小殊哥哥
在俄罗斯茹可夫斯基飞行试验中心,集俄罗斯航空工业近年来的研究成果和最新技术于一身的一37战斗机莫斯科航展上惊鸿一现,激起了世界航空界的浓厚兴趣,同时也揭起了俄罗斯开发前掠翼战斗机的神秘面纱的一角..一37战斗机可以说是世界上第一种真正的前掠翼战斗机,其特点是机翼前掠,采用非传统的三翼面鸭式气动布局,双垂尾向外倾斜,留有一对水平尾翼.一37战斗机在亚音速飞行时,具有极好的气动性能和大迎角状态下的机动性能,适于作过失速机动.不过,从概念上来说,前掠翼战斗机并非是一项全新的设计概念,它应该说是早期胎死腹中;而后又由于新技术的发展而起死回生的设计概念的典型代表.早在第二次世界大战期间,德国的飞机设计师们就已经感到,飞机在高亚音速机动时,前掠翼飞机在抑制空气压缩效应方面,似乎要明显优于后掠翼战斗机(后掠翼战斗机存在着翼尖失速问题).而且,后掠翼战斗机在结构设计方面还有很多优点,如当时德国设计制造的"容克"一87轰炸机,采用了具有15度前掠角的前掠机翼,这一设计使机翼与机体结构的衔接避开了弹舱位置,从弹舱的后面通过.又如1964年首<>飞的德国一320汉莎商务机,其前掠翼设计使机翼衔接处位于增压式座舱的后面,从而非常轻松地与机体融合在一起.不过,必须指出的是,以上两种飞机机翼的前掠角都被严格地限制在15度以内.然而,尽管人们开始认识到前掠翼飞机存在着许多潜在的优点,可是前掠翼飞机并没有得到全面发展,反而夭折在了襁褓之中,这是由于在当时还有许多技术上的难点无法克服.我们知道,对于后掠翼飞机来说,当机翼迎角增大,升力增大时,机翼会产生负囝倪志明马红丽/文扭转(机翼外洗),也就是机翼产生的扭转变形使机翼后缘抬高,前缘降低,机翼相对于气流来向的迎角减小,从而减小了升力.这时,机翼的结构是稳定的,只是,在大迎角状态下会产生翼尖失速,而且机翼的弯曲会诱发颤振.对于金属结构的前掠机翼来说,情况却正好相反,当迎角增大时,升力增大,机翼产生正扭转(机翼内洗),也就是机翼产生的扭转变形使得机翼的前缘抬高,后缘降低,机翼相对于气流来向的迎角反而增大,使机翼升力和扭转变形继续增大.这种不稳定性称为气动弹性发散现象,机翼前掠角度越大,这种现象就越严重.实践经验表明,对于后掠机翼可能产生的颤振问题,可以通过重力补偿(比如在机翼前缘采用较重的金属结构,从而人为地设定一个反作用力矩)的办法来降低机翼颤振,此外,解决翼尖失速问题的方法也是多种多样的.但是,要消除前掠机翼的气动弹性发散现象,就必须增加机翼结构的强度,才能确保前掠机翼在飞机高速飞行时不被撕裂.但是加强机翼结构强度会使飞机的重量大大增加,如果前掠角度过大,金属结构的前掠翼就会过于笨重,因而在高速飞行时就不可能有很强的机动作战能力,从而抵消了前掠翼带来的优越性.显然,在当时的技术条件下,解决后掠机翼产生的问题要比解决前掠机翼产生的问题容易得多,所以,几年以后,前掠机翼技术中途停止.进入70年代以后,随着先进的复合材料技术的飞速发展,给前掠机翼技术的应用带来了新的希望.通过对复合材料的应用研究,设在美国俄亥俄州赖特一帕特森空军基地的美国空军飞行动力实验室最早提出了一种利用复合材料进行"定制"结构设计的概念.1974年,在马里兰大学攻读哲学博士学位的诺里一37采用了前掠翼布局,拥有良好的低速机动性斯??小克朗空军中校撰写的毕业论文《利用先进的复合材料消除机翼正扭转》,第一次将"定制"结构设计与前掠机翼联系起来.所谓"定制"结构设计,就是在采用复合材料制造机翼结构时,通过精心计算,有意识地改变前掠机翼复合材料中碳纤维的线性分布(如方向,厚度等),控制好前掠机翼的扭转力矩轴,使机翼受载时,升力产生的扭转力矩与复合材料制造的这种前掠机翼"固有的"几何力矩相互抵消,从而控制住前掠机翼的扭转变形方向,使前掠机翼变成稳定结构.应该说,小克朗中校的论文写得正是时候,因为当时的飞机设计师们正好也在思考如何解决飞机在大迎角状态下作战的问题.在大迎角状态下,后掠翼飞机往往容易遇到无法克服的翼尖失速,过度的上反角效应和副翼失效等问题.1977年,美国国防部高级研究设计局()开始出资让通用动力公司,格鲁曼公司和洛克韦尔公司分别进行前掠机翼结构的模型试验.通用动力公司以一16战斗机为基础设计了一架尾翼后置的前掠翼飞机,但是另外两家公司开发的则是鸭式布局的前掠翼飞机.采用鸭式布局,其前置翼面的下洗气流能够有效地抑制和消除前掠翼飞机特有的翼根失速现象,因此,鸭式布局比较适用于前掠翼飞机.1981年,格鲁曼航空航天公司(即现在的诺思罗普公司)与美国国防部高级研究设计局签署合同,开始开发研究一29前掠翼验证机,并制造了两架样机,这两架样机的机翼部分全部采用了碳纤维环氧复合材料,1984年,第一架前掠翼试验飞机一29在美国爱德华空军基地正式升空,从1984年12月14日到1992年1月18日,两架一29验证机先后进行了成功的试验飞行.采用复合材料后,前掠机翼的优点马上就发挥出来了,它不仅具有后掠机翼提高临界马赫数,降低波阻的优点,还从根本上克服了翼尖失速的缺点.加上布局的特点,使它具有下列主要优点:一是升力特性好.由于前掠机翼没有翼尖失速问题,因此,大部分机翼的潜力能充分发挥,产生出最大升为.于是,低速性能尤其是起飞着陆性能远远优于后掠翼飞机,能在更短的跑道上起降.二是升阻比高.前掠机翼不仅有用升力大,而且升力展向分布较好,即使在大迎角下,展向仍能保持椭圆分布,因此,诱导阻力小,升阻比高.升阻比的提高,增大了飞机的最大航程和作战半径.三是大迎角时操纵性好.前掠机翼克服了翼尖失速的缺点后,即使在大迎角下,仍能保证副翼有良好的操纵性能.四是采用前掠机翼的飞机便于采用近距耦合鸭式布局.此外,采用前掠机翼的飞机还有一些其他优点,例如,配平阻力小,超音速航程大,具有抗螺旋特性,飞机布局灵活性大等.目前,最新型的前掠翼飞机就是俄罗斯苏霍伊设计局设计的一37前掠翼战斗机.一37于1997年9月23日进行首飞
小火车君
前 掠 翼 飞 机 不 仅 具 有 后 掠 翼 提 高 临 界 M数 、 降 低 波 阻 的 优 点 (与 后 掠 机 翼 一 样 , 它 的 垂直 前 缘 的 有 效 分 速 也 较 低 ), 还 从 根 本 上 克 服 了 翼 尖 失 速 的 缺 点 。 此 外 , 采 用 前 掠 机翼 的 飞 机 还 有 一 些 其 他 优 点 , 例 如 , 配 平 阻 力 小 , 超 声 速 航 程 大 , 具 有 抗 螺 旋 特 性, 飞 机 内 部 空 间 大 , 飞 机 布 局 灵 活 性 强 等 。 总 之 , 采 用 前 掠 机 翼 的 飞 机 性 能 大 大 优于 后 掠 机 翼 飞 机 。 例 如 , 在 任 务 一 定 的 情 况 下 , 前 掠 机 翼 飞 机 比 后 掠 机 翼 飞 机 阻 力低 10% ~ 20% , 升 力 可 增 加 30% ~ 40% , 转 弯 速 度 可 提 高 14% , 活 动 半 径 可 提 高 34%, 起 降 距 离 可 缩 短 35% , 重 量 轻 5% ~ 25% , 成 本 可 降 低 40% ~ 60% 。 因 此 , 前 掠 机 翼将 是 下 一 代 高 速 飞 机 的 重 要 布 局 形 式 。
三生皆缘
您好,可以到百度文库里面去找一些哦,我有下载了几篇,可以加我,向我要,另外如果需要代写的话,我们拥有自己的写手团队,保证质量,千字百元(不含图),欢迎加我为好友,文章可以发表在我们刊物上! 科技传播杂志 吴卓颖 推荐歼七飞机起落架收放系统典型故障分析【摘要】:飞机起落架液压收放系统的传动性能与系统或元件的结构参数、工作条件参数以及负载参数等有关.文中在对收放系统传动时间、传动速度等传动性能计算的基础上分析影响其性能的主要因素。比较其影响程度,并进一步探讨了判断故障原因的方法.【关键词】: 起落架 自动收起 传动性能 压力流量特性 液阻负载 配合间隙 摩擦力【正文】:一.歼七飞机前起落架自动收起的故障研究起落架收放系统是飞机的重要组成部分,此系统的工作性能直接影响到飞机的安全性和机动性.改进设计飞机起落架收放系统主要用于控制起落架的收上与放下,控制主起落架舱门和前起落架舱门的打开与关闭,是飞机一个重要的系统,其能否正常工作将直接影响飞行安全。因此对该系统的维护和对所出现的故障进行分析研究,并进行有效的预防就显得十分重要。某单位在对某新型飞机做出厂试飞准备时,当机组人员接上地面压力源和电源进行该机的停机刹车压力调整时,在供压13min后,前起落架开始缓慢收起,飞机机头失去支撑最终导致机头接地,造成雷达罩和前机身02段蒙皮撕裂、结构损坏和前起落架变形等严重后果。本文将对前起落架自动收起的故障进行分析研究,并在此基础上针对性地提出预防措施。1起落架收放控制原理分析图1 前起落架收放系统原理图前起落架收放系统原理如图1所示。正常收起落间隙时,起落架收放手柄(下简称手柄)处于收上位时,电液换向阀l使高压油进入收上管路,放下管路b回油管路相通。在高压油的作用下,下位锁作动筒的活塞杆缩进,下位锁打开。另一路高压油一方面液控单向阀13打开,使舱门作动筒10、12的回油略沟通;另一方面油通过限流活门9进入收放作动筒,使活塞杆伸出,起落架收起,作动筒8的回油经脚向活门7、应急转换活门4、电液换向阀1和应急排油活门2流入油箱。当起落架收好后,协调活门11压通,高压油进入舱门作动筒lO、12的收上腔使舱门收起。当手柄处于放下位置时,来油与放下管路接通,收上管路与回油路相通,起落架放下。在系统中还设有地面联锁开关,当飞机停放时,联锁开关自动断开电液换向阀的电路,此时即使将手柄置于收起位置,电液换向阀也不会工作,从而防止了地面误收起落架。2起落架自动收起原因分析由起落架收放控制原理知道,前起落架放下位置是由带下位锁的后撑杆来保持的,所以要使前起落架收起,必要条件是下位锁开锁。而下位锁开锁有两种情况:第一种是机械原因,即放下起落架时下位锁处于假上锁状态,在维修和使用过程中受到某种外力扰动而开锁;第二种是液压原因,即有液压油进入下位锁开锁作动筒,使作动筒活塞杆缩进导致下位锁开锁。而外部检查和事后的收放检查均未发现下位锁有假上锁的现象。因此前起落架自动收起是由液压方面的原因引起的。而由液压原因引起下位锁开锁的因素很多。当电液换向阀工作不正常使来油与收上管路相通,或者联锁开关故障,地面又误将手柄置于收上位置,在电液换向阀工作时,当给飞机供油压时,都会使下位锁开锁。但这两种情况会使前起落架以较快的速度收起而不会缓慢收起,另外也会同时收起主起落架。但这与事故发生时的实际情况不符,因此基本可以排除。结合当时事故发生的情况,导致前起落架自动收起的原因如下。2.1 电液换向阀性能不良起落架电液换向阀用于起落架收放管路的控制,是一种三位四通电液阀,当手柄在中立位置时(不通电),电液换向阀处于中立位置,图2电液换向阀中立位置(断电)此时供油路堵死,起落架的收、放管路均与回油路相通,如图2所示。由于滑阀与阀套之间都有径向间隙6,由6形成两个相同的矩形节流缝隙,此缝隙的节流面积为A=W8,由于形6,且通过此节流口的流量很小,雷诺数m也很小,流动状态属于层流,故通过此节流口的流量Q为:式中: ——节流口两侧压力差;——动力粘度系数;——节流口面积梯度。则此时,通过2个节流口处的流量为:式中: ——主液压系统供油压力;——回油管路压力。由上式可知,泄漏量的大小主要由节流口面积梯度形和径向间隙6确定,当间隙6越大,则泄漏量越大。而形的大小主要与阀芯的直径有关,直径越大梯度越大;6的大小主要与阀口的形状、制造工艺和加工质量等有关,当设计合理、工艺水平和加工质量高、滑阀和阀套之间没有偏心时,则6就小。如果是新阀,径向间隙小,故泄漏量也小;如果是旧阀,由于控制边被磨损,泄漏面积增大,则泄漏量也增大。为测定泄漏量的大小,拆下电液换向阀,堵住通向作动筒的两个接头,在供压接头处.加液压20.59MPa.在回油接头处接上量杯。3min后,在回油接头处漏油量为45mL,远大于所规定的不超过20mL的要求。电液换向阀泄漏示意图如图3所示。2.2 系统不完整,回油路堵死为了提高起落架收放系统的可靠性,在系统设计中采用了余度技术。即当正常收放起落架失效时,飞行员可以采用冷气应急放下起落架,以保证安全着陆,如图1所示。为防止应急放起落架时,大量液压油回到密闭增压油箱,使油箱因回油过多而引起爆破,为此在电液换向阀的回油路上安装了应急排油活门。应急放起落架时,将收上管路的油液直接排到机外。平时,在主液压系统供压且电液换向阀不工作时,电液换向阀泄漏到收放管路中的油液可以通过应急排油活门直接流入回油管路中,因此不会引起收放系统的压力升高;如果回油管路被堵死,不能回油时,则泄漏油将进入收放系统(参看图l、2),使系统压力升高,当压力升高到一定值时就会引起系统故障。据了解,在发生本次事故前,应急排油活门因故障拆下修理,用堵头将回油路堵住,使起落架收放系统不能回油。这样,电液换向阀泄漏到收放管路的压力油就不能释放掉,收放系统的油压将逐渐升高。由于前起落架下位锁的开锁压力比主起落架的小,因此当压力达到一定值后,就会首先使前起落架下位锁开锁,这样飞机在自重的作用下就会引起前起落架自动收起。3 故障验证为了验证上述分析是否正确,在原飞机上进行了以下试验:(1)给主液压系统供压并通电,把手柄放在中立位置。保持30min后,前起落架下位锁没有任何动作。这说明在系统完整的情况下,因电液换向阀的渗漏而进入收放系统的压力油可以从应急排油活门处及时排出系统回油箱。(2)为模拟事故当时的系统环境,将应急排油活门拆下,并用堵头堵住回油路。给主液压系统供压5min后,前起落架下位锁就开始动作,到6min时下位锁完全开锁。该项试验足以证明从起落架电液换向阀泄漏进入起落架收放系统的油液确实能够将前起落架下位锁打开,说明上述分析是完全正确的。4维修对策由以上分析和验证可知,本次事故的原因有两个:一是起落架电液换向阀泄漏量超过规定;二是起落架收放系统不完整,使系统丧失了对不良因素的“自我消化”能力。为了有效预防此类事故的发生,建议采取以下措施。(1)改进起落架收放管路的设计经仔细分析后不难发现,该型飞机在系统的设计方面存在一些不足。应急排油活门的功用是应急放起落架时将收上管路的油液排到机外。由于应急排油活门是安装在系统的回油管路上的,一方面当应急排油活门出现故障时,将会影响整个系统的回油,进而影响系统的工作;另一方面当电液换向阀故障使收上管路不能回油时,则在应急放起落架时,收上管路的油液就无法从应急排油活门排到机外,就会使起落架无法应急放下,即应急放起落架还要受到电液换向阀工作的影响。该型飞机在定型试飞过程中就曾发生过应急放起落架未放到位的故障,其原因就是由于电液换向阀的故障引起的。所以这种安装是不科学的,它使系统的可靠性和安全性降低。但是如果将应急排油活门安装到收上管路,即电液换向阀收上接头的出口处,则既不会影响应急排油活门的功能,又能提高系统的可靠性,也不会发生上述事故。因此,建议有关部门经充分论证后,将应急排油活门安装到电液换向阀收上接头的出口处。(2)提高产品质量,加强安装前的检查电液换向阀是起落架收放控制系统的核心附件,对其制造质量和性能指标都有具体的要求。但在实际生产和使用过程中,人们往往重视它的功能,而对它的泄漏量等指标的规定不太重视,总认为泄漏量的大小对系统的工作和性能没有什么影响。因此建议一方面要努力提高工艺水平和加工质量,保持滑阀和阀套的同心,以尽可能地减少滑阀与阀套之间的径向间隙,另一方面在装机使用前一定要加强对其各种性能指标的测定,对泄漏量超过规定的电液换向阀不允许安装使用。二.数据符合规定前起落架为何放不下1995年4月13日,我部歼七×××,号机飞完第一个起落着陆时,前起落架未放下,两主轮接地后正常滑跑,机头触地后又滑行约800米停在跑道中段右侧。机务人员及时赶到现场,抬起机头,这时前起落架自动掉下,机务人员将前起落架推上锁,进行初步检查后,即将该机牵引至定检中队。该机于1992年12月19日第二次大修出厂后飞行236小时446个起落。,在这之前的445个起落均无异常现象。1、地面检查和模拟试验情况为查清故障原因,检查组对可能造成前 起落架放不好的有关部位进行了专项检查。1.1 飞机着陆后,飞机主液压系统尚有余 压60kgf/cm2,油量正常,油箱密封增压良好。在定检中队进行起落架收放共10次,均未发现异常,起落架收上时间为8秒(规程规定不超过15秒),左右起落架收上时问差 为1秒(规程规定不大于1.5秒)。1.2开车检查液压泵及液压系统工作情况,系统工作正常,从起动至慢车压力达到140kgf/cm2。,符合规定(规程规定为140一5 kgf/cm2)。1.3将该机与另一架良好的歼教七飞机同 时拉至起飞线,顶起千斤顶,作慢车工作状态下的收放情况对比,收放起落架10次,未见异常;测量前起落架各部间隙,均符合规定1.4检查前起落架锁臂、锁槽.表面光滑无毛刺,摇臂转动灵活。测量前起落架开锁动作筒活塞杆与开锁臂之间的间隙h值为3.5mm,其值虽在上极限,但仍住规定值的允许范围内。1.5模拟飞机着陆状态,发动机在小转速液压泵处在卸荷末期,先放襟翼减速板,紧接着放起落架,再次进行收放起落架的试验(将地面油泵车压力调至80kgf/cm2。)。这样的试验共做了12次,其中3次主起落地已开锁并放到位,主起落架放下指示灯亮后,前起落架仍未开锁。等到系统压力恢复至所调压力值时,前起落架才开锁并放到位,但前起落架开锁时响声很大。2、原因分析针对模拟收放试验中该机前起落架3次出现开锁难、放下晚的情况,检查组集中分析了该机前起落架开锁动作筒工作失常导致前起落架放不下的可能性。如图(4)所示,正常情况下,前起落架开锁 动作筒的工作可分为三个阶段:第一阶段,活塞杆伸出长度h为2—3.5mm,消除活塞杆与开锁臂的间隙;第二阶段,活塞杆伸出长度L为20-21mm,锁钩机构开锁,活塞上(右)端面在“B”管咀通油孔的边缘;第三阶段,活塞杆伸出长度S为29~31mm时,“B”管咀打开,前起落架收放动作筒通油工作。一般情况下,只要能够达到上述的顺序条件,就能保证先开锁后放起落架。经测量,该机h值为3.5mm,L值为20.5mm,S值为30.5mm。从测量情况看,该机除h值在上极限位置外,其余均正常。根据开锁动作筒的作原理可知,当h值分别在上极限位置(3.5mm)极限位置(2mm)时,值达1.5mm。对于一个既定的开锁动作筒而言,如果当其h值为2mm时,活塞杆伸出L后锁钩机构即开锁,而此时活塞上(右)端面又正好处在“B”管咀即将通油的边缘的话,那么,当其h值因某种原因变为3.5mm时,活塞杆伸出L后,就可能出现在锁钩机构尚未开锁(需要活塞杆再伸出1.5mm才能开锁)的情况下,“B”管咀的油路已通,前起落架收放动作筒的上腔已提前通油,使前起落架产生一个放下力矩,而该力矩又通过支柱上凸部的锁槽作用在锁块上,增大相互的摩擦力,如此时液压系统压力小于80kgf/cm2。,此摩擦力与锁簧拉力之和就很可能大于前起落架开锁动作筒活塞杆的开锁力,造成前起落架开不了锁、放不下。为进一步判明该机此次故障是否符合上述分析,检查组在地面做了如下试验:用手摇泵给开锁动作筒的“A”管咀加压,并拆开“B”管咀接头(便于检查“B”管咀的通油时机).查发现,活塞杆伸出长度21mm起落架锁钩机构尚未开锁,而“B”管咀开始通油。这项试验结果与以上分析完全吻合为什么该机在翻修出厂后的445个飞行起落中,工作都正常,而到第446个起落着陆时前起落架放不好呢?为什么发生问题后,地面收放起落架102次均正常呢?检查组分析,这可能是因为在液压系统压力较大(80~lOOkgf/cm2。)时,虽然也存在开锁动作筒“B”管咀通的问题,但由于开锁动作连续(中间不停顿),动摩擦力较小,所以,前起落架放不下来的故障就暴露不出来。而只有在小压力、连续收放和开锁停顿等几个因素同时存在的情况下,前起落架放不下来的故障才会发生。据飞行员反映,该机本次飞行是小航线着陆,着陆放起落架前飞行员可能使用了减速板。因此,当时的情况就可能是:飞行员使用减速板时,液压系统已处于卸荷末期,系统压力很小,放减速板后,压力进一步减小,接着再放起落架,则压力减至更小(据地面试验,压力可减小至0),使开锁动作筒活塞杆的伸出过程有停顿,使开锁动作不能连续完成。而在液压系统压力回升时,“B”管又恰通油,因而收放动作筒对锁钩机构施加了压紧力,增大了开锁摩擦力。所以,在这次着陆时,小压力、.连续收放和开锁停顿等几个因素恰好向时具备,致使前起落架开不了锁、放不下,加上该机本次是小航线着陆,从飞行员放起落架到飞机着陆接地的时间缩短,在液压系统压力尚未回升到足以使前起落架开锁放出之前,机头已接地。3、结论根据以上分析,开锁动作筒活塞杆与开锁臂之间的间隙偏大(虽在规定范围内,但处在上极限)是造成该机本次着陆时前起落架未放好的直接原因。三、总结:通过以上的分析说明,歼七飞机起落收不上、放不下、动作筒错为等故障,其原因主要是油液污染,油泵的供油性能不足和某些设计缺陷等,经过理论计算,检修或实验,可以把问题透明化,就有可能更好的解决问题,为提高飞机的飞行品质和可靠性提供了保障,提高了飞行安全系数,最后,也可能为航修企业提供一些必要的规则。四、致谢:我毕业设计及毕业论文的完成,得到了很多同学和老师的帮助,因此,我要向他们表示最真挚的感谢。历经近三个月的时间,我的论文终于圆满完成,这不仅仅是我完成了老师下达的任务,更是对我大学整个专业知识的一次升华!在写论文的过程中,我深深感觉到我的专业知识还待进一步的完善,基础知识还得进一步夯实!知识面的狭窄是我完成这篇论文最突出的一个问题,在充分认清了我的不足后,我更加努力地利用我打工业余的时间来搜集大量的专业资料,并尽量吸收其中的精华,最终通过自己的独立思考将之转变为自己的东西,并在一定程度上提出了自己的一些见解,较成功的实现了由理论转为实践的最终目的!当然,论文能顺利完成离不开指导教师的教诲,特别在学期的实习中,您一直灌输我们“多思考,多动手”的意识,这在我构思论文时去积极的独立思考并解决一些实际的问题起到了很好的启蒙作用!在此向您及所有的指导教师道一声:您辛苦了!在以后的工作中,我会继续秉承您的教诲,以一个优秀员工的行动给老师争光,给航院添彩!完成论文期间我并没有专业实习的机会,虽然我很努力地去写好我的论文,但由于自己的知识面的狭窄及实习经验的匮乏,这篇在时间上相对紧迫的论文难免会有一些漏洞或不足,恳请您的谅解! 谢谢您,老师!同时还要感谢我的同学们,三年的大学生活,他们帮助我学到了很多,使我懂得了很多道理,同时也打下了良好的基础,我才能顺利的完成这次的毕业论文设计,以及能在以后的工作生活中,不断的开拓进取。再次的感谢你们,谢谢!五、参考文献1.史纪定.液压系统故障诊断与维修技术.北京:机械工业出版社,1990.7.2.某型飞机地勤培训教材第二册.西安:航空工业总公司第603研究所,1995.10.3. 黄树执.歼七飞机构造讲义〔M〕.空军工程学院,1987:70- 714. 杨闽桢.飞机机体传动与控制〔M〕.空军工程学院。1986:276-287
yirendian10
前掠翼主要有四大优势:
结构优势。前掠翼结构可以保障机翼与机身之间更好地连接,并且合理地分配机翼和前起落翼所承受的压力。这些优势用其它方法很难达到或者不可能达到,它大大提高了飞机在机动时、尤其是在低速机动时的气动性能。此外,前掠翼的结构设计,还可使飞机的内容积增大,为设置内部武器舱创造了条件,同时也大大提高了飞机的隐身性能。
机动优势。前掠翼技术可使飞机在亚音速飞行时具有非常好的气动性能,从而大大提高其在仰角状态下的机动性。若前掠翼布局与推力矢量控制系统综合使用,还可使其在空战中更具优势,其近距空战机动能力将成倍地提高。
起降优势。与相同翼面积的后掠翼飞机相比,前掠翼飞机的升力更大,载重量增加30%,因而可缩小飞机机翼,降低飞机的迎面阻力和飞机结构重量;减少飞机配平阻力,加大飞机的亚音速航程;改善飞机低速操纵性能,缩短起飞着陆滑跑距离。据美国专家计算,F-16战斗机若使用前掠翼结构,可提高转变角速度14%,提高作战半径34%,并将起飞着陆距离缩短35%。
可控优势。使用前掠翼结构可以提高飞机低速度飞行时的可控性,并能在所有飞行状态下提高空气动力效能,降低失速速度,保证飞机不易进入螺旋,从而使飞机的安全可靠性大大提高。
当然,前掠翼也并非十全十美。比如它技术复杂,对与之配套的相关技术要求比较高,气动部件强度要求大,而且翼尖振颤的问题至今无法彻底解决。所以目前还是很少有战斗机采用这种布局。
实用性还是不高的,以老毛子的苏47为例也就造了一架验证而已!
《空军军事学术》杂志现在已经从空军指挥学院转到空军研究院,现在地址在北京海淀区安宁庄路11号院,邮编100085
战斗机网站/论坛空军之翼(为生存广告有些多,但是耐心浏览会发现其内容全面而深刻)空军之翼--鼎盛防务论坛 军事装备网站凤凰网军事频道(及时迅速,有客观点评与分析
对于论文的准备时间存在不同的说法,主要是因为博士论文的审稿答辩流程涉及多方面的人和流程,存在很多不确定、难控制的因素。就笔者所见和所经历来看,论文的审稿答辩流程
第二期。《致陆东青》是《爱格》文章系列的第二期,第一期是《致唐鸳》。《爱格》是2007年山东出版集团出版的杂志,天使文化旗下爱格杂志社编辑发行的半月刊。
定义1: p(x,q)=f(x)+qs(x)其中,p(x,q)称为惩罚函数.qs(x)为惩罚项,其中q为惩罚因子,是极限为∞的数列.在外点罚函数的求解过程中