米老鼠NANA
生活中无处不在的数学 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,能用数学语言来表示的那一部分。应用数学只限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的学科,数学有3个最显著的特征:高度的抽象性、逻辑的严谨性、广泛的应用性。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用加减法,修筑房屋总要画图纸。三角形很稳定,许多支架都是三角形的,这就运用了“三点确定一个平面”的数学公理;我们玩玩具枪时,总是用眼睛瞄准准星和靶心,使之成为一条直线,这样命中率才高,这就证明了“两点确定一条直线”的数学公理;轮胎之所以设计成圆的,是因为它容易滚…… 类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 小时候,妈妈烙饼,锅里一次只能放两张饼,我一想,这不就是一个应用数学问题吗?烙一张饼用两分钟,烙正反两面各用一分钟,锅里最多放两张饼,那么烙三张饼至少要用多少分钟呢?我想了想,得出结论:要用三分钟:先把第一张饼和第二张饼同时放进锅内,一分钟后,取出第二张饼,再放入第三张饼,把第一张饼翻面;再烙一分钟第一张饼就好了,取出来。然后将第二张饼的反面放入锅中,将第三张饼翻面,这样三分钟就能全部搞定。可是过年家里人多,要烙许多饼,怎样才能早点烙好饼?经过不断测试,我得出了一个限用两饼一锅的公式:饼数×单面用时=烙饼最少用时。我把这个想法告诉了爸爸,他说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
大头妹Angelia
如何培养小学生的数学语言靖江市新桥镇礼士小学 朱咏梅数学学习活动基本上是数学思维活动,而数学语言是数学思维的工具,所以掌握数学语言是顺利地、有成效地进行数学学习活动的重要基础之一。我们应当把培养学生的数学语言和数学知识的学习紧密地结合起来,将它看成是数学学习的重要组成部分。这样才能更好地锻炼学生思维的条理性、逻辑性和准确性。一、学会阅读数学,从中感悟数学语言数学语言具有高度抽象性,因此数学阅读需要较强的逻辑思维能力。学会有关的数学术语和符号,正确依据数学原理分析逻辑关系,才能达到对书本的本真理解。同时数学有它的精确性,每个数学概念、符号、术语都有其精确的含义,没有含糊不清或易产生歧义的词汇,结论错对分明,因此数学阅读要求认真细致,同时必须勤思多想。要想真正的学好数学,使数学素质教育的目标得到落实,使数学不再感到难学,我觉得必须重视数学阅读,这其实是一个很简单的道理——书看得多的人,他们的口语表达能力和作文水平相对比看得少的要好。同时这样也能真正做到以学生为主体,教师为主导的“双主”教学思想。二、在教师的潜移默化中形成数学语言数学教师的语言应该是学生的表率。因为儿童具有很强的模仿力,教师的数学语言直接影响着学生的数学语言。所以教师的语言力求用词准确、简明扼要、条理清楚、前后连贯、逻辑性强。这就要求教师不断提高自身的语言素养,通过教师语言的示范作用,对学生的初步逻辑思维能力的形成施以良好的影响。比如:在教学《现代小学数学》四年级上册的乘法运算定律的简便运算时:44×25=?我教给学生的一种算理:44×25=11×(4×25)是根据三年级学过的把一个数分解为两个数的乘积,再运用乘法结合律。我讲述后,又请几名学生复述这种算理并且出了几题类似的题目让学生自己说。接着再问,还有比其它的解题方法呢?既让学生巩固这种算理,又再次给学生提供语言训练的机会,转为学生讲,老师听的轻松氛围而且还发展了学生的思维(还可以用乘法分配律:(40+4)×25)。三、采取各种形式,让学生发展数学语言1、小组讨论小组讨论是课堂中常用的一种方式。在每个小组中选出小组长、记录员等,当学习中有疑难时,便可请学生以小组形式进行讨论,讨论后请一名代表交流。这样做,可以使每一个学生都有发言的机会,也有听别人说的机会;既有面对几个人发表自己见解的机会,又有面对全班同学说的机会。学生为了表达本组的意见,更加主动地思考、倾听、组织,灵活运用新旧知识,使全身心都处于主动学习的兴奋中,同时也增加了课堂密度,起到事半功倍的效果。 2、同桌交流同桌交流非常方便,也是课堂教学中让学生发表见解、培养语言能力的好方法。特别是新授课时,学生掌握了一定的方法,需要用语言及时地总结。如名数之间的化法:2米6厘米=( )厘米,可让学生叙述:2米就是200厘米,200厘米加上6厘米等于206厘米。简单的两句话,通过同桌间的互相交流,使学生掌握思路,并能举一反三,灵活运用。而班级中的学习困难生,也可在同桌的带动下,逐步学会叙述,正确地解答。3、让学生小结小结是课堂教学的重要组成部分。通过小结能提高学生的综合概括能力,清晰地回忆出本课的要点。小学生虽然表达能力有限,但只需正确引导,学生便能正确地概括。如在学习了小数的大小比较之后,课堂小结时,我问学生:“通过这堂课的学习,你有什么收获?”学生在回忆整理之后,纷纷举手发言,而且连平时不爱说话的和一些后进生也很积极。有些学生话虽简洁,却抓住了本节课的学习重点,不仅加深了对知识的理解,也发展了学生的学习能力。而且,经常进行有目的的课堂小结,可以提高学生的分析,概括、分类等逻辑思维能力,达到智能并进,全面育人的目的。多种形式的训练,使每一个学生都有发言的机会,同时,学生把思维说出来,会有一种愉悦的感觉,也是自我表现和实现自我价值的需要。 四、在操作中强化学生的数学语言 操作是学生动手和动脑的协同活动,是培养和发展学生思维的有效手段,而语言是思维的外化,是思维的物质形式,知识的内化与相应的智力活动都必须在伴随着语言表述的过程而内化,因此,在教学中要重视学生动手操作。在指导学生动手操作时,要注意多让学生用数学语言有条理地叙述操作过程,表述获取知识的思维过程,把动手操作、动脑理解、动口表达有机地结合起来,才能促进感知有效地转化为内部的智力活动,达到深化理解知识的目的。例如在教学“分数的初步认识”时,为了使学生透彻理解分数的概念和意义,可让学生动手操作,通过“折、看、涂、想、说”进行。折:让学生用一张纸折成均匀的四份;看:引导学生观察①多种不同的分法;②一共分成几份?③每一份的大小怎样?涂:涂出四分之一、四分之二、四分之三;想:出示涂色的纸,思考怎样用分数表示?说:让学生用数学语言表述自己想的过程?分数的意义是怎样表述的?等等。这样,通过动手操作引发思维和用数学语言表达,不仅加深了对分数的意义的理解,还可以检查学生掌握新知识的情况,同时也培养发展了学生的逻辑思维能力。学生通过操作活动,可以丰富感性认识,通过有条理地说操作过程,可以把外部物质操作活动转化为内部思维活动,以掌握事物的本质属性,使儿童的数学语言得到强化。 总之,数学语言的培养是教学工作中一项长期的任务。它使学生获得数学交流的机会
春天里的秋天88
学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的。二、 学习数学史有利于培养学生正确的数学思维方式现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁。为了保持了知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。三、 学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人、推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心、求知欲、兴趣、爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机。兴趣是最好的动机。在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会、家长、学校的压力下获得的。中国的情况如何呢?尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达62.21%,而对数学“很感兴趣”的只有23.12%。可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果。但这并不是因为数学本身无趣,而是它被我们的教学所忽视了。在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向。数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,例如七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了。四、学习数学史为德育教育提供了舞台在《标准》的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。《标准》中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到《九章算术》、“孙子定理”这些有代表意义的中国古代数学成就。然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。《标准》中“数学史选讲”专题11—— “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。【参考文献】【1】中华人民共和国教育部制订 普通高中数学课程标准(实验) 人民教育出版社 2003【2】张奠宙 李士锜 李俊 编著 数学教育学导论 高等教育出版社 2003【3】李文林 编 数学史概论 高等教育出版社2002【4】张楚廷 著 教育部高等教育司 组编 数学文化 高等教育出版社 1999 【5】赵鸿涛 李华轩 高中生数学学习情况的调查 新乡教育学院学报 2003年 04期本文是全国高师院校数学教育研究会2004年年会交流论文
小谈中美动画之差异 曾经看过一句话,给你一张白纸,不论什么样的梦想和奇迹都可以实现。自十九世纪动画诞生以来,各个国家对于动画的创造与研究就不曾间断过,创造是动画
生活中无处不在的数学 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,能用数学语言来表示的那一部分。应用数学只限于说明自然现象,解决实际问题,是纯粹数
医学论文题目如何命名,摘要如何写作,参考文献如何如何写作,写作技巧等创新医学网上有
一年级学生由于特殊的年龄特征,在小学数学一年级的具体教学中要注意教学形式的多样化与直观性。本文是我为大家整理的关于一年级小学数学教学的相关论文,欢迎阅读!
高中数学学习的路线图大概可以是这样:1、平时每天认真完成当天的复习和练习,再找一本普通的课外辅导书做常规的辅导,再买本奥数教程在周末和寒暑假做指导性的辅导书。2