• 回答数

    7

  • 浏览数

    224

金德易BOSS
首页 > 期刊论文 > 自然语言的量子研究论文

7个回答 默认排序
  • 默认排序
  • 按时间排序

超级尺蠖爱和平

已采纳

10月24日,谷歌在《自然》杂志上发表了一篇关于量子计算的论文。称已经开发出一款54量子比特数(其中有效量子比特53个)的超导量子芯片“Sycamore”。基于该芯片对一个53比特、20深度的电路采样100万次只需200秒,而现在最厉害的经典超级计算机Summit完成这一过程需要10000年,谷歌由此宣称率先实现了“量子霸权”。

尽管这一成果得到了许多赞美之词,但也不乏质疑者。不过谷歌的量子计算能力若真如其所言,那么将可能对人工智能领域产生极大的助力。不只是谷歌,现在全球范围内不少 科技 巨头都在量子计算方面有所动作,并且已经取得了可观的成果。

虽然人工智能的概念早在1956年的达特茅斯会议上就已被提出,但迅速发展却是近几年的事情,其中原因与技术和环境的发展有密切相关。如今再加上量子计算作为助力,人工智能是否会更迅速地进入到“强人工智能”的阶段呢?量子霸权倘若到来又会对其他领域产生怎样的影响呢?

在量子计算领域深耕多年的IBM表示,自家有一种计算机完成谷歌提出的任务只需2.5天,根本没有10000年那么久。中科院量子信息重点实验室副主任郭国平也认为,谷歌所谓的10000年是基于量子计算特性“粗暴计算得出的数字”,而未能考虑到如今的超级计算机在网络传输、存储等性能方面的优化。由此看来,谷歌所谓“量子霸权”的说法有误导大众之嫌。

尽管如此,谷歌的这项成果依然值得称道,它不管是对谷歌自身还是一些热门的领域都是有着重要意义的。 而谷歌自己显然也是这么认为的,谷歌CEO桑达尔·皮查伊甚至将此次量子计算研究成果的意义与莱特兄弟发明飞机相提并论。

相对于传统计算,量子计算优势明显。就拿谷歌看重的人工智能领域来说,其源动力分别为大数据、算法和计算能力。大数据靠积累,而计算能力则由摩尔定律衍生而来。

重点在于,人工智能发展的障碍就是计算能力。如今的设备和技术让大数据的积累呈现爆发式增长,但如何处理海量数据是个大问题,如今生产数据的能力与处理数据的能力已然不能匹配。即使是谷歌引以为傲的AlphaGo,下一盘棋所消耗的能量都比人类多出几十万倍,这就是计算能力不足所致。

此时量子计算的作用就得以凸显,它的进展对人工智能领域或许会产生颠覆性的改变。 科技 大师雷·库兹韦尔曾预言“2045年,奇点来临,人工智能完全超越人类智能,人类 历史 将彻底改变”。

而皮查伊在最近的采访中表示,量子计算与人工智能属于“共生事物”,二者同处早期研究阶段。并且“人工智能可以加速量子计算,量子计算可以加速人工智能”。对于量子计算,皮查伊也是信心满满:“我们认为自己是一家深度计算机科学公司。摩尔定律在它的周期结束时,量子计算是我们将继续在计算领域取得进展的众多因素之一”。

在属于“综合性学科”的人工智能中,量子计算占据着如此关键的位置。并且量子计算不仅可以作用于人工智能领域,而是对当下与未来的不少热门领域都能起到重要的作用。那么量子计算到底是什么?又为何会引得诸多巨头花心思去研究呢?

量子计算,即利用量子力学的基本原理来加速解决复杂计算的过程。这种计算方式相较于传统计算机,能够更加迅速高效地处理海量的数据。在传统计算中,要靠微芯片材料与晶体管的进步提升算力,大体上就是在微芯片中嵌入电子开关,在0和1之间交替完成信息处理,芯片上的晶体管数量与芯片处理电信号的速度成正比,从而完成计算。但量子计算则可以兼容0和1,使得计算速度产生质的飞跃。

1965年,英特尔联合创始人戈登·摩尔提出,微芯片上单位面积内的晶体管数量会一年翻一番,但成本会同时减少一半。也就意味着价格不变,集成电路上可容纳的元器件的数目大概每隔18~24个月便会增加一倍,性能也将提升一倍。

这个定律一直对传统计算有着重大意义,但最近几年,依照摩尔定律发展的信息技术进步的速度正在逐渐减慢,尤其是在人工智能领域,摩尔定律显而易见地逐渐失效,中科院院士杜江峰曾在去年发表言论,称摩尔定律最多还能使用10年。

在这种情况下,量子计算的作用得以发挥。传统计算几十年才能解决的数据问题,量子计算可能只需1秒就搞定。不仅是在计算速度层面,还有在材料、设备等方面的最优选择与最佳组合,这些问题经典计算无法解决,可量子计算统统都能搞定。这就使得量子计算不仅在人工智能,并且可以在金融、医疗、物流、网络安全、基因组学等多个领域发挥重大作用。

在这些领域中,许多都是焦点与风口, 科技 巨头们对此自然极为重视。 包括谷歌、微软、英特尔、IBM、阿里巴巴和百度在内的企业纷纷在量子计算方面加以 探索 。

例如微软在2017年建立了拓扑量子位,可以让设备使用现存的更精细的量子位。微软量子团队主管托德·霍尔姆达尔认为,通过量子计算“有机会解决一系列此前无法解决的问题”,而想靠传统计算机来解决这些问题也许会耗尽“宇宙的生命”。

英特尔从2015年就开始与学术界的一些伙伴联合加速研发量子计算技术,到2017年成功测试了17量子比特超导计算芯片。在CES 2018举办期间,英特尔研发出了首个49量子比特的量子计算测试芯片。

阿里巴巴旗下的阿里云与中科院携手在2015年建立了“阿里巴巴量子计算实验室”,助攻多领域量子计算应用,如电商、人工智能、数据安全等。2018年,阿里云推出了有11个量子比特的量子计算云服务。

百度也于2018年成立量子计算研究所,主要研究量子信息理论和量子计算。这对其搜索引擎业务同样能起到推助作用。

这些巨头的主业与计算能力都有关联,更何况量子计算本身就代表着未来的趋势,一旦能够落地使用,将会使多个领域呈现颠覆式变化。如此一来,也就不难理解量子计算为何这么受欢迎了。

在不久的将来,如果还有人想继续从计算能力的指数增长中获益,传统计算已然无法依靠。因为以晶体管为基础的计算方式显然已经不再适合未来,量子计算就是下一个值得追逐的方向。不过量子计算出现的时间也不短了,为何近几年才开始加速?这种加速发展又会给人工智能领域带去何种转变呢?

谷歌在此次研究成果中提到的“量子霸权”,最初是由美国加州理工学院的物理学家约翰·普瑞斯基尔提出的,大意是现在最强的超级计算机能够完成5到20个量子比特的量子计算机所做的事情,但当量子比特超过49个,量子计算机的能力就会将超级计算机远远甩在身后。

谷歌如今是否实现了“量子霸权”尚有争议,但我们应该清楚,照现在这种发展速度,量子霸权注定会有实现的一天,而且这天的到来应该不会太迟。因为英特尔交付的49量子比特的量子计算机芯片,IBM的能处理50量子比特的量子计算机都已经接近了“量子霸权”的标准。其他的一些研究成果虽未达到这个程度,但进步也是很快的。

量子计算的发展推动了多领域的进步,反之一些领域的发展也成了量子计算技术飞速发展的助力。 近年来,人工智能领域无论是技术还是商用,都呈现出爆发式增长的态势。此外,已在加紧布局的5G使得网络传输与单位传输速率大幅提升。这些转变都增强了量子计算的能力,使其发挥出更大的作用,因而量子计算与这些领域相辅相成,共同进步。

在诸多领域中,人工智能与量子计算的关系尤为紧密,人工智能已被 科技 界与学术界公认为是量子计算的重要着力点。 例如,微软就曾经用拓扑量子计算机将其AI助手“小娜”的算法训练时间从一个月缩短到一天。此外,量子计算中自动优化的功能可自行修正人工智能数据系统中的错误,并不断处理新数据。

当前,AI处于“弱人工智能”阶段,但如果不断加入量子计算,那么那种传说中的有独立意志、 情感 认知能力的“强人工智能”或许会提早到来。因为量子计算不仅具备强大的数据处理能力,更有自我学习和修正的能力。

有观点认为,将黑猩猩置于人类的语言环境下使其进行学习,训练足够长的时间,也可以使黑猩猩学会人类语言。黑猩猩尚能训练到如此程度,更何况是集人类智慧大成的人工智能与量子计算。经过这种强强联合,人工智能一定会比人类更聪明、更有能力。同理,量子计算会对更多领域产生本质层面的颠覆,甚至会涉及到国与国之间的 科技 方面的竞争。也许在未来某天,我们关于 科技 的那些最激进的想象都能实现,或者比我们想象中的还要让我们惊讶。

当然想要看到这一天还要继续等待,目前量子计算尚未普及,而且巨头之间关于这一领域也会有激烈的竞争。在这一过程中与之相关的领域会如何发展,巨头之间竞争结果如何,还有待时间的检验。

177 评论

地火燎原

数千年来,人类一直依靠天生的直觉来认识自然界运行的原理。虽然这种方式让我们在很多方面误入歧途,譬如,曾一度坚信地球是平的。但从总体上来说,我们所得到的真理和知识,远远大过谬误。正是在这种虽缓慢、成效却十分积极的积累过程中,人们逐渐摸索总结出了运动定律、热力学原理等知识,自身所处的世界才变得不再那么神秘。于是,直觉的价值,更加得到肯定。但这一切,截止到量子力学的出现。量子起源 这是被爱因斯坦和玻尔用“上帝跟宇宙玩掷骰子”来形容的学科,也是研究“极度微观领域物质”的物理学分支,它带来了许许多多令人震惊不已的结论——科学家们发现,电子的行为同时带有波和粒子的双重特征(波粒二象性),但仅仅是加入了人类的观察活动,就足以立刻改变它们的特性;此外还有相隔千里的粒子可以瞬间联系(量子纠缠):不确定的光子可以同时去向两个方向(海森堡测不准原理);更别提那只理论假设的猫既死了又活着(薛定谔的猫)…… 诸如以上,这些研究结果往往是颠覆性的,因为它们基本与人们习惯的逻辑思维相违背。以至于爱因斯坦不得不感叹道:“量子力学越是取得成功,它自身就越显得荒诞。” 到现在,与一个世纪之前人类刚刚涉足量子领域的时候相比,爱因斯坦的观点似乎得到了更为广泛的共鸣。量子力学越是在数理上不断得到完美评分,就越显得我们的本能直觉竟如此粗陋不堪。人们不得不承认,虽然它依然看起来奇异而陌生,但量子力学在过去的一百年里,已经为人类带来了太多革命性的发明创造。正像詹姆斯·卡卡廖斯在《量子力学的奇妙故事》一书的引言中所述:“量子力学在哪?你不正沉浸于其中吗。” 陌生的量子,不陌生的晶体管 美国《探索》杂志在线版给出的真实世界中量子力学的一大应用,就是人们早已不陌生的晶体管。 1945年的秋天,美国军方成功制造出世界上第一台真空管计算机ENIAC。据当时的记载,这台庞然大物总重量超过30吨,占地面积接近一个小型住宅,总花费高达100万美元。如此巨额的投入,注定了真空管这种能源和空间消耗大户,在计算机的发展史中只能是一个过客。因为彼时,贝尔实验室的科学家们已在加紧研制足以替代真空管的新发明——晶体管。 晶体管的优势在于它能够同时扮演电子信号放大器和转换器的角色。这几乎是所有现代电子设备最基本的功能需求。但晶体管的出现,首先必须要感谢的就是量子力学。 正是在量子力学基础研究领域获得的突破,斯坦福大学的研究者尤金·瓦格纳及其学生弗里德里希·塞茨得以在1930年发现半导体的性质——同时作为导体和绝缘体而存在。在晶体管上加电压能实现门的功能,控制管中电流的导通或者截止,利用这个原理便能实现信息编码,以至于编写一种1和0的语言来操作它们。 此后的10年中,贝尔实验室的科学家制作和改良了世界首枚晶体管。1954年,美国军方成功制造出世界首台晶体管计算机TRIDAC。与之前动辄楼房般臃肿的不靠谱的真空管计算机前辈们相比,TRIDAC只有3立方英尺大,功率不过100瓦。今天,英特尔和AMD的尖端芯片上,已经能够摆放数十亿个微处理器。而这一切都必须归功于量子力学。 量子干涉“搞定”能量回收 无论怎样心怀尊敬,对于我们来说,都不太容易能把量子力学代表的理论和它带来的成果联系在一起,因为他们听起来就是完全不相干的两件事。而“能量回收”就是个例子。 每次驾车出行,人们都会不可避免地做一件负面的事情——浪费能量。因为在发动机点燃燃料以产生推动车身前进的驱动力同时,相当一部分能量以热量的形式散失,或者直白地说,浪费在空气当中。对于这种情况,美国亚利桑那大学的研究人员试图借助量子力学中的量子干涉原理来解决这一问题。 量子干涉描述了同一个量子系统若干个不同态叠加成一个纯态的情况,这听起来让人完全不知所谓,但研究人员利用它研制了一种分子温差电材料,能够有效地将热量转化为电能。更重要的是,这种材料的厚度仅仅只有百万分之一英尺,在其发挥功效时,不需要再额外安装其他外部运动部件,也不会产生任何污染。研究团队表示,如果用这种材料将汽车的排气系统包裹起来的话,车辆因此将获得足以点亮200只100瓦灯泡的电能——尽管理论让人茫然,但这数字可是清晰可见的。 该团队因此对新型材料的前途充满信心,确定在其他存在热量损失的领域,该材料同样能够发挥作用,将热能转变为电能,比如光伏太阳能板。而我们只需知道,这都是量子干涉“搞定”的。 不确定的量子,极其确定的时钟 作为普通人,一般是不会介意自己的手表快了半分钟,还是慢了十几秒。但是,如果是像美国海军气象天文台那样为一个国家的时间负责,那么这半分半秒的误差都是不被允许的。好在这些重要的组织单位都能够依靠原子钟来保持时间的精准无误。这些原子钟比之前所有存在过的钟表都要精确。其中最强悍的是一台铯原子钟,能够在2000万年之后,依然保持误差不超过1秒。 看到这种精确的能让人紊乱的钟表后,你也许会疑惑难道真的有什么人或者什么场合会用到它们?答案是肯定的,确实有人需要。比如航天工程师在计算宇宙飞船的飞行轨迹时,必须清楚地了解目的地的位置。不管是恒星还是小行星,它们都时刻处在运动当中。同时距离也是必须考虑的因素。一旦将来我们飞出了所在星系的范围,留给误差的边际范围将会越来越小。 那么,量子力学又与这些有什么关系呢?对于这些极度精准的原子钟来说,导致误差产生的最大敌人,是量子噪声。它们能够消减原子钟测量原子振动的能力。现在,来自德国大学的两位研究人员已经开发出,通过调整铯原子的能量层级来抑制量子噪声程度的方法。它们目前正在试图将这一方法应用到所有原子钟上去。毕竟科技越发达,对准时的要求就越高。 量子密码之战无不胜 斯巴达人一向以战斗中的勇敢与凶猛闻名于世,但是人们并不能因此而轻视他们在谋略方面的才干。为了防止敌人事先得知自己的军事行动,斯巴达人使用一种被称作密码棒的东西来为机密信息加密和解密。他们先将一张羊皮纸裹在一根柱状物上,然后在上面书写信息,最后再将羊皮纸取下。借助这种方式,斯巴达的军官能够发出一条敌人看起来语无伦次的命令。而己方人员只需再次将羊皮纸裹在同等尺寸的柱状物上,就能够阅读真正的命令。 斯巴达人朴素的技巧,仅仅是密码学漫长历史的开端。如今,依靠微观物质一些奇异特性的量子密码学,已经公开宣称自己无解。它是一种利用量子纠缠效应、基于单光子偏振态的全新信息传输方式。其安全之处在于,每当有人闯入传输网络,光子束就会出现紊乱,每个结点的探测器就会指出错误等级的增加,从而发出受袭警报;发送与接收双方也会随机选取键值的子集进行比较,全部匹配才认为没有人窃听。换句话说,黑客无法闯入一个量子系统同时不留下干扰痕迹,因为仅仅尝试解码这一举动,就会导致量子密码系统改变自己的状态。相应的,即便有黑客成功拦截获得了一组密码信息的解码钥匙,那他在完成这一举动的同一时刻,也导致了密钥的变化。因而当合法的信息接收者检查钥匙时,就会轻易发现端倪,进而更换新的密钥。 量子密码的出现一直被视为“绝对安全”的回归,不过,天下没有不透风的墙。拥有1000多年前那部维京时代海盗史的挪威人,已经打破了量子密码无解的神话。借助误导读取密码信息的设备,他们在不尝试解码的条件下,就获得了信息。但他们承认,这只是利用了现存技术上的一个漏洞,在量子密码术完善后即可趋避。 随机数发生器:上帝的“量子骰子” 所谓的随机数发生器,并不是老派肥皂剧中那些奇幻神秘的玩意。它们借助量子力学,能够召唤出真正的随机数。不过,科学家们为什么要不辞劳苦地深入量子世界来寻找随机数,而不是简单轻松地抛下硬币、掷个骰子?答案在于:真正的随机性只存在于量子层级。实际上只要科学家们收集到关于掷骰子的足够信息,那么他们便能够提前对结果做出预测。这对于轮盘赌博、彩票甚至计算机得出的开奖结果等等,统统有效。 然而,在量子世界,所有的一切都是绝对无法预测的。马克斯·普朗克大学光学物理研究所的研究人员正是借助这一不可预知性,制作出了“量子骰子”。他们先是通过在真空中制造波动来产生出量子噪声,然后测量噪声所产生的随机层级,借此获得可以用于信息加密、天气预演等工作的真正随机数字。值得一提的是,这种骰子被安装在固态芯片上,能够胜任多种不同的使用需求。 我们与激光险些失之交臂 与量子力学的经历相似,激光在早期曾经也被认为是“理论上的巨人,实际应用上的侏儒”。但今天,无论是家用CD播放器,还是“导弹防御系统”,激光已经在当代人类的社会生活中,占据了核心地位。不过,如果不是量子力学,我们与激光的故事,很可能是以“擦身而过”而收场。 激光器的原理,是先冲击围绕原子旋转的电子,令其在重回低能量级别时迸发出光子。这些光子随后又会引发周围的原子发生同样的变化,即发射出光子。最终,在激光器的引导下,这些光子形成稳定的集中束流,即我们所看到的激光。当然,人们能够知晓这些,离不开理论物理学家马克斯·普朗克及其发现的量子力学原理。普朗克指出,原子的能量级别不是连续的,而是分散、不连贯的。当原子发射出能量时,是以在离散值上被称作量子的最小基本单位进行的。激光器工作的原理,实际上就是激发一个特定量子散发能量。 专门挑战极端的超精密温度计 如果用普通的医用温度计,去测量比绝对零度低百分之一的温度,这支温度计的下场可想而知。那么如何去对付这样的极端温度呢?耶鲁大学的研究人员发明了一支可以对付这些情况的神奇温度计。它不仅能在极端环境中保持坚挺,更能够提供无比精确的数值。 为制作这种温度计,研究团队必须重新梳理温度计的设计思路。比如获得精确数值的方式。幸运的是,在追寻精确的过程中,科学家们借助量子隧道得到了自己想要的答案。就像钻入山体内部而不是在其表面爬上爬下,粒子在穿越势垒的过程中,产生出了量子噪声。使用研究团队的量子温度计去测量这些噪声,便能够精确地得出实验物体的温度。 虽然这种温度计对于普通人的日常生活并没有太大的意义,但是在科学实验室,尤其是那些需要极低温度环境的材料实验室它就可以大展身手了。现在,研究者们还在努力通过各种手段提高该温度计的精确性,并期望随着它应用范围的拓展,更极端的科研环境都可以从中受益。 量子能量转能加载驻波技术 量子能量转能加载驻波技术。主要的原理是依托高科技量子能量舱。产品在进入舱体后经过“声、光、电、磁”等物理介入方式,进行能量植入。 并且,在物质的分子层面进行驻波植入,也不会改变物质原有的分子结构和属性。量子植入后的产品在理论上无半衰期,目前实验室中现有的量子产品已经过了17年,依然保持着饱和的量子能量。 人人都爱量子计算机 在1965年发表的一篇论文中,英特尔公司的联合创始人戈登·摩尔对计算机技术的未来发展,做了一些粗陋但却意义深远的预测。其中最重要的一条便是日后著名的摩尔定律:每平方英尺集成电路上晶体管的数量,每18个月便会翻两倍。这一定律对计算机技术的发展产生了深远影响,但是现在,摩尔定律似乎走到了尽头,因为到2020年,硅芯片将会达到自身的物理极限,而随着晶体管体积的不断缩小,它们将开始遵循量子世界的各种规律。 和量子世界的规律“抱有敌意”相比,顺应量子时代或许才是人们最好的选择。今天,那些从事量子计算机研究的科学家做的正是这件事情。相比传统计算机,量子计算机具有无可比拟的巨大优势:并行处理。借助并行处理的能力,量子计算机能够同时处理多重任务,而不是像传统计算机那样还要分出轻重缓急。量子计算机的这一特性,注定它在未来将以指数级的速度超越传统计算机。 不过,在量子计算成为现实之前,科学家们还需要克服一些艰难挑战。比如,量子计算机使用的是比传统比特存储能力高出许多的量子比特,但是不幸的是,量子比特非常难以创造出来,因为这需要多种粒子共同组成网络。直到现在,科学家只能够一次性将12种粒子缠连起来。而量子计算机若要实现商业化应用,至少需要将这个数字增加数十倍甚至上百倍。 远距传输从科幻到现实 科幻片,尤其是太空题材的,最爱远距传输:偌大的一个人,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间出现。 远距离传输就是量子态隐形传输,是在无比奇特的量子世界里,量子呈现的“纠缠”运动状态。该状态的光子如同有“心电感应”,能使需要传输的量子态“超时空穿越”,在一个地方神秘消失,不需要任何载体的携带,又在另一个地方瞬间出现。在“超时空穿越”中它传输的不再是经典信息,而是量子态携带的量子信息,这些量子信息是未来量子通信网络的组成要素。 此前,IBM团队的6名工程师证明,远距传输完全可以实现,至少从理论上来讲是这样。但必须注意的是,“原对象”在此过程中将消失——因为远距传输可不是“传真机”,你原来那份“文件”是会被它销毁的。其貌似“复制”原物体的过程,实际也是对原物体的一种改变。 2009年,美国马里兰州立大学联合量子研究所的科学家进行的“量子信息处理”的实验中,成功地实现了从一个原子到1米外的一个容器里的另一个原子的量子隐形传输。尽管在实验中是一个原子转变成另一个原子,由第二个原子扮演起第一个原子的角色,与“原物传送”的概念不同,但原子对原子的传输,却对于研制超密超快的量子计算机和量子通信具有重大意义。 没错,远距传输并不仅在传输物体这一目标上才有价值,在达到这一目的之前,通往“圣域”的各项研究也被证明在其他多重领域大有作为。而所有的量子力学研究,甚至人类所有的科学活动,亦同此理。 想知道什么是真正的瞬时通信吗 量子力学在过去的岁月里为人们带来的成就弥足珍贵,但科学家们有理由相信,其在未来会奉献的更多。 现在,当你在手机、短信、邮件以及MSN、飞信等等诸如此类的通信工具之间徜徉时,可能以为自己已经被所谓的“瞬时通信”覆盖。实际上,你发出的声音、文字、图像都需要一点时间才能达到目的地,或长或短而已。现在的人们日常所能用到的通信方式,所需时间都极其短,但在很远的未来,人和人之间的交流不会只限于大洲与大洲之间,而可能需要横跨星系,这就使通信时间大大的增加——譬如说,在今年8月6日,“好奇”号火星车登陆火星,传回的信号到达地球就有十几分钟的延迟。但这还只是在太阳系中地球和火星的距离,如果将距离延伸的更远,那么科学家们认为,只有量子力学才有能力真正实现“即时”的通信,无论距离多远。 使瞬时通信成为现实的关键,在于被称为量子纠缠的量子力学现象——爱因斯坦称其为“幽灵般的远距作用”,指处于纠缠态的两个粒子即使距离遥远,也保持着特别的关联性,对一个粒子的操作会影响到另一个粒子。简单来说就是,当其中一个粒子被测量或者观测到,另一个粒子也随之在瞬间发生相应的状态改变。这种仿佛“心电感应”般的一致行动,已超出了经典物理学规则的解释范畴,因此才被爱因斯坦视作鬼魅。但利用量子纠缠,我们可以操纵其中一个粒子引起对应粒子的即时、相应变化,从而完成收发“宇宙邮件”的动作。

226 评论

赵鹏飞1976

量子力学(Quantum Mechanics)是研究微观粒子的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础。量子力学不仅是近代物理学的基础理论之一,而且在化学等有关学科和许多近代技术中也得到了广泛的应用。 像拉一根铁丝很难拉断,就是因为铁分子之间有引力!“烟消云散”跟分子的热运动有关!

229 评论

HELLO小不不

不能,不会,抱歉。

330 评论

食品监督所

什么是量子效应?这得从一些基本概念说起。原子模型与量子力学已经用能级的概念进行了合理的解释,由无数原子构成固体时,单独原子的能极就并合成能带,由于电子数目很多,能带中能极的间距很小,因此可看做是连续的。从能带理论出发,物理学家成功地解释了大块金属、半导体、绝缘体之间的联系和区别,对介于原子、分子与大块固体之间的超微颗粒而言,大块材料中连续的能带将分裂为分立的能极,能极间的间距随颗粒尺寸减少而增大。当热能、电场能或者磁场能比平均的能极间距还小时,就会呈现一系列与宏观物体截然不同的反常特性,这就是所谓的“量子效应”。 例如,导电的金属在超微颗粒时可以变成绝缘体,磁距的大小与颗粒中电子是奇数还是偶数有关,比热亦会反常变化,光谱线会产生向短波长方向的移动,这就是量子效应的宏观表现。

319 评论

乐乐冰儿

量子力学是当代科学发展中最成功、也是最神秘的理论之一。其成功之处在于,它以独特的形式体系与特有的算法规则,对原子物理学、化学、固体物理学等学科中的许多物理效应和物理现象作出了说明与预言,已经成为科学家认识与描述微观现象的一种普遍有效的概念与语言工具,同时也是日新月异的信息技术革命的理论基础;其神秘之处在于,与其形式体系的这种普遍应用的有效性恰好相反,量子物理学家在表述、传播和交流他们对量子理论的基本概念的意义的理解时,至今仍未达成共识。量子物理学家在理解和解释量子力学的基本概念的过程中所存在的分歧,不是关于原子世界是否具有本体论地位的分歧,而是能否仍然像经典物理学理论那样,把量子理论理解成是对客观存在的原子世界的正确描述之间的分歧。以玻尔为代表的传统量子物理学家在创立了量子力学的形式体系之后,并不追求从量子测量现象到量子本体论的超越中提供一种本体论的理解。而是在认识论和现象学的意义上做文章。玻尔认为,观察的“客观性”概念的含义,在原子物理学的领域内已经发生了语义上的变化。在这里,客观性不再是指对客体在观察之前的内在特性的揭示,而是具有了“在主体间性的意义上是有效的”这一新的含义。这种把“客观性”理解成是“主体间性”的观点,在认识论意义上,所隐藏的直接后果是,使“客观性”概念失去了与“主观性”概念相对立的基本含义,从而使量子力学成为支持科学的反实在论解释的一个重要的立论依据。与此相反,近几十年发展起来的多世界解释,试图以多元本体论的假设为前提,恢复对客观性概念的传统理解;玻姆的本体论解释则是以粒子轨道与真实波的二元论假设为代价,把测量过程中的整体性特征归结为是量子势的性质。这两种解释虽然在理解量子测量现象时坚持了传统实在论的立场。但是,这些立场的坚持是以在量子力学中增加某些额外的假设为代价的。这正是为什么近几十年来,反思与研究量子力学与量子测量的概念基础问题,成为不计其数的论著和论文所讨论的中心论题的主要原因所在。到目前为止,在量子物理学家的心目中,微观客体的非定域性特征和量子测量的非分离性特征已经成为不争的事实。如果我们站在科学哲学的立场上,像当初接受量子统计性一样,也接受量子力学描述的微观系统的这种整体性特征。那么,量子测量过程中被测量的系统与测量仪器(包括观察者在内)之间的整体性关系将会意味着,在微观领域内,我们所得到的知识,事实上,总是与观察者密切相关的知识。这个结论显然与长期以来我们所坚持的真理符合论的客观标准不相容。因此,接受量子力学的整体性特征,就意味着放弃真理符合论的标准,需要对传统实在论的核心概念——理论和真理的性质与意义——进行重新理解。这样,现在的问题就变成是,能否在接受量子力学的统计性和整体性特征的前提下,阐述一种新的实在论观点呢?如果答案是否定的,那么,科学实在论将永远不可能得到辩护;如果答案是肯定的,那么,与理论的整体性特征相协调的实在论是一种什么样的实在论呢?这正是本文所关注的主要问题所在。然而,这种以真命题的多少来衡量理论的逼真度的方法,似乎没有办法回答诸如下面的那些问题:如果一个理论最后被证明是与事实不相符,那么,这个理论怎么可能接近真理呢?比如说,在当前的情况下,量子场论还是一个不成熟的理论,它在未来一定会被加以修改,那么,我们能够说,量子场论不如牛顿力学与事实更相符吗?此外,“符合事实”这个概念也会遇到同样的问题:如果某个理论根本就是错误的,我们又怎能说,它与事实符合的更好或更糟呢?也许有些在表面上曾经显示出具有某种逼真性的理论,实际上,它却在根本意义上就是错的。例如,化学中的“燃素说”、物理学中的“地心说”,等等,这些理论都曾经在科学家的实际工作中,起到过积极的作用。但是,后来的发展证明,它们都是错误的假说。另一方面,这种方法还无法解释为什么在前后相继的理论中使用的同一个概念,却具有不同的内涵这样的问题。例如,经典物理学中的质量概念不同于相对论力学中的质量概念;量子力学的中微观粒子概念也比经典物理学中的粒子概念拥有更丰富的内涵。库恩在阐述他的科学进步的范式论模式时,为了避免上述问题的出现,走向了彻底的相对主义。如果我们用强调理论描述的物理模型与世界之间的相似性比较,取代理论中包含的真命题的比较来理解理论的逼真性,那么,上述问题就很容易得到解决。在特定的语境中,并存着的相互竞争的理论,分别描绘出几个相互竞争的可能世界,这些可能世界与真实世界之间的相似程度决定理论的逼真性。逼真度越高的理论,将会越客观、越接近于真理。真理是理论的逼真度等于1时的一种极限情况。例如,牛顿力学比伽里略的力学更接近真理的真正理由是,因为牛顿物理学所描绘的世界模型比伽里略物理学所描绘的世界模型与真实世界更相似。而不应该把这个结论替换成是,在每一个方法中通过真命题的计数来使它们与精确地说明真实世界的真命题的总数进行比较后作出的选择。前后相继的理论中所使用的共同概念的意义也是依赖于可能世界的。不同层次的可能世界虽然赋予同一个概念以不同的内涵。但是,由于更深层的可能世界更接近真实世界的内在结构,所以,对为什么同一个概念会有不同内涵的问题就容易理解了。我们把由理论描绘的可能世界逼近真实世界的过程,以及前后相继的理论之间的更替关系总结为:前语境阶段——→语境确立阶段——→语境扩张阶段——→语境转换阶段——→新的语境确立阶段……在科学进步的这个模式中,前语境阶段是指,当科学进入一个新的研究领域时,面对不可能被旧理论所解释的有限数量的实验证据和存在的重要问题,科学家首先是进行大胆的创新和积极地猜测,提出可能与证据相一致的相互竞争的理论或假说。这些理论或假说分别描绘出了相互竞争的各种可能世界的图象。这个时期,科学家在建构理论时,通过模型与现象的比较来约束他们的想象。或者说,他们的富有创造性的想象力是一种意向性的想象,而不是完全随意的想象。这种意向性的信息直接来自不可能被直接观察到的对象本身。科学家在相互竞争的理论中作出选择时,依赖于两个主要的归纳根据:其一,相信任何一个理论模型的建构都是为了尽可能准确地模拟真实世界的结构和机理;其二,依据模型所产生的信念能够作为成为设计新的实验方案的基础,这个实验方案的设计是为了探索世界,和检验模型与它所表征的世界之间的类似程度。在特定领域内和一定的历史条件下,根据一个理论的信念所设计的实验越新颖,在得到应用之后,越能够证明理论的成功性。同时,理论的调整总是向着与新的实验结果相一致的方向进行的。而新的实验结果是由自然界中某种未知的因果机理引起的。然而,说明的成功(explanatory success)只是理论逼近真理的一个象征或一个结果,或者说,说明的成功只是理论逼近真理的一个必要条件。凡是逼真的理论都必定能够对实验现象作出成功的说明。但是,并不是每一个拥有成功说明的理论都是逼真的理论。在理论的说明中,理论的逼真性与不断增加的成功之间的联系应该是一个认识论问题,而不是一个语义学问题。一个完整的科学理论从产生到成熟通常要经过三个阶段:其一,对现象的描述阶段,这个阶段得到了在经验上恰当的模型。例如,在量子力学之前,玻尔等人提出的各种原子模型;第二个阶段是建立一个理论的说明模型。例如,现有的量子力学的数学形式体系。第三个阶段是为成功的说明模型寻找一种可理解的机理,或者说,对说明模型提供语义学的基础。相对于一个成熟的科学理论而言,现象——模型——机理三者之间的相互关系具有内在的不可分割的整体性。这也就是为什么原子物理学家在理解量子力学的内在机理的问题上没有达成共识时,产生了量子力学的解释问题的原因所在。在这里,我们所说的模型是指物理模型而不是仅仅指数学模型。物理模型除了包括数学模型之外,还包括理解世界的构成机理的模型。物理模型是为数学模型提供一个语义学基础。例如,分子运动论模型是解释压强公式的语义学基础;场的观点是理解引力理论的语义学基础。所以,物理学中的模型是指真实物理系统的替代物,它既具有解释的作用,也能够把抽象的数学系统翻译为一个可理解的论述。正是在这个意义上,物理学模型是指一个模型簇。由这些模型簇所描绘的可能世界的结构与真实世界的结构之间的相似关系,在选择理论时是很重要的。一方面,它能够使理论在科学实践中被不断地修改和扩展以适应新的现象,而不是静止的和孤立的;另一方面,它使相互竞争的理论之间的选择在科学实践的规则与活动之内自然地得到了求解。这时,被淘汰掉的理论并非必须要被证伪(尽管证伪也是因素之一),而是如同生物进化那样是自然选择的结果。在这里,把逼真度作为选择理论的标准,与要么强调经验证实,要么强调经验证伪的标准不同,它永远是动态的和依赖于研究语境的概念。它既有助于把淘汰掉的理论中的某些合理化因素进行再语境化,也能够确保科学描述和与此相关的实验技巧与独立于人心的世界之间建立起一种物理联结,从而坚持了存在着一个不可能被观察到的独立于人心的世界的本体论的实在论观点。大体上,衡量可能世界与真实世界之间的结构或机理的相似程度可以通过它们之间的共有属性(或共同特征)来进行。如果用S(A ,B)表示两个世界之间的基本特征的相似关系,用 A∩B表示共有属性,A – B和 B - A表示它们之间的差异,那么,在定性的意义上,这些量之间的关系可以定性地表示为:[1]S(A ,B)= C1F(A∩B)- C2F(A - B)- C3F(B - A)这个公式说明,两个世界之间的相似关系是它们的共性与差异的函数。当C1远远大于C2和C3时,两个系统之间的共性将比差异处于更重要的支配地位。其中,三个系数C1、C2和C3 的值是通过实验来确定的。这样,我们就有可能在经验的意义上来研究相似关系。在经验的意义上,如果相互竞争的理论中的某个理论的描述和说明模型能够完全依据当前的实验结果和本体论概念被加以校准,那么,我们就可以认为,这个理论是似真的(plausible)。理论越拟真,它就越逼真。在一个特定的语境中,当一个理论的说明与理解模型能够完全经得起经验的考验时,科学共同体将认为理论描绘的可能世界与真实世界之间达到了某种一致性。这时,科学的发展进入了语境确立的阶段。这个阶段相当于库恩的常规科学时期或范式形成时期。这时,科学家不仅拥有共同的信念和共同的语言,而且拥有对真实世界的共同图象。他们相信,理论描绘的可能世界代表了真实世界的内在机理;理论描绘的图象就是不可观察的真实世界的图象。为了进一步探索真实世界的精细结构,科学家常常会根据现有理论提供的信念和约定,设计新的实验规划,预言新的实验现象,特别是运用成熟理论中的理论实体进行实验操作,从而形成了一个相对稳定的语境阶段。但是,这个相对稳定的语境边界是非常不确定的。当科学家把成熟理论所揭示的世界机理作为一个范式和信念的基础,延伸推广到解释其它相关领域的现象时,科学的发展进入到语境的扩张阶段。其中,既包括理论研究的信念与方法的扩张,也包括以它的基本原理为基础的技术与实验的扩张。例如,在牛顿理论确立之后,不论是物理学还是化学家,他们都用牛顿力学的基本思想解释他们所面临的其它领域内的新的实验现象,并且成功地制造出了许多测量仪器;同样,现代技术的崛起和分子生物学、量子化学等学科的产生都是量子力学的基本原理成功应用的结果。所以,语境扩张的过程实际上是已有语境膨胀的过程。当科学共同体在语境扩张的过程中,遇到了与理论信念相矛盾的而且是他们料想不到的实验事实时,他们才有可能开始对理论的信念产生怀疑,这时,理论的应用边界,或者说,语境扩张的边界逐渐地变得明确起来,科学的发展开始进入语境转换阶段。在这个阶段,旧语境的扩张受到了限制,新的语境处于形成与培育当中。新的理论竞争也就随之开始了。随着新理论竞争的开始,科学共同体的信念也在不断地发生着改变,直到一个全新的语境形成为止。当新的语境确立之后,不仅科学家确立了新的信念,而且他们对问题的求解值域也随之发生了改变。这时,原来前语境中的一些不合理的偏见,在新语境中得到了纠正。在前语境中是真理的理论,在后语境中失去了它的真理性。后语境的形成是伴随着新理论的确立而完成的。由于新语境比旧语境揭示出了更深层次的世界结构或机理。所以,它在理论信念、方法和技术层次的扩张与渗透力将会比旧语境更强、更彻底。这也就是,为什么量子力学的产生所带来的理论、方法与技术革命会比牛顿力学更深刻、更广泛的原因所在。但是,前后语境之间的界线是连续的。这时,就像新理论是对旧理论的一种超越一样,新语境也是对旧语境的一种超越。由于语境的变迁和运动是不断地向着揭示世界的真实机理的方向发展的。因此,在语境中生成的理论也使得科学的发展与进步向着不断地逼近真理的方向进行。本文把科学发展的这种模式称为“语境生成论模式”。这里包括两个层次的生成,其一,理论的形成与完善是在特定的语境中进行的;其二,科学进步也是在语境的变更中完成的。但是,值得注意的是,强调语境化并不意味着使科学进步成为无规则的游戏。把理论系统放置于特定的语境当中,强调了系统的开放性和连续性。在这个意义上,语境论的事实也是一种客观事实。运用语境论的隐喻思考与模型化方法,不仅能够使科学进步过程中的微观的逻辑结构与宏观的历史背景有机地结合起来,而且能够使基本的内在逻辑的东西在历史的发展中内化到新的语境当中,从而使得语境在自然更替的同时,一方面,完成了理论知识的积累与继承的任务;另一方面,揭示出更深层次的世界机理。所以,语境生成论的科学进步模式既不会像库恩的范式论那样,走向相对主义,也不会像普特南那样,走向多元真理论。科学进步的语境生成论模式,既能够包容相对主义的某些合理成份,又能够坚持实在论的立场。5.结语从量子力学的认识论教益中抽象出的语境实在论的观点,是一种具有更广泛的解释力,并且有可能把许多观点有机地融合在一起的实在论观点。它不仅能够赋予量子力学以实在论的解释,而且为解决科学实在论面临的许多责难,理清上世纪末围绕“索卡尔事件”所发生的一场震惊西方学坛的科学大战,[1] 提供了一条可能的思路。法因曾经在《掷骰子游戏:爱因斯坦与量子论》一书中断言“实在论已经死了”。[2] 然而,我们通过对量子力学与实在论的分析,在放弃了传统的真理符合论之后,运用隐喻思考与模型化方法所得出的结论则是,“实在论还活着,而且活的很好”。

210 评论

艾米Amysweety

量子就是“能量块”,以光子为例,光不是连续的,在某些情况下表现光其实像是粒子一样,这表现为粒子的“一块”能量就是量子

161 评论

相关问答

  • 自然教育论文的研究意义

    通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。

    钢结构彩钢板 3人参与回答 2023-12-07
  • 自然语言处理实现论文查重

    怎样的论文降重方法才有效呢? 1、插入图文表格 通过截图的方式将文字转换成图片,或者将文字转换成表格,插入到论文当中。现阶段大部分的查重系统都不会对表格和图片进

    水之语城 5人参与回答 2023-12-07
  • 自然生态研究论文

    遗传学论文(这是我当年选修课的论文,得分不高,只有84,看看将就着用吧)论文概要:介绍遗传,变异,生物物种多样性的概念及它们之间的关系,还有人类对生物资源的创造

    sherilyxia 7人参与回答 2023-12-12
  • 研究人与自然的论文摘要

    摘要:作为构建和谐社会的一项重要内容,人与自然关系的和谐问题受到了伦理学界的广泛关注。探讨和确认人与自然和谐关系的内在机制,不仅能够为人与自然和谐关系的伦理价值

    a小镇子a 3人参与回答 2023-12-07
  • 研究英语语言学的论文

    语言学在人类文明史中具有悠久的历史和深远的影响,语言学在某种程度上记录了人类历史的演变程序。下文是我为大家整理的的范文,欢迎大家阅读参考! 篇1 论

    张小天11 3人参与回答 2023-12-11