guyanni1987
一 、体验学习的认识 体验是指“通过实践来认识周围的事物”,是人类的一 种心理感受,是带有主观经验和感情色彩的认识,与个人的经历有着密切的关系。数学学习中的体验是指学生个体在数学活动中,通过行为、认知和情感的参与,获得对数学事实与经验的理性认知和情感态度。因此,体验具有以下特点: 1、体验是对学习个体的重视。包括个体的各种生活经验、独特的思维方式和情感态度。因为真正有价值的学习是以学生个体经验为基础的,是学生对知识主动建构的过程,更是使学生整个精神世界发生变化的过程。 2、体验是学习个体在数学活动中的行为、认知与情感的整体参与。数学课堂上的行为具体表现为:看一 看、摸一 摸、摆一 摆、拆一 拆、拼一 拼、折一 折、剪一 剪、画一 画等各种形式的感官活动。体验除了感官活动,还需要猜测、类比、分析、验证、归纳、推理等各种思维活动。课堂教学中,教师指令性的、没有思考空间的各种操作活动并不是体验,它仅仅是模仿性的机械操作而已。 3、体验中的数学活动包括合作与交流。这是因为数学建构活动有其社会性质,也就是说,“个人创造的数学必须取决于数学共同体的‘裁决’,只有为数学共同体所一 致接受的数学概念、方法、问题等,才能真正成为数学的成分。”因此,个体的经验要与同伴和教师交流与分享,才能达到共同建构的目的二、体验学习的实施 (一 )提供“生活化”的学习材料,让学生在情境中体验。 1、课前关注学生值得体验的内容。 小学生由于缺乏生活的经历,有些知识学起来感到吃力,这就需要我门在教学这些知识之前,组织学生 参观或收集生活中相应的数学素材,为学生提供感性认识。 如,在教学生认识钟面时,我在课前,给学生布置任务,每人设计一 个“钟面”,于是,全班同学回家后纷纷行动起来,用纸壳、图画纸等材料,仿照自家的钟面制作起来,有不懂的地方请家长辅助制作。学生在亲手制作的过程中学到了很多知识。结果在正式上钟面这一 课时,就显得很轻松了,原本感觉很难讲授的知识,学生对答如流,并且,还随时地向老师提出了许多超出本节内容的东西。正是学生有了这些亲身体验,学生上课时思路打开了,非常投入,热情很高,学习起来特别轻松。 2、课上开放教学内容,引导学生体验。 教育是人的教育,是科学教育与生活教育的融合。因此,数学内容必须与学生的生活实际相结合。小学数学教学内容绝大多数可以联系生活实际。在教学中,教师只要把教材与现实生活有机的结合起来,就能使学生体会到数学离不开生活,体会到数学的用途。才能很好地把数学与生活挂上钩,更好地理解和掌握基础知识,并运用所学的知识解决实际问题,减少学生对数学的畏惧感和枯燥感。这对于培养学生对数学的浓厚兴趣、探索意识、应用意识和实践能力具有重要意义。 如我在教学“加减法速算”时,是这样引入的,首先由电脑出示3箱苹果,其中2箱每箱100个,另有一 个箱子里有47个,让学生从中取出199个,鼓励学生自由地思考“取”的方法。甲生:先拿47个,再拿100个,最后再从100个的一 箱中取出52个,这样就取出199个;乙生:我先取100个,再从另一 箱中取99个,共取出199个;丙生:我先取出两箱是200个,再拿出1个放回47个的那个箱子,这样就取出199个。师:如果让你来取出这199个苹果,你会用哪种方法?为什么?结合不同取法的交流,电脑进行取苹果过程的演示,使学生直观而又深刻地体会到,先取2箱再放回1个的取法最简便。由于所设计的问题情景,贴近学生的生活实际,情景中的问题是开放的且能向学生提出智力挑战,所以引起了学生的兴趣,思维一 下子被激活了。大家凭借已有的知识和生活经验,多角度地进行思考,成功地解决问题,而解决问题的思维活动中,隐含着“多加要减”“多减要加”的思想方法,为学生主动探究加减法速算的算理提供了鲜活的生活原型。 (二)提供机会,让学生在实践中体验。 1、提供“玩”的机会,让学生在玩耍中体验。 爱玩是小学生的天性,是他们的兴趣所在。心理学研究结果表明:促进人们素质、个性发展的最主要途径是人们的实践活动,而“玩”正是儿童这一 年龄阶段特有的实践活动形式。在教学中,可以把课本中的一 些新授知识转化成“玩耍”活动,创造这样的氛围以适应和满足儿童的天性。例如,在教学《分数的基本性质》时,我拿着36本书让学生按第一 小组分得这些书的1/3,第二小组分得这些书的2/6,第三小组分得这些书的3/9,进行分书游戏。学生从争论这样分不合理,到结果每组分得的书一 样多,从中体验分数的基本性质。 通过把课本中的新授知识转换成“玩耍”活动,不仅使学生心情自然愉快、厌学情绪消失,而且还能从“玩耍”中自觉地探求有关知识、方法和技能,使“玩”向有收益、有选择、有节制、有创造的方面转化,所以会玩的过程也是一 个体验学习的过程。 2、提供“做”的机会,让学生在操作中体验。 “做”就是让学生动手操作,通过操作,可以使学生获得大量的感性知识,同时也还有助于提高学生的学习兴趣,激发学生的求知欲。因此,多让学生动手操作,创造一 个愉悦的学习氛围,是提高教学效果的重要环节,也是学生体验学习的一 种方式 三、对“体验学习”课堂教学实践的几点体会 1、重视从学生的生活经验和已有知识出发,学习和理解数学,联系生活,使学生明白,数学是有用的,可以解决生活中的实际问题,从而促使学生用数学的眼光来看待生活问题。 2、通过实践活动,让学生观察、分析、推理、估计、想象、整理,在探索中体验数学的巨大作用,成为学生认真学习数学的动力。 3、加强合作交流,重视应用,从而促进学生的动手操作能力和应用能力。在学习中体验,留给学生充分发展的时间和空间,使学生在主动获取知识的过程中,思维得到锻炼,情感得到体验,创新能力和实践能力得到培养和发展。 总之,体验学习是在素质教育大背景下产生的一 种教育思想,它充分展示了以人为本的教育理念,要求教师确立学生的主体地位,引导学生参与教学的全过程中,在体验中思考,在思考中创造,在创造中发展。
雯香识女人coco
中国数学发展史 中国古代是一个在世界上数学领先的国家,用近代科目来分类的话,可以看出无论在算术、代数、几何和三角各方而都十分发达。现在就让我们来简单回顾一下初等数学在中国发展的历史。 (一)属于算术方面的材料 大约在3000年以前中国已经知道自然数的四则运算,这些运算只是一些结果,被保存在古代的文字和典籍中。乘除的运算规则在后来的“孙子算经”(公元三世纪)内有了详细的记载。中国古代是用筹来计数的,在我们古代人民的计数中,己利用了和我们现在相同的位率,用筹记数的方法是以纵的筹表示单位数、百位数、万位数等;用横的筹表示十位数、千位数等,在运算过程中也很明显的表现出来。“孙子算经”用十六字来表明它,“一从十横,百立千僵,千十相望,万百相当。” 和其他古代国家一样,乘法表的产生在中国也很早。乘法表中国古代叫九九,估计在2500年以前中国已有这个表,在那个时候人们便以九九来代表数学。现在我们还能看到汉代遗留下来的木简(公元前一世纪)上面写有九九的乘法口诀。 现有的史料指出,中国古代数学书“九章算术”(约公元一世纪前后)的分数运算法则是世界上最早的文献,“九章算术”的分数四则运算和现在我们所用的几乎完全一样。 古代学习算术也从量的衡量开始认识分数,“孙子算经”(公元三世纪)和“夏候阳算经”(公元六、七世纪)在论分数之前都开始讲度量衡,“夏侯阳算经”卷上在叙述度量衡后又记着:“十乘加一等,百乘加二等,千乘加三等,万乘加四等;十除退一等,百除退二等,千除退三等,万除退四等。”这种以十的方幂来表示位率无疑地也是中国最早发现的。 小数的记法,元朝(公元十三世纪)是用低一格来表示,如13.56作1356 。在算术中还应该提出由公元三世纪“孙子算经”的物不知数题发展到宋朝秦九韶(公元1247年)的大衍求一术,这就是中国剩余定理,相同的方法欧洲在十九世纪才进行研究。 宋朝杨辉所著的书中(公元1274年)有一个1—300以内的因数表,例如297用“三因加一损一”来代表,就是说297=3×11×9,(11=10十1叫加一,9=10—1叫损一)。杨辉还用“连身加”这名词来说明201—300以内的质数。 (二)属于代数方面的材料 从“九章算术”卷八说明方程以后,在数值代数的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移的,正象我们现在学习初等代数时从正负数的四则运算学起一样,负数的出现便丰富了数的内容。 我们古代的方程在公元前一世纪的时候已有多元方程组、一元二次方程及不定方程几种。一元二次方程是借用几何图形而得到证明。 不定方程的出现在二千多年前的中国是一个值得重视的课题,这比我们现在所熟知的希腊丢番图方程要早三百多年。具有x3+px2+qx=A和x3+px2=A形式的三次方程,中国在公元七世纪的唐代王孝通“缉古算经”已有记载,用“从开立方除之”而求出数字解答(可惜原解法失传了),不难想象王孝通得到这种解法时的愉快程度,他说谁能改动他著作内的一个字可酬以千金。 十一世纪的贾宪已发明了和霍纳(1786—1837)方法相同的数字方程解法,我们也不能忘记十三世纪中国数学家秦九韶在这方面的伟大贡献。 在世界数学史上对方程的原始记载有着不同的形式,但比较起来不得不推中国天元术的简洁明了。四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经”和“九章算术”都谈到算术级数和几何级数。十四世纪初中国元代朱世杰的级数计算应给予很高的评价,他的有些工作欧洲在十八、九世纪的著作内才有记录。十一世纪时代,中国已有完备的二项式系数表,并且还有这表的编制方法。 历史文献揭示出在计算中有名的盈不足术是由中国传往欧洲的。 内插法的计算,中国可上溯到六世纪的刘焯,并且七世纪末的僧一行有不等间距的内插法计算。 十四世纪以前,属于代数方面许多问题的研究,中国是先进国家之一。 就是到十八,九世纪由李锐(1773—1817),汪莱(1768—1813)到李善兰(1811—1882),他们在这一方面的研究上也都发表了很多的名著。 (三)属于几何方面的材料 自明朝后期(十六世纪)欧几里得“几何原本”中文译本一部分出版之前,中国的几何早已在独立发展着。应该重视古代的许多工艺品以及建筑工程、水利工程上的成就,其中蕴藏了丰富的几何知识。 中国的几何有悠久的历史,可靠的记录从公元前十五世纪谈起,甲骨文内己有规和矩二个字,规是用来画圆的,矩是用来画方的。 汉代石刻中矩的形状类似现在的直角三角形,大约在公元前二世纪左右,中国已记载了有名的勾股定理(勾股二个字的起源比较迟)。 圆和方的研究在古代中国几何发展中占了重要位置。墨子对圆的定义是:“圆,一中同长也。”—个中心到圆周相等的叫圆,这解释要比欧几里得还早一百多年。 在圆周率的计算上有刘歆(?一23)、张衡(78—139)、刘徽(263)、王蕃(219—257)、祖冲之(429—500)、赵友钦(公元十三世纪)等人,其中刘徽、祖冲之、赵友钦的方法和所得的结果举世闻名。 祖冲之所得的结果π=355/133要比欧洲早一千多年。 在刘徽的“九章算术”注中曾多次显露出他对极限概念的天才。 在平面几何中用直角三角形或正方形和在立体几何中用锥体和长方柱体进行移补,这构成中国古代几何的特点。 中国数学家善于把代数上的成就运用到几何上,而又用几何图形来证明代数,数值代数和直观几何有机的配合起来,在实践中获得良好的效果. 正好说明十八、九世纪中国数学家对割圆连比例的研究和项名达(1789—1850)用割圆连比例求出椭圆周长。这都是继承古代方法加以发挥而得到的(当然吸收外来数学的精华也是必要的)。 (四)属于三角方面的材料 三角学的发生由于测量,首先是天文学的发展而产生了球面三角,中国古代天文学很发达,因为要决定恒星的位置很早就有了球面测量的知识;平面测量术在“周牌算经”内已记载若用矩来测量高深远近。 刘徽的割圆术以半径为单位长求圆内正六边形,十二二边形等的每一边长,这答数是和2sinA的值相符(A是圆心角的一半),以后公元十二世纪赵友钦用圆内正四边形起算也同此理,我们可以从刘徽、赵友钦的计算中得出7.5o、15o、22.5o、30o、45o等的正弦函数值。 在古代历法中有计算二十四个节气的日晷影长,地面上直立一个八尺长的“表”,太阳光对这“表”在地面上的射影由于地球公转而每一个节气的影长都不同,这些影长和“八尺之表”的比,构成一个余切函数表(不过当时还没有这个名称)。 十三世纪的中国天文学家郭守敬(1231—1316)曾发现了球面三角上的三个公式。 现在我们所用三角函数名词:正弦,余弦,正切,余切,正割,余割,这都是我国十六世纪已有的名称,那时再加正矢和余矢二个函数叫做八线。 在十七世纪后期中国数学家梅文鼎(1633—1721)已编了一本平面三角和一本球面三角的书,平面三角的书名叫“平三角举要”,包含下列内容:(1)三角函数的定义;(2)解直角三角形和斜三角形;(3)三角形求积,三角形内容圆和容方;(4)测量。这已经和现代平面三角的内容相差不远,梅文鼎还著书讲到三角上有名的积化和差公式。十八世纪以后,中国还出版了不少三角学方面的书籍。
必须匿名
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。给你 选了几篇
国际商法地位及体系的演变摘要:国际商法是随着国际商事关系的出现而产生并发展的。从产生之日起,它就是一个独立的法律部门。近代以来,国际商事法律规范的表现形式出现了
论文答辩时经常会问到研究过程和研究方法的问题,如果能回答好这个问题,就说明对自己的论文研究是下就功夫的。 一般情况下研究过程从选题开始,到跟导师沟通商量确定
论文答辩时经常会问到研究过程和研究方法的问题,如果能回答好这个问题,就说明对自己的论文研究是下就功夫的。 一般情况下研究过程从选题开始,到跟导师沟通商量确定
生物教育理论里?感觉这个问题很不恰当,不同的问题有不同的研究方法,方法肯定是为内容服务的,这样岂不是先固化了教学论的研究问题?仅就答案看的话应该是 课堂观察,或
小学数学益智游戏培养学生思维方式论文 现如今,大家都不可避免地会接触到论文吧,通过论文写作可以培养我们的科学研究能力。相信许多人会觉得论文很难写吧,下面是我精心