梧桐春雨
废电池回收方法汇总 1. 废镍氢电池 1.1 失效负极合金粉的回收处理 将失效MH/Ni电池外壳剥开,从电池芯中分选出负极片,用超声波震荡和其它物理方法,得到失效负极粉,再经化学处理得到处理后的负极粉,将此负极粉压片,在非自耗真空电弧炉中反复熔炼3~4次。除去熔炼铸锭表面的氧化层,将其破碎,混合均匀后,用ICP方法测其混合稀土、镍、钴、锰、铝各元素的百分含量,根据储氢合金元素流失的不同,以镍元素的含量为基准,补充其它必要元素,再进行冶炼,最终得到性能优良的回收合金。 1.2 失效MH/Ni电池负极合金的回收 将失效负极粉采用化学处理的方法,利用处理液对合金表面的浸蚀,破坏合金表面的氧化物,但又要使合金中未氧化的其它元素及导电剂受到的浸蚀影响降至最小。采用0 5mol•L-1的醋酸溶液,将失效合金粉在室温下处理0.5h,再用蒸馏水洗涤、真空条件下干燥。结果看出,AB5型储氢合金的主体结构没有变,仍属于CaCu5型六方结构,但负极粉中Al(OH)3和La(OH)3的杂相基本完全消失,说明这些氧化物经化学处理后,表面的氧化物几乎完全被溶解掉。将化学处理后的失效负极粉与制作电池用的原合金粉以及未经化学处理的失效合金粉,做充放电性能对比,经过化学处理的失效负极粉的放电比容量比未经化学处理的失效负极粉高23mAh•g-1,说明经过化学处理以后,由于表面氧化物被大部分除去,使失效负极粉中储氢合金的有效成分增加。XPS测试结果表明,负极粉表面镍原子的浓度由化学处理前的6.79%升高到9.30%,这说明经过化学处理以后,合金的表面形成了具有较高电催化活性的富镍层,这不但提高了储氢电极的电催化活性,而且也提供了氢原子的扩散途径,因而使电极的放电性能提高。但经过化学处理的失效负极粉与制作电池用的原合金粉相比较,放电比容量仍低90mAh•g-1,一方面可能是由于合金的氧化不仅仅是局限于表面,也可能会深入到合金的内部,化学处理仅仅是将表面的氧化物除去,颗粒内部的深层氧化并没有被完全除去;另一方面可能是由于合金的粉化使比表面积增大,同时使合金与O2反应以及受电解液的腐蚀更加容易,两方面原因共同作用导致合金的放电性能下降。所以,仅仅通过化学处理的方法并不能使失效负极恢复功能,还需进行熔炼处理。 将上述经过化学处理的负极粉,于非自耗电弧炉中进行第一次冶炼。将所得合金铸锭抛光,去除表面杂质后,分析各元素含量,结果可以看出合金中的元素含量偏离原合金,镍含量远大于原合金粉中的镍含量,这是因为在制作电极的过程中加入镍粉做导电剂,为了有效的利用它,以它为基准,调整其它元素的含量使其符合组成为MmNi3.5Co0.7Mn0.4Al0.3的各元素的配比,进行第二次冶炼。冶炼后,将得到的合金铸锭破碎,研磨后,测其结构,为CaCu5型,没有其它杂相生成。 将回收的合金粉做充放电性能测试,可以看出,回收合金粉的放电容量比失效负极粉高约100mAh•g-1,与原合金粉的放电容量相比基本相同,并且回收合金粉的放电平台压比原合金粉的放电平台压高约20mV左右,这可能是由于合金回收的过程中经过数次熔炼,使合金的成分和微观结构得到了改善的原因。 参考文献:MH/Ni电池用稀土系储氢合金的失效及回收研究 王荣,阎杰 ,周震,周作祥,邓斌,高学平 中国稀土学报,2002年4月 2. 废锂离子二次电池 采用碱溶解→酸浸出→P204萃取净化→P507萃取分离钴、锂→反萃回收硫酸钴和萃余液沉积回收碳酸锂的工艺流程,从废旧锂离子二次电池中回收钴和锂。实验结果表明:碱溶解可预先除去约90%的铝,H2SO4+H2O2体系浸出钴的回收率达到99%以上;P204萃取净化后,杂质含量为Al3.5mg/L、Fe0.5mg/L、Zn0.6mg/L、Mn2.3mg/L、Ca<0.1mg/L;用P507萃取分离钴和锂,在pH为5.5时,分离因子βCo/Li可高达1×105;95℃以上用饱和碳酸钠沉积碳酸锂,所得碳酸锂可达零级产品要求,一次沉锂率为76.5%。 锂离子二次电池由外壳和内部电芯组成,外壳为不锈钢、镀镍金属钢壳或塑料外壳;电池的内部电芯为卷式结构,主要由正极,负极,隔离膜,电解液组成。一般电池的正极材料由约90%钴酸锂活性物质,7%~8%乙炔黑导电剂和3%~4%有机粘和剂,均匀混合后涂抹于厚度约20μm铝箔集流体上;电池的负极由约90%负极活性物质碳素材料,4%~5%乙炔黑导电剂和6%~7%粘和剂均匀混合后涂抹在厚度为15μm铜箔集流体上。正负极的厚度约0.18~0.20mm,中间用厚度约10μm隔离膜隔开,隔离膜一般用聚乙烯或聚丙烯膜,电解液为六氟磷酸锂的有机碳酸酯溶液。将废旧锂离子二次电池除去包装及外壳,取出电芯,分离出正极材料。
happysharon
燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。
1878年法国的L.梅谢在锌锰电池中用含铂的多孔性炭电极代替二氧化锰锌空气电池炭包,开发了锌空气干电池的技术。1917年法国人C.费里用活性炭代替铂,以吸收氧,
化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学
燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见
【摘要】固体氧化物燃料电池是一种可以直接将燃料的化学能转化为电能的电化学装置,固体氧化物电解池是固体氧化物燃料电池的逆过程,能够高温电解水/二氧化碳制氢气/一氧
动力电池PACK行业主要上市公司:目前国内动力电池PACK行业的上市公司主要有宁德时代 (300750)、国轩高科(002074)、比亚迪(002594)和长城