗透的力度,有些思想和方法完全可以以某种方式让学生较早地体会或初步了解,使小学生能通过数学学习活动积累科学思想、方法的感性经验,逐步形成灵活而缜密、具有创造性的思维品质。例如在三角形面积的计算教学中,通过图示和实际操作,先把两个完全相同的三角形叠在一起,然后以它们重合的一个顶点为中心,把上面的三角形旋转180度,再沿着一条边平移,直到与另一个三角形拼成一个平行四边形。这样不仅使学生清楚地看到三角形的底和高与所拼成的平行四边形的底和高的关系,而且还使 学生直观地了解一些平移和旋转的含义,以及对图形位置变化的作用,有利于发展学生的空间观念。 三、注重实践活动,培养学生发现数学问题的能力。 为了在学生学习数学知识的同时,初步接触和逐渐掌握数学思想,不断增强数学意识,就必须在数学教学进程中加强实践活动,使学生有更多的机会接触生活和生产实践中的数学问题,认识现实中的问题和数学问题之间的联系与区别。例如,在教学《利息和利率》这一课时,可以利用活动课的时间带学生到银行去参观,并以自己的压岁钱为例,让学生模拟储蓄、取钱,这时学生的问题就出来了,“利率是什么啊?”“为什么银行的利率会不同啊?”、“储蓄哪种方式比较合理呢”……对于学生这些问题我微笑不答,表扬他们观察得很仔细,然后就让他们带着问题去预习新课,到上课的时候学生由于是自己发现的问题,自己来解决问题,兴趣浓厚,气氛活跃,轻轻松松地学习了新的知识,从而找到了符合实际需要的储蓄方式。这样学生培养了养成留心周围事物,有意识地用数学的观点去认识周围事物的习惯,并自觉把所学习的知识与现实中的事物建立联系。 四、创设生活情景,提高学生解决问题的能力。 目前的应用题教学仍未摆脱传统的应用题教学模式,所以仍然是小学数学教学的难点,占用了大量的教学时间,还是导致学生分化的主要内容。存在的主要问题是,就其内容而言,有的部分脱离学生的实际生活;就其能力训练的价值来看,侧重的是解习题的技能,而对运用数学知识解决简单的实际问题的能力的重视仍显不够。为了使学生更好地了解数学的思想方法,提高学生分析问题、解决问题的能力,教师必须善于发现和挖掘生活中的一些具有发展性、趣味性的问题。让学生从生活中学数学,激发学生学习的兴趣,提高解题的技巧,培养学生根据实际情况来解决问题的能力。例如在教学《工程问题》之后,我设计这样一道题:“老师带了一些钱去买跳绳和毽子,所带的钱如果全部买跳绳可以买50根,如果全部买毽子可以买60只,现在先买了30根跳绳,剩下的钱,还能买多少只毽子?”这道题突破了常规“工程问题”的命题方式,由于问题来自于生活,学生表现出了浓厚的兴趣,激起了学生创造性思维的“火花”,从不同角度提出了多种解决问题的方法,提高了解决问题的灵活性。 课程改革对我们数学教师的要求越来越高,教学中我们应该重视应用数学知识解决实际问题能力的培养,通过联系实际的教学内容,练习题,与现实背景相联系的教学过程,培养学生运用数学的观点观察周围事物的兴趣,提高学生运用数学的意识和解决简单实际问题的能力,从而让学生真正体会到数学学习的趣味性和实用性,在生活中发现数学,喜欢数学。
hellosnow.
小学数学应用题教学思考论文
用题教学要求老师展开应用题教学的目标应当是在生活中应用所学的数学理论知识,不过就当前的教学模式而言,大部分老师并没有将应用题融入实践元素,只是局限在教学的表面。我为您整理了小学数学应用题教学思考论文,仅供参考。
摘要:
在新课改不断深化的大背景下,新课程理念作为小学阶段的教学理念得到了广大教育工作者的认可,进而有效的提升了小学数学应用题教学的品质,不过仍存在许多问题亟待解决。本文首先阐述了小学数学应用题教学的现状,然后从情境教学法、环境教学法和实践教学法这三点来探讨小学应用题教学的策略。
关键词:
小学数学;新课程理念;应用题
就目前的初中数学教学而言,其教学目标就是理论结合实际,在实践中注入理论的元素。而应用题则实现了理论知识和实际生活的有机结合,进而能够提升学生的兴趣,使学生的社会实践能力和认知数学知识的程度得以提升,是符合新课程理念的教学内容,为培育适合社会发展的人才奠定基础。
1我国小学数学应用题教学的现状
1.1教学模式陈旧师生之间缺乏互动
随着新课改的不断深化,虽然各个教育机构已经着力去改变教学模式,不过运用填鸭式教学模式的老师大有人在,这种教学方式在教学过程中学生只是被动的去学习知识,老师和学生之间没有较多的互动,更甚者要求学生去背诵解题思路和方法,长期下来学生本身依赖老师灌输知识的程度越来越高,渐渐的失去了主动去探索知识的动力,学生创造性思维也就难以得到培育。
1.2应用题教学重理论轻实践
应用题教学要求老师展开应用题教学的目标应当是在生活中应用所学的数学理论知识,不过就当前的教学模式而言,大部分老师并没有将应用题融入实践元素,只是局限在教学的表面,并没有将理论延伸到实际生活中去,由于没有实际生活作依托,这就在很大程度上加大了教授应用题的难度。
1.3学生本身的基础知识不扎实
在长时间的应试教育体系影响下,学生过分注重教科书上的理论知识,渐渐的失去了观察生活现象的能力,这样学生就没有丰富的生活“经验”,当应用题摆在学生面前时,学生通常不明白该题目是在何种背景下出题。另外,老师在针对应用题教学时,得知学生无法理解体型只是去批评,不去顾忌小学生的心理特征,学生在不断批评下就会逐渐丧失学习数学应用题的信心。此外,大多数学生遇到由很多文字所罗列出来的应用题,缺乏准确把握信息的能力,无法把应用题应用到自身生活中去,也就正确的解析应用题。
2在新课程理念下数学应用题教学的方法
2.1在小学数学应用题中采用情景教学法
在小学生数学应用题教学中采用情境教学法,就是将陈旧教学模式改变,把小学数学教科书中牵扯到的应用题与现实相结合,将抽象的应用题变得具体和形象,通过具体化抽象问题来使学生理解知识的能力提升。与此同时,老师运用情景教学法应将应用题联系到学生自身生活中,也可以设计能够引发学生兴趣的情境,这样就能够使学生更容易融入到应用题教学中去,使教学效率更加高效。此外,作为具有客观性的情景教学,学校应当配备相应的多媒体设备来辅助教学,利用多媒体平台促使学生全方位领会应用题表述的内涵,进而使学生理解本应用题的程度加深。
比如,老师在展开加减算法的应用题教学中,如果直接了当的给小学生讲解应用题的解题过程和思路,极易揭露应用题中的数据,进而使学生只专注于数据,而忽略了解析应用题的实际数据,从而使学生偏离了解题思路。我们可以设计一下的应用题:帽子价格10元、衣服价格52元、一双鞋价格32元、裤子价格70元,问题:
①爸爸给女儿买了一顶帽子和一双鞋总共花了多少元钱?
②裤子比衣服贵多少钱?
③假设爸爸只买了一双鞋子,将100元付给卖家,那么卖家应当找回多少钱?
在对该应用题进行教学时,老师应当把学生从数字中拉出来,运用生动、形象的情景教学法引发学生的教学兴趣,也就是抽出两名同学来扮演爸爸和卖家,两者之间进行情景对话,使学生在情景演绎中,明白买卖的关系,更加清晰该应用题的解题思路。使学生理解应用题的能力提高,为提升应用题教学品质奠定基础,同时为小学生学习应用题的相关内容提供保障。
2.2在小学数学应用题中采用环境教学法
在新课程理念的教育环境下,环境教学法在展开小学数学应用题教学生渐渐得到重视,最近几年来教学环境法主要着力点是教学气氛,即充分运用教学气氛使学生的学习兴趣培养起来,充分调动学生的积极性来学习应用题的解析,为培育学生的发散性数学思维提供环境保障。因此老师彻底摒弃以往的教学模式进行教学氛围的烘托,采用的形式是分组学习竞赛、学生主动在黑板上演示解题步骤等方法,从而集中学生精力投入到应用题学习中去。
比如在倍数应用题教学中,有这样一个应用题:
①熊猫捡到了5个玉米,猴子所捡的玉米是熊猫所捡数量的两倍,问题时猴子和熊猫捡玉米的.个数是多少?
②学校体育部买回了8盒羽毛球,7个羽毛球组成一盒,平均发送给五年级的四个班,那么各个班可以分得的乒乓球个数是?老师这时按着“同组异质,异组同质”的方法划分成解题小组,并提出在特定时间内解答出应用题的要求,每个解题小组派遣一个代表在黑板上演示整个应用题的解析步骤,老师以学生实际解题状况为依据进行评分。
2.3小学数学应用题采用习题教学法
一般探究习题教学法主要包含:
①加大小学生课堂练习应用题的力度,这主要体现在老师在教授完一节课内容后布置一定的课堂练习任务进行练习,进而加深小学生对本节课内容的记忆,同时巩固本节课学习的内容。最后老师以学生解析习题的状况为依据,摸清学生的学习状况。
②加大小学生课后练习习题的力度。具体体现在结束本节课后布置相应的作业,写作业的时间应当控制在两个小时之内,这样学生就会劳逸结合,形成科学的学习规律。
③定期巩固已学过的知识,不过小学生自律性不强,这时老师应当联合家长进行监督,确保复习应用题的有效性。
3结语
综上所述,在新课程理念下对小学生展开应用题教学,应当以应用题教学内容、学生心理特征、实际状况为依据,引发学生学习数学应用题的兴趣,切实提升应用题教学的有效性。摒弃原先的填鸭式教学法,真正致力于提升学生理解应用题的能力、培育学生创造性思维,为学生全方位发展提供保障。
参考文献:
[1]吴君玉.新课程理念下小学数学应用题教学探究[J].课程教育研究,2014(34):115.
[2]薛莹.新课程理念下小学数学应用题教学的思考[J].新课程(小学),2015(06):193.
[3]李莉.新课程理念下小学数学应用题教学的研究与实践[J].赤子(上中旬),2015(02):277.
吴山脚下2012
一、配方法配方法是对数学(shuxue)式子进行一种定向变形(配成"完全平方")的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用"裂项"与"添项"、"配"与"凑"的技巧,从而完成配方。有时也将其称为"凑配法"。最常见的配方是进行恒等变形,使数学(shuxue)式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。三、待定系数法要确定变量间的函数关系,设出某些未知系数,然后根据所给条件来确定这些未知系数的方法叫待定系数法,其理论依据是多项式恒等,也就是利用了多项式f(x)g(x)的充要条件是:对于一个任意的a值,都有f(a)g(a);或者两个多项式各同类项的系数对应相等。待定系数法解题的关键是依据已知,正确列出等式或方程。使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程组来解决,要判断一个问题是否用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解。例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达形式,所以都可以用待定系数法求解。使用待定系数法,它解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决。如何列出一组含待定系数的方程,主要从以下几方面着手分析:①利用对应系数相等列方程;②由恒等的概念用数值代入法列方程;③利用定义本身的属性列方程;④利用几何条件列方程。比如在求圆锥曲线的方程时,我们可以用待定系数法求方程:首先设所求方程的形式,其中含有待定的系数;再把几何条件转化为含所求方程未知系数的方程或方程组;最后解所得的方程或方程组求出未知的系数,并把求出的系数代入已经明确的方程形式,得到所求圆锥曲线的方程。四、定义法所谓定义法,就是直接用数学定义解题。数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。五、数学归纳法归纳是一种有特殊事例导出一般原理的思维方法。归纳推理分完全归纳推理与不完全归纳推理两种。不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。这两个步骤密切相关,缺一不可,完成了这两步,就可以断定"对任何自然数(或n≥n且n∈N)结论都正确"。由这两步可以看出,数学归纳法是由递推实现归纳的,属于完全归纳。运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。直线与二次曲线的参数方程都是用参数法解题的例证。换元法也是引入参数的典型例子。辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。运用参数法解题已经比较普遍。参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。七、反证法与前面所讲的方法不同,反证法是属于"间接证明法"一类,是从反面的角度思考问题的证明方法,即:肯定题设而否定结论,从而导出矛盾推理而得。法国数学家阿达玛(Hadamard)对反证法的实质作过概括:"若肯定定理的假设而否定其结论,就会导致矛盾"。具体地讲,反证法就是从否定命题的结论入手,并把对命题结论的否定作为推理的已知条件,进行正确的逻辑推理,使之得到与已知条件、已知公理、定理、法则或者已经证明为正确的命题等相矛,矛盾的原因是假设不成立,所以肯定了命题的结论,从而使命题获得了证明。反证法所依据的是逻辑思维规律中的"矛盾律"和"排中律"。在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的"矛盾律";两个互相矛盾的判断不能同时都假,简单地说"A或者非A",这就是逻辑思维中的"排中律"。反证法在其证明过程中,得到矛盾的判断,根据"矛盾律",这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以"否定的结论"必为假。再根据"排中律",结论与"否定的结论"这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真。所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的。反证法的证题模式可以简要的概括我为"否定→推理→否定"。即从否定结论开始,经过正确无误的推理导致逻辑矛盾,达到新的否定,可以认为反证法的基本思想就是"否定之否定"。应用反证法证明的主要三步是:否定结论→推导出矛盾→结论成立。实施的具体步骤是:第一步,反设:作出与求证结论相反的假设;第二步,归谬:将反设作为条件,并由此通过一系列的正确推理导出矛盾;第三步,结论:说明反设不成立,从而肯定原命题成立。在应用反证法证题时,一定要用到"反设"进行推理,否则就不是反证法。用反证法证题时,如果欲证明的命题的方面情况只有一种,那么只要将这种情况驳倒了就可以,这种反证法又叫"归谬法";如果结论的方面情况有多种,那么必须将所有的反面情况一一驳倒,才能推断原结论成立,这种证法又叫"穷举法"。在数学解题中经常使用反证法,牛顿曾经说过:"反证法是数学家最精当的武器之一"。一般来讲,反证法常用来证明的题型有:命题的结论以"否定形式"、"至少"或"至多"、"唯一"、"无限"形式出现的命题;或者否定结论更明显。具体、简单的命题;或者直接证明难以下手的命题,改变其思维方向,从结论入手进行反面思考,问题可能解决得十分干脆
淡蓝喵喵喵
一对夫妻带着自己的孩子.路过一家玩具店.孩子想要某一个玩具.于是对妈妈提出要求.妈妈拒绝了.于是对爸爸说.妈妈不好.爸爸好.爸爸给我买玩具. 这就是逻辑最基本的公式列.逻辑是一种融合了矛盾的东西.所以不管是完美的逻辑.还是不完美的逻辑.在时间面前永远站不住脚. 逻辑成为一门科学,那是从亚里士多德开始的,这恐怕怀疑的人很少。我们知道亚氏并没有把他的研究叫做“逻辑”,但他明确指出他的研究对象是“三段论”,而这是关于从一个真的前提“必然地”推出一些结论的科学。他的三段论有两种,一是蕴涵三段论,二是归纳三段论。前者我们不必说,后者实际上是一种完全归纳,因而也是演绎性的。因此,亚里士多德意义上的“逻辑”,就是关于“必然推理规则”,或“必然证明或论证规则”的科学。他尽管提到过简单枚举归纳,但并不是从“逻辑”意义上来说的,只是为了和“逻辑”进行对比而从论辩的意义上而言的。 从词源来说:赫拉克利特最早使用logos也是指语言中体现的“客观次序”,也是在“必然”意义上讲的。因此,“逻辑”的本义不仅仅是指“推理规则”,而且是指“必然推理规则”。逻辑学和其它学科分科的意义,实际上就在这里。如同当今中国许多人指责经济学没有研究“生产力”一样,硬要逻辑学去研究它的内容是否为真,本来就不合分科的原理。如果逻辑学什么都可以研究,就应该叫“知识学”。
小学数学应用题教学思考论文 用题教学要求老师展开应用题教学的目标应当是在生活中应用所学的数学理论知识,不过就当前的教学模式而言,大部分老师并没有将应用题融入实践
小学教育专业毕业论文题目(参考)序号 论文题目1 浅谈中小学教师专业化及其发展2 福建小学地方性课程中加入方言文化课的构想3 教师教学风格对小学生学习习惯形成的
新课改给小学语文教学带来了春天,活跃的课堂蕴含着巨大的生命力。但是笔者认为任何改革都要理智对待。新课程改革还处于探索阶段,到底如何进行小学语文教学,还没有形成一
幼儿教学是为以后读书进行准备,但主要的学习任务不是学专业知识,而是培养幼儿的情感、性格和人格。本文是我为大家整理的幼儿教师教育论文范文,欢迎阅读! 幼儿教
1、第一阶段:准备阶段(XXXX年XX月——XXXX年XX月) (1)组建课题团队,确定研究课题,撰写开题报告。 (2)制定调研方案,完成前期调研资料整理汇总。