lalack1987
文章编号:1005 - 0523(2005) 02 - 0063 - 04数字水印及其发展研究石红芹,谢 昕(华东交通大学信息工程学院,江西南昌330013)摘要:首先对数字水印的特征进行了分析,阐述了数字水印技术的基本原理,对目前比较流行的水印算法进行了分类和详细地讨论,最后指出目前水印技术存在的局限并对其发展进行了展望.关键词:版权保护;数字水印;水印算法中图分类号:TP391 文献标识码:A1 引 言近年来,随着数字化技术的进步和Internet 的迅速发展,多媒体信息的交流达到了前所未有的深度和广度,其发布形式愈加丰富了. 网络发布的形式逐渐成为一种重要的形式,伴随而来的是多媒体数据的版权保护问题. 因此多媒体信息版权保护问题成了一项重要而紧迫的研究课题. 为了解决这一难题,近几年国际上提出了一种新的有效的数字信息产品版权保护和数据安全维护的技术一一数字水印技术. 数字水印技术通过在原始媒体数据中嵌入秘密信息———水印来证实该数据的所有权归属. 水印可以是代表所有权的文字、产品或所有ID、二维图像,视频或音频数据、随机序列等. 主要应用于:媒体所有权的认定. 即辨认所有权信息,媒体合法用户信息; 媒体的传播跟算法研究. 该子模块的研究为解决网络制造产品版权保护问题奠定了基础数字水印技术,又称数字签名技术,成为信息隐藏技术的一种重要研究分支,为实现有效的信息版权保护提供了一种重要的手段.2 数字水印的基本原理从图像处理的角度看,嵌入水印信号可以视为在强背景下迭加一个弱信号,只要迭加的水印信号强度低于人类视觉系统( Human Visual System ,HVS) 的对比度门限,HVS 就无法感到信号的存在.对比度门限受视觉系统的空间、时间和频率特性的影响. 因此通过对原始信号作一定的调整,有可能在不改变视觉效果的情况下嵌入一些信息,从数字通信的角度看,水印嵌入可理解为在一个宽带信道(载体图像) 上用扩频通信技术传输一个窄带信号(水印信号) . 尽管水印信号具有一定的能量,但分布到信道中任一频率上的能量是难以检测到的. 水印的译码(检测) 即是在有噪信道中弱信号的检测问题.一般来说,为了使水印能有效地应用于版权保护中,水印必须满足如下特性:1) 隐蔽性 水印在通常的视觉条件下应该是不可见的,水印的存在不会影响作品的视觉效果.2) 鲁棒性 水印必须很难去掉(希望不可能去掉) ,当然在理论上任何水印都可以去掉,只要对水印的嵌入过程有足够的了解,但是如果对水印的嵌入只是部分了解的话,任何破坏或消除水印的企图都应导致载体严重的降质而不可用.3) 抗窜改性 与抗毁坏的鲁棒性不同,抗窜改性是指水印一旦嵌入到载体中,攻击者就很难改变或伪造. 鲁棒性要求高的应用,通常也需要很强的抗窜改性. 在版权保护中,要达到好的抗窜改性是比较困难的.4) 水印容量 嵌入的水印信息必须足以表示多媒体内容的创建者或所有者的标志信息,或是购买者的序列号. 这样在发生版权纠纷时,创建者或所有者的信息用于标示数据的版权所有者,而序列号用于标示违反协议而为盗版提供多媒体数据的用户.5) 安全性 应确保嵌入信息的保密性和较低的误检测率. 水印可以是任何形式的数据,比如数值、文本、图像等. 所有的水印都包含一个水印嵌入系统和水印恢复系统. 水印的嵌入和提取过程分别6) 低错误率 即使在不受攻击或者无信号失真的情况下,也要求不能检测到水印(漏检、false -negative) 以及不存在水印的情况下,检测到水印(虚检、false - positive) 的概率必须非常小.3 数字水印算法近几年来,数字水印技术研究取得了很大的进步,见诸于文献的水印算法很多,这里对一些典型的算法进行了分析.3. 1 空间域算法数字水印直接加载在原始数据上,还可以细分为如下几种方法[1~4 ] :1) 最低有效位方法(LSB) 这是一种典型的空间域数据隐藏算法,L. F. Tumer 与R. G. Van Schyadel等先后利用此方法将特定的标记隐藏于数字音频和数字图像内. 该方法是利用原始数据的最低几位来隐藏信息(具体取多少位,以人的听觉或视觉系统无法察觉为原则) .LSB 方法的优点是有较大的信息隐藏量,但采用此方法实现的数字水印是很脆弱的,无法经受一些无损和有损的信息处理,而且如果确切地知道水印隐藏在几位LSB 中,数字水印很容易被擦除或绕过.2) Patchwork 方法及纹理块映射编码方法这两种方法都是Bender 等提出的. Patchwork 是一种基于统计的数字水印,其嵌入方法是任意选择N 对图像点,在增加一点亮度的同时,降低另一点的亮度值. 该算法的隐藏性较好,并且对有损的JPEG和滤波、压缩和扭转等操作具有抵抗能力,但仅适用于具有大量任意纹理区域的图像,而且不能完全自动完成.3. 2 变换域算法基于变换域的技术可以嵌入大量比特数据而不会导致可察觉的缺陷,往往采用类似扩频图像的技术来隐藏数字水印信息. 这类技术一般基于常用的图像变换,基于局部或是全部的变换,这些变换包括离散余弦变换(DCT) 、小波变换(WT) 、傅氏变换(FT 或FFT) 以及哈达马变换(Hadamard transform)等等. 其中基于分块的DCT 是最常用的变换之一,现在所采用的静止图像压缩标准JPEG也是基于分块DCT 的. 最早的基于分块DCT 的一种数字水印技术方案是由一个密钥随机地选择图像的一些分块,在频域的中频上稍稍改变一个三元组以隐藏二进制序列信息. 选择在中频分量编码是因为在高频编码易于被各种信号处理方法所破坏,而在低频编码则由于人的视觉对低频分量很敏感,对低频分量的改变易于被察觉. 该数字水印算法对有损压缩和低通滤波是稳健的. 另一种DCT 数字水印算法[5 ]是首先把图像分成8 ×8 的不重叠像素块,在经过分块DCT 变换后,即得到由DCT 系数组成的频率块,然后随机选取一些频率块,将水印信号嵌入到由密钥控制选择的一些DCT 系数中. 该算法是通过对选定的DCT 系数进行微小变换以满足特定的关系,以此来表示一个比特的信息. 在水印信息提取时,则选取相同的DCT 系数,并根据系数之间的关系抽取比特信息. 除了上述有代表性的变换域算法外,还有一些变换域数字水印方法,它们当中有相当一部分都是上述算法的改进及发展,这其中有代表性的算法是I. Podichuk 和ZengWenjun 提出的算法[6 ] . 他们的方法是基于静止图像的DCT 变换或小波变换,研究视觉模型模块返回数字水印应加载在何处及每处可承受的JND(Just Noticeable Difference ,恰好可察觉差别) 的量值(加载数字水印的强度上限) ,这种水印算法是自适应的.3. 3 NEC 算法该算法由NEC 实验室的Cox[5 ]等人提出,该算法在数字水印算法中占有重要地位,其实现方法是,首先以密钥为种子来产生伪随机序列,该序列具有高斯N(0 ,1) 分布,密钥一般由作者的标识码和图像的哈希值组成,其次对图像做DCT 变换,最后用伪随机高斯序列来调制(叠加) 该图像除直流分量外的1 000 个最大的DCT 系数. 该算法具有较强的鲁棒性、安全性、透明性等. 由于采用特殊的密钥,故可防止IBM 攻击,而且该算法还提出了增强水印鲁棒性和抗攻击算法的重要原则,即水印信号应该嵌入源数据中对人感觉最重要的部分,这种水印信号由独立同分布随机实数序列构成,且该实数序列应具有高斯分布N(0 ,1) 的特征. 随后Podilchuk等利用人类视觉模型又对该算法进行了改进,从而提高了该算法的鲁棒性、透明性等.3. 4 其他一些水印算法1) 近年来,利用混沌映射模型实现数字水印、保密通信等成为混沌应用研究的热点. 特别是自从Cox 等借用通信技术中的扩频原理将水印信号嵌入到一些DCT 变换系数或者多层分解的小波变换系数以来,人们已经提出了一些混沌数字水印方法.水印的嵌入与检测是基于人类视觉系统(HVS) 的亮度掩蔽特性和纹理掩蔽特性,折衷水印的不可见性和鲁棒性之间的矛盾. 结果表明:该方法嵌入的水印具有不可见性和鲁棒性,并且这种基于密钥的混沌水印方法更好的抗破译性能.2) 目前比较流行的还有一种基于盲水印检测的DWT 算法,该算法首先对原始图像进行小波变换,根据人类具有的视觉掩蔽特性对低频分量进行一定的量化,同时可不影响视觉效果,并对作为水印的图像进行压缩和二值化处理,形成一维的二值序列,根据二值序列的值对上述量化后的原始信号的低频分量进行视觉阈值范围内允许的修改,从而实现水印的嵌入. 水印提取过程是对含有水印的图像进行小波变换,对低频分量同样进行量化处理,为了增大算法的安全性,可以对水印形成的二值0 ,1 序列在嵌入前进一步进行伪随机序列调制,相应的在水印提取过程需要增加用伪随机序列解调的步骤. 这样,不知道伪随机序列的攻击者即使推测出水印的嵌入规律,也无法提取水印. 大大增加了水印系统的透明性和鲁棒性.4 水印技术的局限目前水印技术的局限,为了对版权保护中使用水印的成功可能性进行评估,看能否满足实际应用需求,就需要对水印技术有更多了解. 下面介绍数字水印方案普遍存在的一些局限:1) 不知道能够隐藏多少位. 尽管非常需要知道指定大小载体信息上可以隐藏多少比特的水印信息,但这个问题还没有得到圆满解决. 事实上,对给定尺寸的图像或者给定时间的音频,可以可靠隐藏信息量的上界,目前还不清楚. 对图像水印,只能说目前使用的算法可以隐藏几百比特位的水印信息.2) 还没有真正健壮的盲图像水印算法. 对图像水印,鲁棒性还是个问题. 目前还没有能够在经过所有普通图像处理变换后,仍能幸免的盲水印算法. 尤其是能够抵抗几何处理的攻击,被认为是很难实现的目标.3) 所有者能去除标记. 迄今为止提出的所有盲图像水印,实际上都是可逆的. 已知水印的准确内容、以及水印的嵌入和检测算法,则总能在没有严重损坏资料的前提下,使水印不可读取. 目前还不清楚这个缺点在将来还是否存在;同时在设计版权保护系统时,必须考虑如下问题:一旦水印内容已知,则有可能去除水印或者部分水印.此外,迄今为止提出的水印算法,其可逆性使人们提出极大的疑问,即设计能够抗篡改的健壮公开水印技术是否可能? 事实上,如果允许任何人读取水印,则任何人只要知道水印嵌入算法,就可以消除水印.5 结 论随着电子商务的加速发展和网络用户的直线增长,媒体的安全要求将更加迫切,作为版权保护和安全认证的数字水印技术具有极大的商业潜力,作为一门学科交叉的新兴的应用技术,它的研究涉及了不同学科研究领域的思想和理论,如数字信号处理、图像处理、信息论、通信理论、密码学、计算机科学及网络、算法设计等技术,以及公共策略和法律等问题,是近几年来国际学术界才兴起的一个前沿研究领域,得到了迅速的发展. 但数字水印技术仍然是一个未成熟的研究领域,还有很多问题需要解决,其理论基础依然薄弱. 随着一些先进的信号处理技术和密码设计思想的引进,必将日趋成熟且得到更为广泛的发展应用.参考文献:[1 ] Eepa Kundur. Dimitrios hatzinakos. Digital watermarking fortelltale tamper proofing and authentication [J ] . Proceeding of the IEEE. 1999 , 87(7) :1167~1180.[2 ] 张春田,苏育挺. 信息产品的版权保护技术———数字水印[J ] . 电信科学,1998 ,14(12) :15~17.[3 ] Bender W, Gruhl D. Techniques for data hiding[J ] . IBM sys2tem journal ,1996 ,35(3~4) :313~336.[4 ] Cox I J , Killian J ,Leighton F T. Secure spread spectrum wa2termarking for multimedia[J ] . IEEE transactions on image pro2cessing ,1997 ,6(12) :1673~1687.[5 ] Zhao J , Koch E. Embedding robust labels into images forcopyright protection[A] . In : Proceedings of the knowright’95conference on intellectual property rights and new technologies[C] . Vienna , Austria , 1995. 241~251.[6 ] Podilchud C I , Zeng W. Image - adaptive watermarking usingvisual model [J ] . IEEE journal on special areas in communica2tions ,1998 ,16(4) :525~539.
天晴小卷XJ
相关范文:数据挖掘技术及其应用摘要:随着网络、数据库技术的迅速发畏以及数据库管理系统的广泛应用,人们积累的数据越来越多。数据挖掘(Data Mining)就是从大量的实际应用数据中提取隐含信息和知识,它利用了数据库、人工智能和数理统计等多方面的技术,是一类深层次的数据分析方法。关键词:数据挖掘;知识;分析;市场营销;金融投资随着网络、数据库技术的迅速发展以及数据库管理系统的广泛应用,人们积累的数据越来越多。由此,数据挖掘技术应运而生。下面,本文对数据技术及其应用作一简单介绍。一、数据挖掘定义数据挖掘(Data Mining)就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。它是一种新的商业信息处理技术,其主要特点是对商业数据库中的大量业务数据进行抽取、转换、分析和其他模型化处理,从中提取辅助商业决策的关键性数据。简而言之,数据挖掘其实是一类深层次的数据分析方法。从这个角度数据挖掘也可以描述为:按企业制定的业务目标,对大量的企业数据进行探索和分析,揭示隐藏的、未知的或验证已知的规律性,并进一步将其模型化的先进有效的方法。二、数据挖掘技术数据挖掘技术是人们长期对数据库技术进行研究和开发的结果,代写论文其中数据仓库技术的发展与数据挖掘有着密切的关系。大部分情况下,数据挖掘都要先把数据从数据仓库中拿到数据挖掘库或数据集市中,因为数据仓库会对数据进行清理,并会解决数据的不一致问题,这会给数据挖掘带来很多好处。此外数据挖掘还利用了人工智能(AI)和统计分析的进步所带来的好处,这两门学科都致力于模式发现和预测。数据库、人工智能和数理统计是数据挖掘技术的三大支柱。由于数据挖掘所发现的知识的不同,其所利用的技术也有所不同。1.广义知识。指类别特征的概括性描述知识。根据数据的微观特性发现其表征的、带有普遍性的、较高层次概念的、中观和宏观的知识,反映同类事物的共同性质,是对数据的概括、精炼和抽象。广义知识的发现方法和实现技术有很多,如数据立方体、面向屙性的归约等。数据立方体的基本思想是实现某些常用的代价较高的聚集函数的计算,诸如计数、求和、平均、最大值等,并将这些实现视图储存在多维数据库中。而面向属性的归约是以类SQL语言来表示数据挖掘查询,收集数据库中的相关数据集,然后在相关数据集上应用一系列数据推广技术进行数据推广,包括属性删除、概念树提升、属性阈值控制、计数及其他聚集函数传播等。2.关联知识。它反映一个事件和其他事件之间依赖或关联的知识。如果两项或多项属性之间存在关联,那么其中一项的属性值就可以依据其他属性值进行预测。最为著名的关联规则发现方法是Apriori算法和FP—Growth算法。关联规则的发现可分为两步:第一步是迭代识别所有的频繁项目集,要求频繁项目集的支持率不低于用户设定的最低值;第二步是从频繁项目集中构造可信度不低于用户设定的最低值的规则。识别或发现所有频繁项目集是关联规则发现算法的核心,也是计算量最大的部分。3.分类知识。它反映同类事物共同性质的特征型知识和不同事物之间的差异型特征知识。分类方法有决策树、朴素贝叶斯、神经网络、遗传算法、粗糙集方法、模糊集方法、线性回归和K—Means划分等。其中最为典型的分类方法是决策树。它是从实例集中构造决策树,是一种有指导的学习方法。该方法先根据训练子集形成决策树,如果该树不能对所有对象给出正确的分类,那么选择一些例外加入到训练子集中,重复该过程一直到形成正确的决策集。最终结果是一棵树,其叶结点是类名,中间结点是带有分枝的屙性,该分枝对应该屙性的某一可能值。4.预测型知识。它根据时间序列型数据,由历史的和当前的数据去推测未来的数据,也可以认为是以时间为关键属性的关联知识。目前,时间序列预测方法有经典的统计方法、神经网络和机器学习等。1968年BoX和Jenkins提出了一套比较完善的时间序列建模理论和分析方法,这些经典的数学方法通过建立随机模型,进行时间序列的预测。由于大量的时间序列是非平稳的,其特征参数和数据分布随着时间的推移而发生变化。因此,仅仅通过对某段历史数据的训练,建立单一的神经网络预测模型,还无法完成准确的预测任务。为此,人们提出了基于统计学和基于精确性的再训练方法,当发现现存预测模型不再适用于当前数据时,对模型重新训练,获得新的权重参数,建立新的模型。5.偏差型知识。它是对差异和极端特例的描述,揭示事物偏离常规的异常现象,如标准类外的特例、数据聚类外的离群值等。所有这些知识都可以在不同的概念层次上被发现,并随着概念层次的提升,从微观到中观、到宏观,以满足不同用户不同层次决策的需要。三、数据挖掘流程数据挖掘是指一个完整的过程,该过程从大型数据库中挖掘先前未知的、有效的、可实用的信息,代写毕业论文并使用这些信息做出决策或丰富知识。数据挖掘的基本过程和主要步骤如下:过程中各步骤的大体内容如下:1.确定业务对象,清晰地定义出业务问题。认清数据挖掘的目的是数据挖掘的重要一步,挖掘的最后结构不可预测,但要探索的问题应该是有预见的,为了数据挖掘而挖掘则带有盲目性,是不会成功的。2.数据准备。(1)数据选择。搜索所有与业务对象有关的内部和外部数据信息,并从中选择出适用于数据挖掘应用的数据。(2)数据预处理。研究数据的质量,进行数据的集成、变换、归约、压缩等.为进一步的分析作准备,并确定将要进行的挖掘操作的类型。(3)数据转换。将数据转换成一个分析模型,这个分析模型是针对挖掘算法建立的,这是数据挖掘成功的关键。3.数据挖掘。对所得到的经过转换的数据进行挖掘。除了完善和选择合适的挖掘算法外,其余一切工作都能自动地完成。4.结果分析。解释并评估结果。其使用的分析方法一般应视挖掘操作而定,通常会用到可视化技术。5.知识同化。将分析所得到的知识集成到业务信息系统的组织结构中去。四、数据挖掘的应用数据挖掘技术从一开始就是面向应用的。目前在很多领域,数据挖掘都是一个很时髦的词,尤其是在如银行、电信、保险、交通、零售(如超级市场)等商业领域。1.市场营销。由于管理信息系统和P0S系统在商业尤其是零售业内的普遍使用,特别是条形码技术的使用,从而可以收集到大量关于用户购买情况的数据,并且数据量在不断激增。对市场营销来说,通过数据分析了解客户购物行为的一些特征,对提高竞争力及促进销售是大有帮助的。利用数据挖掘技术通过对用户数据的分析,可以得到关于顾客购买取向和兴趣的信息,从而为商业决策提供了可靠的依据。数据挖掘在营销业上的应用可分为两类:数据库营销(database markerting)和货篮分析(basket analysis)。数据库营销的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客,以便向它们推销产品。通过对已有的顾客数据的辱淅,可以将用户分为不同级别,级别越高,其购买的可能性就越大。货篮分析是分析市场销售数据以识别顾客的购买行为模式,例如:如果A商品被选购,那么B商品被购买的可能性为95%,从而帮助确定商店货架的布局排放以促销某些商品,并且对进货的选择和搭配上也更有目的性。这方面的系统有:Opportunity Ex-plorer,它可用于超市商品销售异常情况的因果分析等,另外IBM公司也开发了识别顾客购买行为模式的一些工具(IntdligentMiner和QUEST中的一部分)。2.金融投资。典型的金融分析领域有投资评估和股票交易市场预测,分析方法一般采用模型预测法(如神经网络或统计回归技术)。代写硕士论文由于金融投资的风险很大,在进行投资决策时,更需要通过对各种投资方向的有关数据进行分析,以选择最佳的投资方向。无论是投资评估还是股票市场预测,都是对事物发展的一种预测,而且是建立在对数据的分析基础之上的。数据挖掘可以通过对已有数据的处理,找到数据对象之间的关系,然后利用学习得到的模式进行合理的预测。这方面的系统有Fidelity Stock Selector和LBS Capital Management。前者的任务是使用神经网络模型选择投资,后者则使用了专家系统、神经网络和基因算法技术来辅助管理多达6亿美元的有价证券。3.欺诈甄别。银行或商业上经常发生行为,如恶性透支等,这些给银行和商业单位带来了巨大的损失。对这类行为进行预测可以减少损失。进行甄别主要是通过总结正常行为和行为之间的关系,得到行为的一些特性,这样当某项业务符合这些特征时,可以向决策人员提出警告。这方面应用非常成功的系统有:FALCON系统和FAIS系统。FALCON是HNC公司开发的信用卡欺诈估测系统,它已被相当数量的零售银行用于探测可疑的信用卡交易;FAIS则是一个用于识别与洗钱有关的金融交易的系统,它使用的是一般的政府数据表单。此外数据挖掘还可用于天文学上的遥远星体探测、基因工程的研究、web信息检索等。结束语随着数据库、人工智能、数理统计及计算机软硬件技术的发展,数据挖掘技术必能在更多的领域内取得更广泛的应用。参考文献:[1]闫建红《数据库系统概论》的教学改革与探索[J].山西广播电视大学学报,2006,(15):16—17.其他相关:数据挖掘研究现状及最新进展(CAJ格式)仅供参考,请自借鉴希望对您有帮助补充:如何撰写毕业论文本科专业(含本科段、独立本科段)自考生在各专业课程考试成绩合格后,都要进行毕业论文的撰写(工科类专业一般为毕业设计、医科类一般为临床实习)及其答辩考核。毕业论文的撰写及答辩考核是取得高等教育自学考试本科毕业文凭的重要环节之一,也是衡量自考毕业生是否达到全日制普通高校相同层次相同专业的学力水平的重要依据之一。但是,由于许多应考者缺少系统的课堂授课和平时训练,往往对毕业论文的独立写作感到压力很大,心中无数,难以下笔。因此,对本科专业自考生这一特定群体,就毕业论文的撰写进行必要指导,具有重要的意义。本文试就如何撰写毕业论文作简要论述,供参考。毕业论文是高等教育自学考试本科专业应考者完成本科阶段学业的最后一个环节,它是应考者的总结性独立作业,目的在于总结学习专业的成果,培养综合运用所学知识解决实际问题的能力。从文体而言,它也是对某一专业领域的现实问题或理论问题进行科学研究探索的具有一定意义的论说文。完成毕业论文的撰写可以分两个步骤,即选择课题和研究课题。首先是选择课题。选题是论文撰写成败的关键。因为,选题是毕业论文撰写的第一步,它实际上就是确定“写什么”的问题,亦即确定科学研究的方向。如果“写什么”不明确,“怎么写”就无从谈起。教育部自学考试办公室有关对毕业论文选题的途径和要求是“为鼓励理论与工作实践结合,应考者可结合本单位或本人从事的工作提出论文题目,报主考学校审查同意后确立。也可由主考学校公布论文题目,由应考者选择。毕业论文的总体要求应与普通全日制高等学校相一致,做到通过论文写作和答辩考核,检验应考者综合运用专业知识的能力”。但不管考生是自己任意选择课题,还是在主考院校公布的指定课题中选择课题,都要坚持选择有科学价值和现实意义的、切实可行的课题。选好课题是毕业论文成功的一半。第一、要坚持选择有科学价值和现实意义的课题。科学研究的目的是为了更好地认识世界、改造世界,以推动社会的不断进步和发展。因此,毕业论文的选题,必须紧密结合社会主义物质文明和精神文明建设的需要,以促进科学事业发展和解决现实存在问题作为出发点和落脚点。选题要符合科学研究的正确方向,要具有新颖性,有创新、有理论价值和现实的指导意义或推动作用,一项毫无意义的研究,即使花很大的精力,表达再完善,也将没有丝毫价值。具体地说,考生可从以下三个方面来选题。首先,要从现实的弊端中选题,学习了专业知识,不能仅停留在书本上和理论上,还要下一番功夫,理论联系实际,用已掌握的专业知识,去寻找和解决工作实践中急待解决的问题。其次,要从寻找科学研究的空白处和边缘领域中选题,科学研究还有许多没有被开垦的处女地,还有许多缺陷和空白,这些都需要填补。应考者应有独特的眼光和超前的意识去思索,去发现,去研究。最后,要从寻找前人研究的不足处和错误处选题,在前人已提出来的研究课题中,许多虽已有初步的研究成果,但随着社会的不断发展,还有待于丰富、完整和发展,这种补充性或纠正性的研究课题,也是有科学价值和现实指导意义的。第二、要根据自己的能力选择切实可行的课题。毕业论文的写作是一种创造性劳动,不但要有考生个人的见解和主张,同时还需要具备一定的客观条件。由于考生个人的主观、客观条件都是各不相同的,因此在选题时,还应结合自己的特长、兴趣及所具备的客观条件来选题。具体地说,考生可从以下三个方面来综合考虑。首先,要有充足的资料来源。“巧妇难为无米之炊”,在缺少资料的情况下,是很难写出高质量的论文的。选择一个具有丰富资料来源的课题,对课题深入研究与开展很有帮助。其次,要有浓厚的研究兴趣,选择自己感兴趣的课题,可以激发自己研究的热情,调动自己的主动性和积极性,能够以专心、细心、恒心和耐心的积极心态去完成。最后,要能结合发挥自己的业务专长,每个考生无论能力水平高低,工作岗位如何,都有自己的业务专长,选择那些能结合自己工作、发挥自己业务专长的课题,对顺利完成课题的研究大有益处。选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。第一、研究课题的基础工作———搜集资料。考生可以从查阅图书馆、资料室的资料,做实地调查研究、实验与观察等三个方面来搜集资料。搜集资料越具体、细致越好,最好把想要搜集资料的文献目录、详细计划都列出来。首先,查阅资料时要熟悉、掌握图书分类法,要善于利用书目、索引,要熟练地使用其他工具书,如年鉴、文摘、表册、数字等。其次,做实地调查研究,调查研究能获得最真实可靠、最丰富的第一手资料,调查研究时要做到目的明确、对象明确、内容明确。调查的方法有:普遍调查、重点调查、典型调查、抽样调查。调查的方式有:开会、访问、问卷。最后,关于实验与观察。实验与观察是搜集科学资料数据、获得感性知识的基本途径,是形成、产生、发展和检验科学理论的实践基础,本方法在理工科、医类等专业研究中较为常用,运用本方法时要认真全面记录。第二、研究课题的重点工作———研究资料。考生要对所搜集到手的资料进行全面浏览,并对不同资料采用不同的阅读方法,如阅读、选读、研读。通读即对全文进行阅读,选读即对有用部分、有用内容进行阅读,研读即对与研究课题有关的内容进行全面、认真、细致、深入、反复的阅读。在研读过程中要积极思考。要以书或论文中的论点、论据、论证方法与研究方法来触发自己的思考,要眼、手、脑并用,发挥想象力,进行新的创造。在研究资料时,还要做好资料的记录。第三、研究课题的核心工作―――明确论点和选定材料。在研究资料的基础上,考生提出自己的观点和见解,根据选题,确立基本论点和分论点。提出自己的观点要突出新创见,创新是灵魂,不能只是重复前人或人云亦云。同时,还要防止贪大求全的倾向,生怕不完整,大段地复述已有的知识,那就体现不出自己研究的特色和成果了。根据已确立的基本论点和分论点选定材料,这些材料是自己在对所搜集的资料加以研究的基础上形成的。组织材料要注意掌握科学的思维方法,注意前后材料的逻辑关系和主次关系。第四、研究课题的关键工作―――执笔撰写。考生下笔时要对以下两个方面加以注意:拟定提纲和基本格式。拟定提纲包括题目、基本论点、内容纲要。内容纲要包括大项目即大段段旨、中项目即段旨、小项目即段中材料或小段段旨。拟定提纲有助于安排好全文的逻辑结构,构建论文的基本框架。基本格式:一般毕业论文由标题、摘要、正文、参考文献等4方面内容构成。标题要求直接、具体、醒目、简明扼要。摘要即摘出论文中的要点放在论文的正文之前,以方便读者阅读,所以要简洁、概括。正文是毕业论文的核心内容,包括绪论、本论、结论三大部分。绪论部分主要说明研究这一课题的理由、意义,要写得简洁。要明确、具体地提出所论述课题,有时要写些历史回顾和现状分析,本人将有哪些补充、纠正或发展,还要简单介绍论证方法。本论部分是论文的主体,即表达作者的研究成果,主要阐述自己的观点及其论据。这部分要以充分有力的材料阐述观点,要准确把握文章内容的层次、大小段落间的内在联系。篇幅较长的论文常用推论式(即由此论点到彼论点逐层展开、步步深入的写法)和分论式(即把从属于基本论点的几个分论点并列起来,一个个分别加以论述)两者结合的方法。结论部分是论文的归结收束部分,要写论证的结果,做到首尾一贯,同时要写对课题研究的展望,提及进一步探讨的问题或可能解决的途径等。参考文献即撰写论文过程中研读的一些文章或资料,要选择主要的列在文后。第五、研究课题的保障工作―――修改定稿。通过这一环节,可以看出写作意图是否表达清楚,基本论点和分论点是否准确、明确,材料用得是否恰当、有说服力,材料的安排与论证是否有逻辑效果,大小段落的结构是否完整、衔接自然,句子词语是否正确妥当,文章是否合乎规范。总之,撰写毕业论文是一种复杂的思维活动,对于缺乏写作经验的自考生来说,确有一定的难度。因此,考生要“学习学习再学习,实践实践再实践”,虚心向指导教师求教。
o0大鹏0o
图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。文字识别的研究是从 1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别, 应用非常广泛。数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。现代图像识别技术的一个不足就是自适应性能差,一旦目标图像被较强的噪声污染或是目标图像有较大残缺往往就得不出理想的结果。图像识别问题的数学本质属于模式空间到类别空间的映射问题。目前,在图像识别的发展中,主要有三种识别方法:统计模式识别、结构模式识别、模糊模式识别。图像分割是图像处理中的一项关键技术,自20世纪70年代,其研究已经有几十年的历史,一直都受到人们的高度重视,至今借助于各种理论提出了数以千计的分割算法,而且这方面的研究仍然在积极地进行着。现有的图像分割的方法有许多种,有阈值分割方法,边缘检测方法,区域提取方法,结合特定理论工具的分割方法等。从图像的类型来分有:灰度图像分割、彩色图像分割和纹理图像分割等。早在1965年就有人提出了检测边缘算子,使得边缘检测产生了不少经典算法。但在近二十年间,随着基于直方图和小波变换的图像分割方法的研究计算技术、VLSI技术的迅速发展,有关图像处理方面的研究取得了很大的进展。图像分割方法结合了一些特定理论、 方法和工具,如基于数学形态学的图像分割、基于小波变换的分割、基于遗传算法的分割等。
《浅议赏识教育的利与弊》 【摘要】适当的赏识教育能使孩子健康、快乐地成长,但无原则、无规范、不恰当、“奖过其实”的赏识,也是背离孩子健全人格的形成的。 【关键词
数学归纳思想在各学段之特点和教学启示 第一章 导论
只计算正文部分,不包含摘要、前言、致谢。 表达自己的学术成果 要求 有引言正文参考资料等,字数 一般1000以上。论文的主体要求:大学毕业生的文本数量一般应超过
在国外,机器视觉的应用普及主要体现在半导体及电子行业,其中大概40%-50%都集中在半导体行业。具体如PCB印刷电路:各类生产印刷电路板组装技术、设备;单、双面
中国七大方言概述 1.北方话(简称:北语) 2.广东话(简称:粤语) 3.江浙话(简称:吴语):4.福建话(简称:闽语):5.湖南话(简称:湘语): 6.江西话