敏宝环保科技
标题翻译如下CCD image sensor and their application study。内容翻译如下Promptness accompanying semiconductor and the photoelectricity technology develops , the solid state image sensor also arises at the historic moment , the productive technology technology can't develop swift and violent. The solid state image sensor is compared with average image sensor , have volume lacking fidelity for a short time, for a short time, sensitiveness is high , resist to vibrate , is able to bear moistness , a lot of merit of cost low grade, therefore can broad apply to industry measurement, is that meticulous of our country processes , development of robot technology and industrial automation field gets the significant effect under the control of, especially waiting for a field in pattern recognition, and with the branch who seeps through each that the industry and agriculture in our country produces broadly. At the same time, computer soft hardware technology never-ending changes and improvements, application that can give a solid state image a sensor also brings about vast vistas. The principle the main body of a book is complied with analysing the solid state image sensor starts off , emphasizes analysis and investigation and discussion being in progress to it in test control and the pattern recognition field.文章有些长、、望认真看完、、标准人工翻译、、希望可以帮助你、、
jjgirl2008
摘要:本文简述了无线传感器网络的定义、组成及特点,并结合其特点介绍了无线传感器网络在各行各业广泛的应用价值和未来发展前景以及目前存在的技术问题。 关键词:无线传感器网络;组成;应用;发展 科技发展的脚步越来越快,人类已经置身于信息时代。而作为信息获取最重要和最基本的技术——传感器技术,也得到了极大的发展。传感器信息获取技术已经从过去的单一化渐渐向集成化、微型化和网络化方向发展,并将会带来一场信息革命。具有感知能力、计算能力和通信能力的无线传感器网络(WSN, wireless sensor networks)综合了传感器技术、嵌人式计算技术、分布式信息处理技术和通信技术,能够协作地实时监测、感知和采集网络分布区域内的各种环境或监测对象的信息,并对这些信息进行处理,获得详尽而准确的信息,传送到需要这些信息的用户。 由于WSN的巨大应用价值,它已经引起了世界许多国家的军事部门、工业界和学术界的广泛关注,被广泛地应用于军事,工业过程控制、国家安全、环境监测等领域。 无线传感器网络综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种领域,是当前计算机网络研究的热点。 一、发展概述 早在上世纪70年代,就出现了将传统传感器采用点对点传输、连接传感控制器而构成传感器网络雏形,我们把它归之为第一代传感器网络。随着相关学科的不断发展和进步,传感器网络同时还具有了获取多种信息信号的综合处理能力,并通过与传感控制器的相联,组成了有信息综合和处理能力的传感器网络,这是第二代传感器网络。而从上世纪末开始,现场总线技术开始应用于传感器网络,人们用其组建智能化传感器网络,大量多功能传感器被运用,并使用无线技术连接,无线传感器网络逐渐形成。 无线传感器网络是新一代的传感器网络,具有非常广泛的应用前景,其发展和应用,将会给人类的生活和生产的各个领域带来深远影响。发达国家如美国,非常重视无线传感器网络的发展,IEEE正在努力推进无线传感器网络的应用和发展,波士顿大学(Boston University)还于最近创办了传感器网络协会(Sensor Network Consortium),期望能促进传感器联网技术开发。美国的《技术评论》杂志在论述未来新兴十大技术时,更是将无线传感器网络列为第一项未来新兴技术,《商业周刊》预测的未来四大新技术中,无线传感器网络也列入其中。可以预计,无线传感器网络的广泛是一种必然趋势,它的出现将会给人类社会带来极大的变革。 二、无线传感器网络的定义和特点 无线传感器网络可以看成是由数据获取网络、数据分布网络和控制管理中心三部分组成的。其主要组成部分是集成有传感器、数据处理单元和通信模块的节点,各节点通过协议自组成一个分布式网络,再将采集来的数据通过优化后经无线电波传输给信息处理中心。 无线传感器网络操作系统Tiny0S141的研制者,Jason Hill博士把WSN定义为: Sensing+CPU+Radio=Thousands of potential application 哈尔滨工业大学的李建中教授将WSN定义为:WSN是由一组传感器节点以自组织的方式构成的有线或无线网络,其目的是协作地感知、采集和处理网络覆盖的地理区域中感知对象的信息,并发布给观察者。从硬件上看,WSN节 点主要由数据采集单元、数据处理单元、无线数据收发单元以及小型电池单元组成,通常尺寸很小,具有低成本、低功耗、多功能等特点;从软件上看,它借助于节点中内置传感器有效探测所处区域的温度、湿度、光强度、压力等环境参数以及待测对象的电压、电流等物理参数,并通过无线网络将探测信息传送到数据汇聚中心 进行处理、分析和转发。原文出自:
xiaomao7taotao
微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 �0�710-6g/l[22]。一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器—对pH敏感的电子晶体管和热敏性的薄膜电极,以及三种酶—尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的Harold H.Weetal指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。
要想写出一篇优秀的 毕业 论文,少不了论文拥有一个新颖的题目,论文题目足够有吸引力能够顺利答辩评审老师。下面我给大家带来2021电子机械毕业论文题目与选题参
生物传感bb期刊是致力于生物传感器和生物电子学的研究、设计开发和应用的主要国际期刊。根据查询相关材料公开显示生物传感bb期刊全称是Biosensors&Bioe
传感器在环境检测中可分为气体传感器和液体传感器,这是我为大家整理的传感器检测技术论文,仅供参考! 试述传感器技术在环境检测中的应用 摘要:传感器在环境检测中可分
电控发动机与化油器式发动机最大的不同在燃油供给系。电控发动机的燃油供给系取消了化油器,却增加了不少电子自动控制装置。其中包括许多传感器,执行元件和ECU。电控发
图像识别技术是人工智能研究的一个重要分支,也是人们日常生活中使用最广泛的人工智能技术之一。近年来,随着深度学习技术的发展,图像识别准确率显著提高。本论文研究了图