小东家1985
给你一个目录看看 烟气脱硫系统采用石灰石—石膏湿法脱硫工艺,脱硫效率大于95%。一炉配备一套烟气脱硫装置(FGD),二氧化硫吸收系统为单元制。不设置GGH(烟气—烟气热交换器),采取提高后续烟道和烟囱的防腐措施,以增加脱硫系统运行的稳定性和可靠性。脱硫系统设置100%旁路烟道,以保证脱硫装置在任何情况下不会影响电厂机组安全运行。制浆系统按规划容量6×600MW统一考虑。石膏脱水按100%考虑,石膏脱水后含水率≤10%,石膏除综合利用外,还考虑可由汽车运往电厂干灰场堆放。脱硫废水由脱硫岛内脱硫废水处理设施处理。脱硫工程所需设备按关键和主要设备进口、部分设备国内配套的方式考虑。所有设备必须满足给定的气象条件和其他环境条件,原则上,除吸收塔、增压风机外其它设备应布置在室内,安装在室外的设备都应配备防雨及防冻的措施。 石灰石—石膏湿法脱硫主要有下列系统和设备:SO2吸收系统;烟气系统;吸收剂供应与制备系统;石膏脱水系统;FGD供水及排放系统;FGD废水处理系统;压缩空气系统;钢结构、楼梯和平台;附属管道和辅助设施;阀门和配件;保温、紧固件和外覆层;设备及设施的起吊设施;仪表和控制等。 一、SO2吸收系统 主要包括,但不限于此: 1、吸收塔:每炉一座带有玻璃鳞片树脂涂层或橡胶衬的钢制塔体及附属设备等。 2、浆液喷淋系统:包括吸收塔氧化浆池(位于吸收塔下部)、搅拌装置、3台循环泵、管线、喷咀、支撑、加强件和配件等。 3、吸收塔氧化风机系统:每座吸收塔有2台氧化风机(其中一台备用)及附属设备等。 4、除雾器:每座吸收塔一套两级除雾器,整套包括进出口罩、冲洗水系统的喷嘴、管道和附件等。 5、事故烟气冷却系统(如果需要) 6、石膏排浆泵:每座吸收塔2台100%容量的石膏排出泵(其中一台备用)。 7、其它:整套FGD装置内部、以及进入和离开FGD装置的所有输送管线,包括管道及衬里,接触浆液和酸液的设施;所有输送介质管道的伴热管线,紧固件等;设备及设施的起吊设施;吸收塔及系统内的防腐。 二、烟气系统 烟气系统是指从锅炉岛引风机后水平主烟道引出到脱硫后烟气再返回水平主烟道的整个烟风道系统及设备。烟气系统至少包括,但不限于此: 1、 增压风机:每炉提供一台增压风机及附属设备等 2、挡板门:每炉提供两套带有密封空气的双百叶窗式挡板门(进出口挡板)和一套带有密封空气的单轴双叶片百叶窗式挡板门(旁路挡板)及它们的附属设备等。每两炉提供三台100%容量密封风机(其中一台公用备用)和两套密封空气电加热装置,全套带有:底座、挡板、电机、联轴、风道及支架等。 3、烟道:提供的烟道和附属设备应是完整的相互连接的烟道段,包括从原烟气的接入到净烟气的排出,与钢结构水平主烟道的连接(包括支架)、旁路烟道的防腐及旁路挡板的安装(包括平台扶梯)等。 三、 吸收剂供应与制备系统 吸收剂供应与制备系统为4×600MW机组脱硫装置公用系统,将分期建设。 石灰石由卡车运至厂区,卡车卸下的石灰石经地下料斗、给料机,由斗提机送至石灰石贮仓贮存。再由称重给料机输送至湿式球磨机内磨浆,石灰石浆液经旋流器分离后,大颗粒物料再循环,溢流物料存贮于石灰石浆箱中,再泵送至吸收塔补充与SO2反应消耗了的吸收剂。全套至少包括,但不限于: 1、卸料及储存系统:—套汽车来料计量设备;地下料斗;全套输送装置;金属分离器;每两炉一座石灰石贮仓,容积满足BMCR工况下燃用设计煤时2×600MW机组7天石灰石耗量;每个石灰石贮仓配一套带抽风机的仓顶布袋过滤器及附属设备等 2、吸收剂制备及输送系统:磨机的称重给料机,每2×600MW机组一套;每两炉一台湿式球磨机,每台磨机的出力按2×600MW机组BMCR工况下燃用设计煤时150%的石灰石浆液量考虑,并满足燃用校核煤时石灰石浆液量要求;每台磨机一个磨机循环浆液箱,设两台100%容量磨机浆液循环泵(一台备用),循环输送石灰石浆液至旋流分离器;每台湿磨配1套旋流分离器组;四套FGD装置设二座石灰石浆液箱,其有效容积不小于4×600MW机组BMCR工况下燃用设计煤时6小时的石灰石浆液量;每两炉设三台100%容量石灰石浆液泵(两运一备)。 四、石膏脱水系统 石膏脱水系统为4×600MW机组脱硫装置公用系统,将分期建设。 1、第1级FGD石膏脱水系统 整套至少包括:每炉一套100%容量的石膏旋流器;四套FGD装置设二个公用的石膏浆缓冲箱;一个公用的石膏旋流器溢流箱;一套公用的废水旋流器;一个废水旋流器溢流箱;2台100%容量废水旋流器给料泵(其中一台备用)及附件;2台100%容量废水输送泵(其中一台备用)及附件;所有的附属设备等。 2、第2级FGD石膏脱水系统 把石膏浆脱水至含水量为10%或更少的全部必需设备,至少包括,但不限于此:每两炉设一台真空皮带脱水机,每台处理量按2×600MW机组BMCR工况下燃用设计煤时150%的的石膏浆液量考虑,并满足燃用校核煤时石膏浆液量要求;每台皮带过滤机配一台真空泵;所有其它必需的泵和箱;石膏冲洗水和滤布冲洗水系统;两套石膏皮带输送机及其钢支架;卸料采用带自动卸载设备的筒式钢筋混凝土结构石膏仓两座,每座石膏仓的容积满足2×600MW机组燃用设计煤BMCR工况下3天的石膏贮量;所有浆液箱、管道的防腐内衬。 五、FGD供水及排放系统 1、FGD供水系统:FGD供水系统为4×600MW机组脱硫装置公用系统,将分期建设。根据水源及用途在脱硫岛内设二~三个水箱及要求的全部连接管、阀门、检查开口、溢流管、排水管和其他必要的设施;所有必须的水泵等。 2、事故浆液系统:事故浆液系统为4×600MW机组脱硫装置公用系统;一个碳钢加衬里事故浆液箱,用于收集FGD吸收塔检修排空时排放浆液,事故处理后返回吸收塔;一运一备两台事故浆液返回泵。 3、排污坑:收集设备冲洗水、管道冲洗水、吸收塔区域、石灰石卸料及制备区、石膏脱水区冲洗水的收集坑,并定期返回吸收塔/石灰石浆液箱,每座排污坑1台排浆泵。 4、排放系统:设备冷却水排水返回工艺水箱;岛内生活污水排至岛外2米处的生活污水总管,由电厂统一处理;雨水排水接入厂区雨水下水道系统,送至岛外2米;处理后的脱硫废水排至岛外2米处的工业废水总管。 六、FGD废水处理系统 1 、脱硫废水处理装置容量按4×600MW机组脱硫装置的废水处理量考虑,其设备布置在脱硫公用设施区域内,与石膏脱水设施集中布置,但为独立的FGD废水处理系统。 2、脱硫废水引自废水旋流器并自流/泵送至到废水接收池。废水处理系统按125%容量设计,为使系统有高的可利用性,所有泵按100%安装备用。每个箱体都应设置旁路,以便箱体能够放空并进行维修。污泥脱水系统的污泥运至干灰场贮存。处理后废水排放至电厂工业废水下水道,送至脱硫岛外2米。 3、 废水处理后达到《污水综合排放标准》(GB8978-1996)第二时段一级标准。 4、 FGD废水系统内的所有设备、阀门、管道、仪表、平台、扶梯、支吊架等附件及设备管道安装,整套包括,但不限于此:废水缓冲箱、中和箱、沉淀箱、絮凝箱、澄清箱、浓缩箱及衬里防腐,阀门、仪表、管道、排水排污管、全部必须的连接件、法兰、人孔、平台、扶梯及其他配件。 七、压缩空气系统 1、杂用空气用于机械设备,风动工具,板手等操作,用于脱硫装置各种运行方式中,以及用于脱硫装置的维修目的;在岛内设杂用空气贮气罐。 2、高纯度,无油,无水的仪用压缩空气,用于脱硫装置所有气动操作的仪表和控制装置(阀门操作装置等);在岛内设仪用空气稳压罐。 八、仪表和控制系统(控制要点如下,但不限于此) 1、SO2吸收系统:吸收塔进口/出口二氧化硫浓度控制;石灰石浆液流量控制;循环浆液pH值控制;吸收塔氧化浆池液位控制;石膏浆液排放控制等。 2、烟气系统:烟气入口/出口温度测量;挡板门开/闭的控制;增压风机压力和流量控制;增压风机启闭控制;密封风机差压控制,启闭控制等。 3、吸收剂制备系统:湿式磨机给料量控制;旋流器溢流控制;旋流器出口石灰石粉细度监控;一旋流器流量和出口浓度控制;石灰石浆液泵流量控制等。 4、FGD石膏脱水系统:石膏旋流器溢流控制;石膏冲洗控制;石膏旋流器流量和出口浓度控制;真空泵压力控制;真空皮带脱水机石膏厚度控制等。 5、FGD供水及排放系统:工艺水泵和冲洗水泵压力和流量控制;箱体液位控制;事故情况下连锁控制事故排放等。 6、FGD废水处理系统及压缩空气系统仪表和控制,提供满足系统正常运行和事故/停机状态时需要的所有的仪表和控制。
xiaoqiao945
目前我国燃煤电厂脱硫废水标准DL/T997—2006的排放指标与限制内容已不符合社会发展需要,为此,本文提出了燃煤电厂脱硫废水排放指标限值相关计算方法。论文调研了美国和国内的相关规范,对排放指标确定范围的具体数值和算法模型展开深入研究,结合我国行业发展状况和国情给出了具体的修订建议,通过计算模型得出脱硫废水污染物控制参数的直接排放限值,氯化物日最大排放限值≤500mg/L,总溶解固体(TDS)日最大排放限值≤215mg/L,硒≤1.5mg/L,汞≤0.005mg/L等。2015年国务院印发《水污染防治行动计划》(以下简称“水十条”)明确了我国水环境治理的重点,为中国水污染防治指明了方向。燃煤电厂湿式石灰石石膏法烟气脱硫(FGD)产生的脱硫废水以其污染物组分复杂、不少重金属含量超标,直接排放将对环境及人体产生多重且长期的危害,因此电力行业2006年首次制定了《火电厂石灰石石膏湿法脱硫废水水质控制指标》DL/T997,通过浓度控制对相应的污染物排放指标、处理技术提出了无害化要求。脱硫废水常规处理方法为化学沉淀、絮凝、中和、沉淀等技术路线,但随着近年来零排放技术等的逐步出现与成熟,加之现有执行标准的控制指标种类少、不区分技术制定标准限值等问题,原有标准在技术先进性、环境要求方面的适应性越来越低。为进一步完善国家环境污染物排放标准体系,规范和加强火电行业废水排放管控,引导电力污染物环保产业可持续健康发展,对脱硫废水标准进行修标已是大势所趋。本文通过对比我国与美国污染物排放标准的修订及污染物排放指标浓度限值的计算模型,制定出适用于我国脱硫废水污染物控制参数的直接排放限值计算方法。1中美污染物排放标准修订对比1.1美国确定基于技术的污染物排放指标的流程美国确定水质污染物排放限值的方法基本分为以下3种:①特定化学物质法;②废水综合毒性法;③生物基准或生物学评估法。经研究,美国工业点源水污染物排放限值的确定方法主要为水环境质量的综合毒性法,该法采用水生生物暴露试验的方法确定污染物综合毒性,适用于难确定废水水质复杂且难提出特定污染物的情况。这区别于为满足特定化学物质水质基准的特定化学物质法。根据美国国家污染物排放削减计划(NPDES),其核心内容即排污许可证的颁发与实施,而该政策的实施内容则为点源水污染物排污许可限值。美国对于点源污染物排放限值的确定方法依据之一为技术基础(technology-based),即考虑目前能达到的技术处理能力;之二为水质基础(water quality-based),即充分考虑以环境生物影响与人体健康为本的水质标准。图1给出了美国EPA基于处理技术确定废水污染物排放指标限值的客观研究流程。图1 美国环保署(EPA)水污染物排放标准限值确定流程1.2国内常规污染物排放标准的修订程序我国的工业污染物排放控制标准通常以对应的污染物去除工艺、技术路线为主要修标依据,以人体健康(即环境效益)为基本要求,标准所控制的技术路线除技术可行外还要充分考虑经济指标,即投资、运行费用等。根据以上现有客观修订依据,本文作者通过综合分析各类标准的修订背景、必要性、计算研究方法等步骤,所确定的标准确定过程分解如图2。图2 脱硫废水污染物控制标准的修标流程1.3我国污染物排放指标存在的问题1.3.1相关指标在标准中体现不够我国对于脱硫废水的控制标准有行业标准《火电厂石灰石-石膏湿法脱硫废水水质控制指标》(DL/T997—2006),其中指标有对重金属的控制如总汞、总铬、总镉、总铅、总镍、悬浮物、化学耗氧量、硫化物、氟化物、硫酸盐、pH进行了制约。考虑到目前国内推荐应用的脱硫废水处理技术路线,如沉淀、混凝、中和等化学处理后达标排放,即三联箱技术。此路线对悬浮物与大部分金属及重金属汞、砷去除率很高,但对氯化物、溴化物、硼、硫酸盐、铵和其他溶解固体(TDS)去除率低[13];并且对某些有害元素如硒等去除效果差。对于此种处理技术,现有的控制标准种类少,对可溶性盐及硒等有害物质的排放在标准中体现不够。其次我国推荐的脱硫废水处理技术路线还有化学沉淀、混凝、中和预处理+膜浓缩+烟道余热蒸发干燥/蒸发结晶,即脱硫废水零排放技术。此技术需要对汞、砷、硒和硝酸盐/亚硝酸盐的出水浓度进行限值,以及对总悬浮固体(TSS)进行限制。我国脱硫废水控制标准不再符合社会发展需要,需增加现有执行标准的控制指标,更应该关注溶解性总固体TDS、硝酸盐/亚硝酸盐,汞、六价铬、铜、硒等有害物质控制指标。1.3.2未充分考虑技术经济可行性深入研究美国环保署2015年最新修订的关于点源燃煤电站的污染物排放标准40 CFR Part423,《Effluent Limitations Guidelines and Standards for the Steam Electric Power Generating Point Source Category》;Final Rule,关于FGD废水的控制标准有两套BAT(best available technology economically achievable,最佳经济可行技术)限制,第一套BAT控制标准是对TSS(total suspended solid,总悬浮固体)制定的数值限制标准,该控制方法与EPA先前制定的关于TSS的BPT(best practicable control technology currently available,最佳现有实用控制技术)规范在数值上相同;第二套BAT控制标准是对汞、砷、硒、硝酸盐/亚硝酸盐氮制定的数值限制标准,而自愿采用先进技术的现存燃煤电厂(ES,existing sources)与新建电厂(NS,new sources)的FGD废水控制指标为汞、砷、硒、TDS(溶解性总固体)。但我国还未建立系统的污染物削减技术评估体系,目前我国制订的BAT仅11个,不足以支撑所有行业的水污染物排放标准制修订工作。1.3.3标准在技术先进性、环境要求方面的适应性需提高在制定标准时应与现今脱硫废水处理技术及环境要求无缝衔接。行业水污染物排放限值是通过综合考虑工业排污水平、污染物处理技术、环境质量要求、国内外相关标准等多方面的因素来制订。如今零排放技术已在我国部分应用,《火电厂石灰石-石膏湿法脱硫废水水质控制指标》已远远不适用于当今污染控制技术。美国对于湿法脱硫废水的排放控制标准,美国EPA根据不同的处理技术分别制定了不同的控制限值。如只采用化学沉淀法处理脱硫废水的电厂需要针对汞、砷提出控制标准;采用化学沉淀后续串联生物处理脱硫废水的电厂需要提出汞、砷、硒、硝酸盐/亚硝酸盐态氮的控制标准;而采用蒸发处理脱硫废水的电厂则提出控制汞、砷、硒和总溶解性固体的要求。2相关计算模型2.1发达国家确定污染物排放指标浓度限值的计算模型参考美国国家污染物削减计划(NPDES)中基于BAT技术的水污染物浓度限值计算方法建立计算模型过程。(1)确定需要控制的污染物指标,根据造成的环境影响即主要矛盾,包括长期/慢性和短期/急性毒性确定。(2)工业废水浓度限值分为日最大浓度限值(短期)与30天平均值(长期),分直接排放到自然水体的浓度限值和排放到下游公共污水处理设备的浓度限值,不同浓度的算法公式也不同。以工厂排放的某污染物i为例,讨论长期平均值(long time average,LTA),如式(1)。(3)日变异系数和月变异系数VF的确定。(4)根据计算模型标准浓度限值=LTA×VF,最终确定排污行业不同污染物浓度的浓度限值标准。(5)可行性验证。2.2适用于我国工业废水排放的标准限值计算模型(1)某种污染物浓度限值确定行业长期平均值采用算术平均根的计算模型,以企业排放的COD为例,公式如式(2)。3我国脱硫废水排放标准的浓度限值计算方法依据新修订脱硫废水排放标准的标准限值依托的技术依据拟采用零排放技术“化学预处理+RO膜浓缩减量+蒸发结晶”技术为主、“化学预处理+RO膜浓缩减量+余热烟气旁路蒸发”技术为辅。已知正常工况下两种技术的出水指标相当,形成的脱硫废水零排放系统的主要污染物进出口控制参数如表1,以国内某燃煤电厂大型脱硫废水零排放工程实例为参考原型。表1 脱硫废水零排放系统的主要污染物进出口控制参数根据燃煤电厂石灰石石膏湿法脱硫废水的水质特点、主要污染物种类可能造成环境危害以及现有水质标准的主要控制对象的分析,以及环保部推荐的最佳处理技术的结论,确定了脱硫废水中需要控制的污染物种类,如表2。表2 基于蒸发结晶/旁路蒸发技术(BAT)的脱硫废水污染物控制参数确定下面以10家采用脱硫废水零排放技术的燃煤电厂出水水质数据为基础,以具有代表性的污染物硫酸根离子SO42–为例代入数学模型计算,过程和结果如下。(1)计算长期平均值LTA,如式(8)。国家规定的化学需氧量的测定方法为重铬酸盐法,由GB11914—1989可知,该方法检出限为0.2mg/L;未检出比例为p=0。表1中的其他类型污染物的BAT浓度限值的计算结果同硫酸根,因此最终计算结果如表2。4结论与展望(1)以最佳可利用技术(BAT)——脱硫废水零排放技术蒸发结晶的工艺路线为标准浓度限值确定的技术依据,充分学习我国与美国环保部门制定废水排放标准限值时借助的数学模型算法,确定了该技术方案支持下的脱硫废水排放控制标准的污染物种类与控制浓度区间。(2)在深入研究了我国和美国的标准限值确定方法的基础上,融合了两国计算模型的共同点,得出了根据脱硫废水水质水量特点确定的需要污染物种类,包括新增的TDS日最大排放限值、硝酸盐日最大排放限值、氯化物等无机盐离子的控制水平、二类污染物铜、硒的控制水平以及一类污染物汞、六价铬等重金属控制指标等。(3)脱硫废水新的控制指标应更加适应当前及未来的环境发展需要。希望以上的内容可以帮助到你,更多信息,欢迎登陆中达咨询进行咨询。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:
工厂供电,是指将电能通过输配电装置安全、可靠、连续、合格的销售给工厂用户,满足广用户经济建设和生活用电的需要。下面是由我整理的工厂供电技术3000字论文,希望能
电力系统自动化是一项综合性质的技术,包含内容广泛,并且随着时代的发展,经济水平的提高,生活质量的提升,对于电力的需求和利用也就越来越大。下文是我为大家搜集整理的
电厂在进行脱硫脱硝的时候方法是不一样的,所以其工艺流程也不相同,下面,就具体给大家分享一下。 脱硫工艺又分为两种,具体的流程介绍是: 一、双碱法脱硫工艺 1)
电力系统自动化是一项综合性质的技术,包含内容广泛,并且随着时代的发展,经济水平的提高,生活质量的提升,对于电力的需求和利用也就越来越大。下文是我为大家搜集整理的
关于变电运行中的故障研究的论文 在社会的各个领域,大家都写过论文吧,论文是学术界进行成果交流的工具。你所见过的论文是什么样的呢?以下是我帮大家整理的关于变电运行