april841002
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为0.88(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}=0.5 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为0.9,学习速率延迟为0.0005。Learning schedule为:第一轮,学习速率从0.001缓慢增加到0.01(因为如果初始为高学习速率,会导致模型发散);保持0.01速率到75轮;然后在后30轮中,下降到0.001;最后30轮,学习速率为0.0001。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为0.5;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
Rabbit公主
本科毕业生的毕业论文原则上都须通过万方“论文相似性检测服务”系统进行检测,特殊专业论文或者保密论文由学院(部)自定。
对于本科和硕士研究生毕业论文主要包括:封面、原创声明、摘要、目录、正文、致谢、参考文献、附录、开题报告和表格图片等,那么学校知网查重这些部分都会查吗?检测哪些内容更科学准确呢?下面学术不端网就来分析本科毕业论文查重哪些内容以及检测范围,具体答案分析如下:
关于知网相关抽查规定:有规定的,可以进行第一次修改,修改之后通过就可以答辩,如果第二次不通过就算结业,在之后4个月内还要交论文或者设计的。这个是在抄袭30%的基础上的。如果抄袭50%以上的话,直接结业在之后4个月内还要交论文或者设计的。
1、被认定为抄袭的本科毕业设计(论文),包括与他人已有论文、著作重复总字数比例在30%至50%(含50%)之间的,需经本人修改。修改后经过再次检测合格后,方可参加学院答辩。再次检测后仍不合格的,按结业处理。须在3个月后提交改写完成的毕业设计(论文),检测合格后再参加答辩。
2、被认定为抄袭的本科毕业设计(论文),且与他人已有论文、著作重复总字数比例超过50%的,直接按结业处理。须在4个月后提交改写的毕业设计(论文),检测合格后再参加答辩。
知网查重,就是用一定的算法将你的论文和知网数据库中已收录的论文进行对比,从而得出你论文中哪些部分涉嫌抄袭。目前的本科毕业论文查重使用的知网pmlc检测范围对比库有:
中国学术期刊网络出版总库
中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库
中国重要会议论文全文数据库
中国重要报纸全文数据库
中国专利全文数据库
大学生论文联合比对库
互联网资源(包含贴吧等论坛资源)
英文数据库(涵盖期刊、博硕、会议的英文数据以及德国Springer、英国Taylor&Francis期刊数据库等)
港澳台学术文献库
优先出版文献库
互联网文档资源
图书资源
CNKI大成编客-原创作品库
个人比对库
值得说明的是本科毕业论文查重的检测范围包括”大学生论文联合比对库”,该库是本科论文检测系统知网pmlc独有的对比库,主要记录本科学长毕业论文。学术不端网认为本科毕业论文知网查重主要内容包括:摘要、目录、正文、参考文献这几个部分内容。知网查重时具体查哪些内容最终还是要以学校要求为准,正确的目录和参考文献不影响知网查重结果,因为知网可以识别到目录和参考文献剔除并不参与正文检测。高校以知网查重为准,毕业论文定稿还是需要知网查重最准确。
目前查重系统比较强大,基本上公式和表格都可以分析查重,所以很多同学也开始担心毕业论文查重查不查图片这个问题。一张图片可以直接展示了方面的内容,是直接代替了大表格
1、划分段落格式 我们要知道论文查重系统一般都是直接对提交的整篇文章进行比对的,如果你论文当中一大段的去进行引用而并不进行划分段落层次的话,那么重复率自然会是
==================论文写作方法===========================
数字图像处理方面了解的了。
文献标识码(Document code)是按照《中国学术期刊(光盘版)检索与评价数据规范》规定的分类码,作用在于对文章按其内容进行归类,以便于文献的统计、期刊评