• 回答数

    5

  • 浏览数

    165

秋水伊人ying
首页 > 期刊论文 > pcr的研究进展分子生物学论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

BACCHUS周伯通

已采纳

虽然我不会,,但是我会百度

81 评论

铭钔釺唫

请参见链接,希望能够对你有所帮助。

315 评论

鳗鳗小公主

不足之处是操作复杂,成本较高。以上分子生物学方法对结核杆菌...www.wsdxs.cn/html/yaoxue/20080316/6125.html

318 评论

吃兔吃土

免疫-PCR技术结合了抗原抗体反应的特异性和PCR的高敏感性,是一种极为敏感的抗原检测技术,并适合于各种微量抗原的检测。 荧光标记、酶标记和放射性同位素标记这三大抗体标记技术是目前免疫化学、免疫学以及分子生物学中应用最广的常规抗原检测手段,具有很高的灵敏度。但在早期癌抗原及某些神经肽等极微量抗原检测上,荧光标记及酶标记技术还缺乏足够的灵敏度。放射性同位素标记技术的灵敏度虽然能达到1ng/ml,但在实际操作中由于需要特殊的设备和安全防护,因此限制了它在实际过程中的广泛应用。1992年,Sano[1]等人将免疫测定技术与PCR结合,创建了一种全新的极其敏感的抗原分子检测技术,即免疫-PCR(Immuno-PCR)。它的出现解决了上述三种抗体标记技术的不足之处。众所周知,PCR技自从1985年问世以来,经过十几年的发展,已成为实验室的常规技术,也是现代分子生物学研究中不可缺少的手段,是一种极为敏感的放大系统。而免疫-PCR技术正是运用PCR的高度敏感性来放大抗原抗体反应的特异性,使实验中只需数百个抗原分子即可检测,甚至在理论上可检测到一至数个抗原分子。这种灵敏度使免疫检测技术达到了一个新的高度。1 免疫-PCR的基本原理免疫-PCR主要由两个部分组成。第一部分是类似于普通酶联免疫吸附实验(ELISA)的抗原抗体反应。第二部分即常规的PCR扩增和电泳检测。免疫-PCR与ELISA的区别就在于ELISA是以碱性磷酸酶或辣根过氧化物酶来标记抗体,用颜色反应来表明阳性或阴性结果,而免疫-PCR则是以一段特定的双链或单链DNA来标记抗体,用PCR扩增抗体所连接的DNA,并进行电泳检测,因此可由PCR产物的量来反映抗原分子的量。由于PCR的高扩增能力,只要存在着极微量的抗原抗体反应,PCR都能大量扩增抗体所连接的DNA分子,再用电泳来表明实验结果。免疫-PCR的关键之处就在于用一个连接分子将一段特定的DNA连接到抗体上,在抗原和DNA之间建立相对应关系,从而将对蛋白质的检测转变为对核酸的检测。最初Sano等人建立的免疫-PCR实验流程如下:(1)再包被缓冲液稀释抗原BSSA,并固定在微滴定板上。(2)微滴定板上加入相应的已稀释的单克隆抗体,并洗去未结合的抗体分子。(3)加入稀释的已与生物素化PUC19的结合的链亲和素-蛋白A嵌合体(蛋白A能与抗体结合,而链亲和素可与生物素化PUC19中的生物素结合),并洗去未结合的嵌合蛋白-Puc19复合物。(4)PCR扩增抗体所连接的Puc19。(5)琼脂糖凝胶电泳,EB显色检测Puc19.运用这种方法,Sano等人可检测到600个BSA抗原分子。与用碱性磷酸酶作为标记物的ELISA方法相比,免疫-PCR的敏感度比ELISA高106。在这免疫-PCR系统中,链亲和素-蛋白A嵌合体作为一个连接分子起着桥梁作用。它的两个独立结合位点蛋白A和链亲和素分别与IgG的Fc段和生物素化DNA中的生物素结合,从而在蛋白质和核酸之间建立对应关系,通过PCR扩增,将抗原抗体反应的特异性高度放大。因此,免疫-PCR结合了抗原抗体反应的特异性和PCR的高度敏感性,成为一种极为敏感的抗体依赖的抗原检测技术。2 免疫-PCR的改进虽然Sano等人构建的免疫-PCR具有极高的灵敏度,但Sano所用的连接分子链亲和素-蛋白A嵌合体还没有商品化,因此限制了它在实际应用中的广泛普及。Ruzicka[2]等人以生物素化的抗体取代Sano免疫-PCR系统中的抗体,用商品化的亲和素代替链亲和素-蛋白A嵌合体作为连接分子构建了一个新的免疫-PCR系统。Ruzicka用此免疫-PCR系统检测小鼠抗载脂蛋白E抗体。可以检测出包被浓度为10fg/ml的E抗体。

332 评论

LiaoL童鞋

I THINK IT IS GOOD. AND IT IS BETTER. PCR技术王霄鹏 推荐:栗瑞丰摘要:PCR是分子生物学的关键技术,又是常规技术。它的出现极大地推动了分子生物学的发展,旋即被迅速推广并应用到生命科学的各个领域。关键词:PCR、发展简史、基本原理、基本操作、主要应用 聚合酶链式反应(polymerase chain reaction , PCR)是体外扩增DNA序列的技术。它与分子克隆和DNA序列分析方法几乎构成了整个分子生物学实验工作的基础。在这三种技术中,PCR方法理论上出现最早,实践中应用也最广泛。PCR技术使对微量的核酸(DNA或RNA)操作变得简单易行,同时还可以使核酸研究脱离活体生物。PCR技术的发明是分子生物学的一项革命,它极大地推动了分子生物学以及生物技术产业的发展。 PCR技术发展简史 人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想。但是,当时的基因序列分析方法尚未成熟,对热具有较强稳定性的DNA聚合酶还未发现,寡核苷酸引物的合成仍处在手工、半自动合成阶段,这种想法似乎没有任何实际意义。 1985年,美国科学家Kary Mullis在高速公路的启发下,经过两年的努力,发明了PCR技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术得到了生命科学界的普遍认同,Kary Mullis也因此而获得1993年的诺贝尔化学奖。但是,最初的PCR技术相当不成熟,在当时是一种操作复杂、成本高昂、“中看不中用”的实验室技术。1988年初,Keohanog通过对所使用的酶的改进,提高了扩增的真实性。尔后,Saiki等人又从生活在温泉中的水生嗜热杆菌内提取到一种耐热的DNA聚合酶,使得PCR技术的扩增效率大大提高。也正是由于此酶的发现使得PCR技术得到了广泛地应用,使该技术成为遗传与分子生物学 分析的根本性基石。在以后的几十年里,PCR方法被不断改进:它从一种定性的分析方法发展到定量测定;从原先只能扩增几个kb的基因到目前已能扩增长达几十个kb的DNA片段。到目前为止,PCR技术已有十几种之多,例如,将PCR与反转录酶结合,成为反转录PCR,将PCR与抗体等相结合就成为免疫PCR等。 PCR技术的基本原理和操作1. PCR的基本原理PCR的基本工作原理就是以拟扩增的DNA分子为模板,以一对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,按照半保留复制的机理沿着模板链延伸直至完成新的DNA合成。通过不断重复这一过程,可以使目的DNA片段得到扩增。另一方面,新合成的DNA片段也可以作为模板,因而PCR技术可使DNA的合成量呈指数型增长。2. PCR的基本成分PCR包括7种基本成分:模板DNA、特异性引物、热稳定DNA聚合酶、脱氧核苷三磷酸(dNTP)、二价阳离子、缓冲液及一价阳离子。模板DNA:包括基因组DNA、质粒DNA、噬菌体DNA、预先扩增的DNA、cDNA和mRNA分子等几乎所有形式的DNA和RNA都能成为PCR技术反应的模板。除此之外,PCR反应还可以直接以细胞为模板。特异性引物:是一段与模板DNA链结合的寡核苷酸片段,对于DNA的扩增起到引发的作用。热稳定DNA聚合酶:这是PCR技术实现自动化的关键。热稳定DNA聚合酶是从两类微生物中分离的:一类是嗜热和高度嗜热的真细菌,另一类是嗜热古细菌。现在又出现了一种兼顾了几种DNA聚合酶特点的混合型酶。脱氧核苷三磷酸(dNTP):是DNA合成的原料,包括dATP、dGTP、dTTP、dCTP。二价阳离子:常用到Zn2+和Mg2+,作为构成热稳定性DNA聚合酶的成分之一。缓冲液:一般使用Tris-Cl缓冲液,标准的为10mmol/L,并将其调节到8.3~8.8之间。一价阳离子:一般使用50mmol/L的KCl溶液,有利于改善扩增的产物质量。PCR的基本操作PCR是一种级联反复循环的DNA合成反应过程。PCR技术的基本反应由三个步骤组成:1. 变性:通过加热使模板DNA完全变性成为单链,同时引物自身和引物之间存在的局部双链也得以消除;2. 退火:将温度下降至适宜温度,使引物与模板DNA退火结合;3. 延伸:将温度升高,热稳定DNA聚合酶以dNTP为底物催化合成DNA链延伸。以上三部为一个循环,新合成的DNA分子又可以作为下一轮合成的模板,经多次循环后即可达到扩增DNA片段的目的。 PCR的主要应用最初建立PCR是为了扩增已知序列的靶基因。因为在PCR方法问世以前,要获得一个靶基因,必须建立基因文件库,然后从成千上万的菌落中通过Southern blot 杂交筛选含有靶基因的克隆。这样既费时又费钱,特别是在克隆真核生物基因时难度更大。自从建立了PCR方法以后,使克隆已知序列的基因变得非常容易。为了适应分子生物学的快速发展,PCR方法也得到了不断发展,现在PCR已应用到生命科学的各个领域。1. 基础研究方面的应用目前从事分子生物学的实验室和研究人员,几乎每天都在使用PCR,可以说几乎没有一个分子生物学家没有使用过PCR。因此,PCR与分子克隆一样是分子生物学实验室的常规方法,可用于达到以下目的:l 扩增目的基因和鉴定重组子;l 克隆基因;l 基因功能和表达调控的研究;l 基因组测序;l 制备单链模板;l 致突变;2. PCR在临床上的应用l 在遗传学上的应用:人类的遗传性疾病是因为某一碱基序列发生了突变,使之缺失或形成某一限制性内切酶的识别位点,通过PCR结合限制片段长度多态性分析(PCR-RFLP),就可以从基因的水平对遗传性疾病进行分析。例如,血友病甲是一种常见的遗传性出血性疾病,患者体内缺乏凝血因子FVIII这是由于基因第14个外显子的第336位氨基酸的编码基因发生了突变,产生了一个新的PstI酶切点,因此可以使用PCR-RFLP对血友病进行诊断。PCR还可以用来检测遗传性耳聋和Leber遗传性视神经病。l 在肿瘤研究中的应用:PCR已日益广泛应用于肿瘤的病因与发病机理研究以及肿瘤诊断与治疗的研究中。例如,差异显示PCR技术能针对不同肿瘤寻找其特异而敏感的标志物,并用于肿瘤早期诊断、判断预后及疗效评估。另一方面,在使用普通放疗、化疗的同时可结合定量PCR技术检测微小残留病灶,以进一步改进治疗方案。此外,由于癌症的发生在一定意义上是单个细胞分子发生变化,因而可以使用单细胞PCR技术对癌症的发病机理进行研究。l 检测病原体l 在基因分型中的应用:当进行器官移植时并须先组织配型工作,此时常应用序列特异性寡核苷酸多态性PCR(PCR-sequence specific oilgonucleotide polymorphism,PCR-SSOP)对人类白细胞抗原(human leukocyte antigen,HLA)进行分型,使移植成功率大大提高。此外PCR-限制性片段长度多态性也可以用于对HLA的分型。3. 在法医学中的应用例如:最早应用DNA限制性片段长度多态性结合PCR-RFLP来进行法医学个体识别和亲子鉴定。目前发现在真核生物基因组编码和非编码序列中的短串联重复序列的重复次数在个体间存在着差异,因此可以使用短串联重复PCR技术对其进行分析。使用PCR技术进行法医鉴定的优点是样品用量小并且适于对高度降解材料的检测。除刚才提到的之外,可变数目串联重复序列(variable number tandem repeat,VN-TR)PCR也可以用于法医学个体识别和亲子鉴定。所以,综上所述,PCR的确是一种分子生物学研究的基础技术。在它30多年的发展中衍生出了诸如PCR-RFLP、PCR-SSOP、VN-TR,以及免疫PCR、致突变PCR和定量PCR等十几种不同的技术方法。PCR技术可以为基因工程提供目的基因,并广泛地应用于个体识别、亲子鉴定、免疫配型、疾病诊断等方面。可以说,PCR已经渗透到了生命科学的各个领域。21世纪是生物工程的世纪。我相信,在今后的发展中PCR技术会不断地得到扩充和完善,PCR技术也将发挥着越来越重要的作用。参考书目:黄留玉,PCR最新技术原理、方法及应用,北京,化学工业出版社,现代生物技术与医药科技出版中心,2005年

279 评论

相关问答

  • 分离xy精子论文研究进展

    额,那就只能先提取一定量的精子,然后基因检测,检测后再人工受精咯,现在的技术都知道生的孩子是男是女了,只是不能告诉父母,怕重男轻女,只有特殊的有某些伴性遗传病的

    sherilyxia 3人参与回答 2023-12-06
  • 分子生物学的展望小论文

    不足之处是操作复杂,成本较高。以上分子生物学方法对结核杆菌...www.wsdxs.cn/html/yaoxue/20080316/6125.html

    原来我在这里8 4人参与回答 2023-12-07
  • 动物分子营养学研究进展论文

    克隆技术 克隆技术即无性繁殖技术。通常的有性生殖是由雌雄交配,精子和卵子结合发育成胚胎,经妊娠后产出新的个体。克隆技术不需要雌雄交配,不需要精子和卵子的结合,只

    小嘟嘟呀呀 3人参与回答 2023-12-09
  • 生物制药学研究进展论文

    这个在药物化学上应该有相关的文献资料的

    送我个时光机 6人参与回答 2023-12-07
  • pcr的研究进展分子生物学论文

    虽然我不会,,但是我会百度

    秋水伊人ying 5人参与回答 2023-12-11